Commit 08821b55 authored by Yuxin Wu's avatar Yuxin Wu

refactor queueinputtrainer a bit

parent 0e7f338c
......@@ -21,7 +21,7 @@ import os
sys.path.insert(0, os.path.abspath('../'))
import mock
MOCK_MODULES = ['numpy', 'scipy', 'tensorflow']
MOCK_MODULES = ['numpy', 'scipy', 'tensorflow', 'scipy.misc', 'h5py', 'nltk']
for mod_name in MOCK_MODULES:
sys.modules[mod_name] = mock.Mock()
......
## ResNet
Implements the paper "Deep Residual Learning for Image Recognition", [http://arxiv.org/abs/1512.03385](http://arxiv.org/abs/1512.03385)
Implement the paper "Deep Residual Learning for Image Recognition", [http://arxiv.org/abs/1512.03385](http://arxiv.org/abs/1512.03385)
with the variants proposed in "Identity Mappings in Deep Residual Networks", [https://arxiv.org/abs/1603.05027](https://arxiv.org/abs/1603.05027).
The train error shown here is a moving average of the error rate of each batch in training.
......
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: mnist_convnet.py
# File: mnist-convnet.py
# Author: Yuxin Wu <ppwwyyxx@gmail.com>
import tensorflow as tf
......@@ -121,5 +121,6 @@ if __name__ == '__main__':
config = get_config()
if args.load:
config.session_init = SaverRestore(args.load)
tp.SimpleTrainer(config).train()
#tp.SimpleTrainer(config).train()
tp.QueueInputTrainer(config).train()
......@@ -6,25 +6,8 @@ Define a `DataFlow` instance to feed data.
See [Dataflow documentation](https://github.com/ppwwyyxx/tensorpack/tree/master/tensorpack/dataflow)
### How to define a model
Take a look at the `get_model` function in [mnist example](https://github.com/ppwwyyxx/tensorpack/blob/master/example_mnist.py) first.
To define a model, write a `get_model` function which accepts two arguments:
+ inputs: a list of variables used as input in training. inputs could be batched or not batched (see
[training](#how-to-perform-training))
+ is_training: the graph for training and inference could be different (e.g. dropout, augmentation),
`get_model` function should use this variable to know is it doing training or inference.
The function should define a graph based on input variables.
It could use any pre-defined routines in [tensorpack/models](https://github.com/ppwwyyxx/tensorpack/tree/master/tensorpack/models),
or use tensorflow symbolic functions.
It may also define other helper variables to monitor the training,
(e.g. accuracy), and add tensorboard summaries you need. (See [howto summary](#use-tensorboard-summary))
Also, it's helpful to give names to some important variables used in inference. (See
[inference](#how-to-perform-inference)).
The function should at last return the cost to minimize.
Take a look at [mnist example](https://github.com/ppwwyyxx/tensorpack/blob/master/example_mnist.py) first.
### How to perform training
......@@ -35,6 +18,3 @@ The function should at last return the cost to minimize.
### How to add new models
### Use tensorboard summary
<!--
- what will be automatically summaried
-->
......@@ -2,12 +2,12 @@
# File: __init__.py
# Author: Yuxin Wu <ppwwyyxx@gmail.com>
import models
import train
import utils
import tfutils
import callbacks
import dataflow
from . import models
from . import train
from . import utils
from . import tfutils
from . import callbacks
from . import dataflow
from .train import *
from .models import *
......
......@@ -3,11 +3,14 @@
# Author: Yuxin Wu <ppwwyyxx@gmail.com>
import sys, os
import multiprocessing
from scipy.misc import imsave
from ..utils.fs import mkdir_p
# TODO name_func to write label?
__all__ = ['dump_dataset_images', 'dataflow_to_process_queue']
# TODO pass a name_func to write label as filename?
def dump_dataset_images(ds, dirname, max_count=None, index=0):
""" Dump images from a `DataFlow` to a directory.
......@@ -25,3 +28,34 @@ def dump_dataset_images(ds, dirname, max_count=None, index=0):
return
img = dp[index]
imsave(os.path.join(dirname, "{}.jpg".format(i)), img)
def dataflow_to_process_queue(ds, size, nr_consumer):
"""
Convert a `DataFlow` to a multiprocessing.Queue.
:param ds: a `DataFlow`
:param size: size of the queue
:param nr_consumer: number of consumer of the queue.
will add this many of `DIE` sentinel to the end of the queue.
:returns: (queue, process). The process will take data from `ds` to fill
the queue once you start it.
"""
q = multiprocessing.Queue(size)
class EnqueProc(multiprocessing.Process):
def __init__(self, ds, q, nr_consumer):
super(EnqueProc, self).__init__()
self.ds = ds
self.q = q
def run(self):
try:
for idx, dp in enumerate(self.ds.get_data()):
self.q.put((idx, dp))
finally:
for _ in range(nr_consumer):
self.q.put((DIE, None))
proc = EnqueProc(ds, q, nr_consumer)
return q, proc
......@@ -39,16 +39,6 @@ class ModelDesc(object):
def _get_input_vars(self):
pass
# TODO move this to QueueInputTrainer
def get_input_queue(self, input_vars):
"""
return the queue for input. the dequeued elements will be fed to self.get_cost
if queue is None, datapoints from dataflow will be fed to the graph directly.
when running with multiGPU, queue cannot be None
"""
assert input_vars is not None
return tf.FIFOQueue(100, [x.dtype for x in input_vars], name='input_queue')
def get_cost(self, input_vars, is_training):
"""
:param input_vars: a list of input variable in the graph
......
......@@ -3,12 +3,10 @@
# Author: Yuxin Wu <ppwwyyxx@gmail.com>
import tensorflow as tf
from itertools import count
import argparse
from collections import namedtuple
import numpy as np
from collections import namedtuple
from tqdm import tqdm
from six.moves import zip
from six.moves import zip, range
import multiprocessing
from .utils.concurrency import ensure_proc_terminate, OrderedResultGatherProc, DIE
......@@ -17,6 +15,7 @@ from .tfutils import *
from .utils import logger
from .tfutils.modelutils import describe_model
from .dataflow import DataFlow, BatchData
from .dataflow.dftools import dataflow_to_process_queue
__all__ = ['PredictConfig', 'DatasetPredictor', 'get_predict_func']
......@@ -102,7 +101,7 @@ class PredictWorker(multiprocessing.Process):
""" A worker process to run predictor on one GPU """
def __init__(self, idx, gpuid, inqueue, outqueue, config):
"""
:param idx: index of the worker
:param idx: index of the worker. the 0th worker will print log.
:param gpuid: id of the GPU to be used
:param inqueue: input queue to get data point
:param outqueue: output queue put result
......@@ -118,7 +117,7 @@ class PredictWorker(multiprocessing.Process):
def run(self):
os.environ['CUDA_VISIBLE_DEVICES'] = self.gpuid
G = tf.Graph() # build a graph for each process, because they don't need to share anything
with G.as_default(), tf.device('/gpu:{}'.format(self.idx)):
with G.as_default(), tf.device('/gpu:0'):
self.func = get_predict_func(self.config)
if self.idx == 0:
describe_model()
......@@ -131,33 +130,6 @@ class PredictWorker(multiprocessing.Process):
res = PredictResult(dp, self.func(dp))
self.outqueue.put((tid, res))
def DFtoQueue(ds, size, nr_consumer):
"""
Build a queue that produce data from `DataFlow`, and a process
that fills the queue.
:param ds: a `DataFlow`
:param size: size of the queue
:param nr_consumer: number of consumer of the queue.
will add this many of `DIE` sentinel to the end of the queue.
:returns: (queue, process)
"""
q = multiprocessing.Queue(size)
class EnqueProc(multiprocessing.Process):
def __init__(self, ds, q, nr_consumer):
super(EnqueProc, self).__init__()
self.ds = ds
self.q = q
def run(self):
for idx, dp in enumerate(self.ds.get_data()):
self.q.put((idx, dp))
print "Enqueue ends"
for _ in range(nr_consumer):
self.q.put((DIE, None))
proc = EnqueProc(ds, q, nr_consumer)
return q, proc
class DatasetPredictor(object):
"""
Run the predict_config on a given `DataFlow`.
......@@ -171,12 +143,12 @@ class DatasetPredictor(object):
self.ds = dataset
self.nr_gpu = config.nr_gpu
if self.nr_gpu > 1:
self.inqueue, self.inqueue_proc = DFtoQueue(self.ds, 10, self.nr_gpu)
self.inqueue, self.inqueue_proc = dataflow_to_process_queue(self.ds, 10, self.nr_gpu)
self.outqueue = multiprocessing.Queue()
try:
gpus = os.environ['CUDA_VISIBLE_DEVICES'].split(',')
except KeyError:
gpus = range(self.nr_gpu)
gpus = list(range(self.nr_gpu))
self.workers = [PredictWorker(i, gpus[i], self.inqueue, self.outqueue, config)
for i in range(self.nr_gpu)]
self.result_queue = OrderedResultGatherProc(self.outqueue)
......
......@@ -6,7 +6,7 @@
from ..utils.naming import *
import tensorflow as tf
def get_default_sess_config(mem_fraction=0.99):
def get_default_sess_config(mem_fraction=0.9):
"""
Return a better session config to use as default.
Tensorflow default session config consume too much resources.
......
......@@ -4,6 +4,7 @@
import six
import tensorflow as tf
import re
from ..utils import *
from . import get_global_step_var
......@@ -69,23 +70,18 @@ def add_param_summary(summary_lists):
for act in actions:
perform(p, act)
# TODO get rid of the cost_var thing...
def summary_moving_average(cost_var):
def summary_moving_average():
""" Create a MovingAverage op and summary for all variables in
MOVING_SUMMARY_VARS_KEY, as well as `cost_var`.
MOVING_SUMMARY_VARS_KEY.
:returns: a op to maintain these average.
"""
global_step_var = get_global_step_var()
averager = tf.train.ExponentialMovingAverage(
0.99, num_updates=global_step_var, name='moving_averages')
vars_to_summary = [cost_var] + \
tf.get_collection(MOVING_SUMMARY_VARS_KEY)
vars_to_summary = tf.get_collection(MOVING_SUMMARY_VARS_KEY)
avg_maintain_op = averager.apply(vars_to_summary)
for idx, c in enumerate(vars_to_summary):
name = c.op.name
if idx == 0:
name = 'train_cost'
name = re.sub('tower[0-9]+/', '', c.op.name)
tf.scalar_summary(name, averager.average(c))
return avg_maintain_op
......@@ -63,7 +63,7 @@ class Trainer(object):
summary = tf.Summary.FromString(summary_str)
for val in summary.value:
if val.WhichOneof('value') == 'simple_value':
val.tag = re.sub('tower[0-9]*/', '', val.tag) # TODO move to subclasses
val.tag = re.sub('tower[0-9]+/', '', val.tag) # TODO move to subclasses
self.stat_holder.add_stat(val.tag, val.simple_value)
self.summary_writer.add_summary(summary, self.global_step)
......
......@@ -81,73 +81,91 @@ class EnqueueThread(threading.Thread):
class QueueInputTrainer(Trainer):
"""
Trainer which builds a queue for input.
Trainer which builds a FIFO queue for input.
Support multi GPU.
"""
def __init__(self, config, input_queue=None):
"""
:param config: a `TrainConfig` instance
:param input_queue: a `tf.QueueBase` instance to be used to buffer datapoints.
Defaults to a FIFO queue of size 100.
"""
super(QueueInputTrainer, self).__init__(config)
self.input_vars = self.model.get_input_vars()
if input_queue is None:
self.input_queue = tf.FIFOQueue(
100, [x.dtype for x in self.input_vars], name='input_queue')
else:
self.input_queue = input_queue
@staticmethod
def _average_grads(tower_grads):
ret = []
with tf.device('/gpu:0'):
for grad_and_vars in zip(*tower_grads):
v = grad_and_vars[0][1]
try:
grad = tf.add_n([x[0] for x in grad_and_vars]) / float(len(tower_grads))
except AssertionError:
logger.error("Error while processing gradients of {}".format(v.name))
raise
ret.append((grad, v))
return ret
for grad_and_vars in zip(*tower_grads):
v = grad_and_vars[0][1]
try:
grad = tf.add_n([x[0] for x in grad_and_vars]) / float(len(tower_grads))
except AssertionError:
logger.error("Error while processing gradients of {}".format(v.name))
raise
ret.append((grad, v))
return ret
def _get_model_inputs(self):
""" Dequeue a datapoint from input_queue and return"""
ret = self.input_queue.dequeue()
if isinstance(ret, tf.Tensor): # only one input
ret = [ret]
assert len(ret) == len(self.input_vars)
for qv, v in zip(ret, self.input_vars):
qv.set_shape(v.get_shape())
return ret
def _single_tower_grad_cost(self):
""" Get grad and cost for single-tower case"""
model_inputs = self._get_model_inputs()
cost_var = self.model.get_cost(model_inputs, is_training=True)
grads = self.config.optimizer.compute_gradients(cost_var)
return (grads, cost_var)
def _multi_tower_grad_cost(self):
logger.info("Training a model of {} tower".format(self.config.nr_tower))
# to avoid repeated summary from each device
collect_dedup = [tf.GraphKeys.SUMMARIES, MOVING_SUMMARY_VARS_KEY]
kept_summaries = {}
grad_list = []
for i in range(self.config.nr_tower):
with tf.device('/gpu:{}'.format(i)), \
tf.name_scope('tower{}'.format(i)) as scope:
model_inputs = self._get_model_inputs() # each tower dequeue from input queue
cost_var = self.model.get_cost(model_inputs, is_training=True) # build tower
# gate_gradienst=0 seems to be faster?
grad_list.append(
self.config.optimizer.compute_gradients(cost_var, gate_gradients=0))
if i == 0:
cost_var_t0 = cost_var
tf.get_variable_scope().reuse_variables()
for k in collect_dedup:
kept_summaries[k] = copy.copy(tf.get_collection(k))
logger.info("Graph built for tower {}.".format(i))
for k in collect_dedup:
del tf.get_collection_ref(k)[:]
tf.get_collection_ref(k).extend(kept_summaries[k])
grads = QueueInputTrainer._average_grads(grad_list)
return (grads, cost_var_t0)
def train(self):
model = self.model
input_vars = model.get_input_vars()
input_queue = model.get_input_queue(input_vars)
enqueue_op = input_queue.enqueue(input_vars)
def get_model_inputs():
model_inputs = input_queue.dequeue()
if isinstance(model_inputs, tf.Tensor): # only one input
model_inputs = [model_inputs]
for qv, v in zip(model_inputs, input_vars):
qv.set_shape(v.get_shape())
return model_inputs
# get gradients to update:
if self.config.nr_tower > 1:
logger.info("Training a model of {} tower".format(self.config.nr_tower))
# to avoid repeated summary from each device
coll_keys = [tf.GraphKeys.SUMMARIES, MOVING_SUMMARY_VARS_KEY]
kept_summaries = {}
grad_list = []
for i in range(self.config.nr_tower):
with tf.device('/gpu:{}'.format(i)), \
tf.name_scope('tower{}'.format(i)) as scope:
model_inputs = get_model_inputs()
cost_var = model.get_cost(model_inputs, is_training=True)
if i == 0:
cost_var_t0 = cost_var
grad_list.append(
self.config.optimizer.compute_gradients(cost_var,
gate_gradients=0))
if i == 0:
tf.get_variable_scope().reuse_variables()
for k in coll_keys:
kept_summaries[k] = copy.copy(tf.get_collection(k))
logger.info("Graph built for tower {}.".format(i))
for k in coll_keys:
del tf.get_collection_ref(k)[:]
tf.get_collection_ref(k).extend(kept_summaries[k])
grads = QueueInputTrainer._average_grads(grad_list)
cost_var = cost_var_t0
else:
model_inputs = get_model_inputs()
cost_var = model.get_cost(model_inputs, is_training=True)
grads = self.config.optimizer.compute_gradients(cost_var)
avg_maintain_op = summary_moving_average(cost_var) # TODO(multigpu) average the cost from each device?
enqueue_op = self.input_queue.enqueue(self.input_vars)
grads, cost_var = self._single_tower_grad_cost() \
if self.config.nr_tower == 0 else self._multi_tower_grad_cost()
tf.add_to_collection(MOVING_SUMMARY_VARS_KEY, cost_var)
avg_maintain_op = summary_moving_average()
grads = self.process_grads(grads)
......@@ -157,7 +175,7 @@ class QueueInputTrainer(Trainer):
self.init_session_and_coord()
# create a thread that keeps filling the queue
self.input_th = EnqueueThread(self, input_queue, enqueue_op, input_vars)
self.input_th = EnqueueThread(self, self.input_queue, enqueue_op, self.input_vars)
self.main_loop()
def _start_all_threads(self):
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment