Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
04c81965
Commit
04c81965
authored
Aug 24, 2019
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update docs
parent
0226451c
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
11 additions
and
4 deletions
+11
-4
tensorpack/input_source/input_source.py
tensorpack/input_source/input_source.py
+10
-3
tensorpack/models/batch_norm.py
tensorpack/models/batch_norm.py
+1
-1
No files found.
tensorpack/input_source/input_source.py
View file @
04c81965
...
...
@@ -449,13 +449,16 @@ class TFDatasetInput(FeedfreeInput):
Use a :class:`tf.data.Dataset` instance as input.
Note:
In training, the dataset should be infinite (use :func:`repeat()`).
1. In training, the given dataset or dataflow has to be infinite
(you can use :func:`repeat()`, or :class:`RepeatedData` ).
2. TensorFlow may keep the dataflow alive even if the dataset is no
longer used.
"""
def
__init__
(
self
,
dataset
):
"""
Args:
dataset (tf.data.Dataset or DataFlow): if a DataFlow, the dataflow
has to be infinite.
dataset (tf.data.Dataset or DataFlow):
"""
if
isinstance
(
dataset
,
tf
.
data
.
Dataset
):
self
.
_dataset
=
dataset
...
...
@@ -519,6 +522,10 @@ class TFDatasetInput(FeedfreeInput):
Returns:
(tf.data.Dataset)
Note:
TensorFlow may keep the dataflow alive even if the dataset is no
longer used.
"""
# TODO theoretically it can support dict
assert
isinstance
(
df
,
DataFlow
),
df
...
...
tensorpack/models/batch_norm.py
View file @
04c81965
...
...
@@ -322,7 +322,7 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
logger
.
warn
(
"BatchNorm(sync_statistics='horovod') is used with only one process!"
)
else
:
import
horovod
hvd_version
=
tuple
(
map
(
int
,
horovod
.
__version__
.
split
(
'.'
)))
hvd_version
=
tuple
(
map
(
int
,
horovod
.
__version__
.
split
(
'.'
)
[:
3
]
))
assert
hvd_version
>=
(
0
,
13
,
6
),
"sync_statistics=horovod needs horovod>=0.13.6 !"
batch_mean
=
hvd
.
allreduce
(
batch_mean
,
average
=
True
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment