Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
03f18976
Commit
03f18976
authored
Apr 23, 2018
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add TTQ inside DoReFa
parent
5cdf1d33
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
58 additions
and
10 deletions
+58
-10
examples/DoReFa-Net/README.md
examples/DoReFa-Net/README.md
+3
-1
examples/DoReFa-Net/alexnet-dorefa.py
examples/DoReFa-Net/alexnet-dorefa.py
+19
-7
examples/DoReFa-Net/dorefa.py
examples/DoReFa-Net/dorefa.py
+33
-0
examples/FasterRCNN/README.md
examples/FasterRCNN/README.md
+3
-2
No files found.
examples/DoReFa-Net/README.md
View file @
03f18976
...
@@ -11,7 +11,9 @@ Pretrained model for (1,4,32)-ResNet18 and (1,2,6)-AlexNet are available at
...
@@ -11,7 +11,9 @@ Pretrained model for (1,4,32)-ResNet18 and (1,2,6)-AlexNet are available at
They're provided in the format of numpy dictionary, so it should be very easy to port into other applications.
They're provided in the format of numpy dictionary, so it should be very easy to port into other applications.
The __binary-weight 4-bit-activation ResNet-18__ model has 59.2% top-1 validation accuracy.
The __binary-weight 4-bit-activation ResNet-18__ model has 59.2% top-1 validation accuracy.
Note that when (W,A,G) is set to (1,32,32), this code is also an implementation of
[
Binary Weight Network
](
https://arxiv.org/abs/1511.00363
)
.
Note that when (W,A,G) is set to (1,32,32), this code implements
[
Binary Weight Network
](
https://arxiv.org/abs/1511.00363
)
.
When (W,A,G) is set to (t,32,32), this code implements
[
Trained Ternary Quantization
](
https://arxiv.org/abs/1612.01064
)
.
But with (W,A,G) set to (1,1,32), it is not equivalent to
[
XNOR-Net
](
https://arxiv.org/abs/1603.05279
)
, although it won't be hard to implement it.
But with (W,A,G) set to (1,1,32), it is not equivalent to
[
XNOR-Net
](
https://arxiv.org/abs/1603.05279
)
, although it won't be hard to implement it.
Alternative link to this page:
[
http://dorefa.net
](
http://dorefa.net
)
Alternative link to this page:
[
http://dorefa.net
](
http://dorefa.net
)
...
...
examples/DoReFa-Net/alexnet-dorefa.py
View file @
03f18976
...
@@ -19,7 +19,7 @@ from tensorpack.dataflow import dataset
...
@@ -19,7 +19,7 @@ from tensorpack.dataflow import dataset
from
tensorpack.utils.gpu
import
get_nr_gpu
from
tensorpack.utils.gpu
import
get_nr_gpu
from
imagenet_utils
import
get_imagenet_dataflow
,
fbresnet_augmentor
from
imagenet_utils
import
get_imagenet_dataflow
,
fbresnet_augmentor
from
dorefa
import
get_dorefa
from
dorefa
import
get_dorefa
,
ternarize
"""
"""
This is a tensorpack script for the ImageNet results in paper:
This is a tensorpack script for the ImageNet results in paper:
...
@@ -35,7 +35,9 @@ Accuracy:
...
@@ -35,7 +35,9 @@ Accuracy:
due to more sophisticated augmentations.
due to more sophisticated augmentations.
With (W,A,G)=(32,32,32) -- full precision baseline, 41.4
%
error.
With (W,A,G)=(32,32,32) -- full precision baseline, 41.4
%
error.
With (W,A,G)=(t,32,32) -- TTQ, 42.3
%
error
With (W,A,G)=(1,32,32) -- BWN, 44.3
%
error
With (W,A,G)=(1,32,32) -- BWN, 44.3
%
error
With (W,A,G)=(1,1,32) -- BNN, 53.4
%
error
With (W,A,G)=(1,2,6), 47.6
%
error
With (W,A,G)=(1,2,6), 47.6
%
error
With (W,A,G)=(1,2,4), 58.4
%
error
With (W,A,G)=(1,2,4), 58.4
%
error
...
@@ -84,7 +86,11 @@ class Model(ModelDesc):
...
@@ -84,7 +86,11 @@ class Model(ModelDesc):
def
build_graph
(
self
,
image
,
label
):
def
build_graph
(
self
,
image
,
label
):
image
=
image
/
255.0
image
=
image
/
255.0
fw
,
fa
,
fg
=
get_dorefa
(
BITW
,
BITA
,
BITG
)
if
BITW
==
't'
:
fw
,
fa
,
fg
=
get_dorefa
(
32
,
32
,
32
)
fw
=
ternarize
else
:
fw
,
fa
,
fg
=
get_dorefa
(
BITW
,
BITA
,
BITG
)
# monkey-patch tf.get_variable to apply fw
# monkey-patch tf.get_variable to apply fw
def
new_get_variable
(
v
):
def
new_get_variable
(
v
):
...
@@ -93,7 +99,7 @@ class Model(ModelDesc):
...
@@ -93,7 +99,7 @@ class Model(ModelDesc):
if
not
name
.
endswith
(
'W'
)
or
'conv0'
in
name
or
'fct'
in
name
:
if
not
name
.
endswith
(
'W'
)
or
'conv0'
in
name
or
'fct'
in
name
:
return
v
return
v
else
:
else
:
logger
.
info
(
"
Binar
izing weight {}"
.
format
(
v
.
op
.
name
))
logger
.
info
(
"
Quant
izing weight {}"
.
format
(
v
.
op
.
name
))
return
fw
(
v
)
return
fw
(
v
)
def
nonlin
(
x
):
def
nonlin
(
x
):
...
@@ -175,7 +181,6 @@ def get_data(dataset_name):
...
@@ -175,7 +181,6 @@ def get_data(dataset_name):
def
get_config
():
def
get_config
():
logger
.
auto_set_dir
()
data_train
=
get_data
(
'train'
)
data_train
=
get_data
(
'train'
)
data_test
=
get_data
(
'val'
)
data_test
=
get_data
(
'val'
)
...
@@ -242,12 +247,17 @@ if __name__ == '__main__':
...
@@ -242,12 +247,17 @@ if __name__ == '__main__':
parser
.
add_argument
(
'--gpu'
,
help
=
'the physical ids of GPUs to use'
)
parser
.
add_argument
(
'--gpu'
,
help
=
'the physical ids of GPUs to use'
)
parser
.
add_argument
(
'--load'
,
help
=
'load a checkpoint, or a npz (given as the pretrained model)'
)
parser
.
add_argument
(
'--load'
,
help
=
'load a checkpoint, or a npz (given as the pretrained model)'
)
parser
.
add_argument
(
'--data'
,
help
=
'ILSVRC dataset dir'
)
parser
.
add_argument
(
'--data'
,
help
=
'ILSVRC dataset dir'
)
parser
.
add_argument
(
'--dorefa'
,
parser
.
add_argument
(
'--dorefa'
,
required
=
True
,
help
=
'number of bits for W,A,G, separated by comma
'
,
required
=
True
)
help
=
'number of bits for W,A,G, separated by comma
. W="t" means TTQ'
)
parser
.
add_argument
(
'--run'
,
help
=
'run on a list of images with the pretrained model'
,
nargs
=
'*'
)
parser
.
add_argument
(
'--run'
,
help
=
'run on a list of images with the pretrained model'
,
nargs
=
'*'
)
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
BITW
,
BITA
,
BITG
=
map
(
int
,
args
.
dorefa
.
split
(
','
))
dorefa
=
args
.
dorefa
.
split
(
','
)
if
dorefa
[
0
]
==
't'
:
assert
dorefa
[
1
]
==
'32'
and
dorefa
[
2
]
==
'32'
BITW
,
BITA
,
BITG
=
't'
,
32
,
32
else
:
BITW
,
BITA
,
BITG
=
map
(
int
,
dorefa
)
if
args
.
gpu
:
if
args
.
gpu
:
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
args
.
gpu
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
args
.
gpu
...
@@ -259,6 +269,8 @@ if __name__ == '__main__':
...
@@ -259,6 +269,8 @@ if __name__ == '__main__':
nr_tower
=
max
(
get_nr_gpu
(),
1
)
nr_tower
=
max
(
get_nr_gpu
(),
1
)
BATCH_SIZE
=
TOTAL_BATCH_SIZE
//
nr_tower
BATCH_SIZE
=
TOTAL_BATCH_SIZE
//
nr_tower
logger
.
set_logger_dir
(
os
.
path
.
join
(
'train_log'
,
'alexnet-dorefa-{}'
.
format
(
args
.
dorefa
)))
logger
.
info
(
"Batch per tower: {}"
.
format
(
BATCH_SIZE
))
logger
.
info
(
"Batch per tower: {}"
.
format
(
BATCH_SIZE
))
config
=
get_config
()
config
=
get_config
()
...
...
examples/DoReFa-Net/dorefa.py
View file @
03f18976
...
@@ -55,3 +55,36 @@ def get_dorefa(bitW, bitA, bitG):
...
@@ -55,3 +55,36 @@ def get_dorefa(bitW, bitA, bitG):
with
G
.
gradient_override_map
({
"Identity"
:
"FGGrad"
}):
with
G
.
gradient_override_map
({
"Identity"
:
"FGGrad"
}):
return
tf
.
identity
(
x
)
return
tf
.
identity
(
x
)
return
fw
,
fa
,
fg
return
fw
,
fa
,
fg
def
ternarize
(
x
,
thresh
=
0.05
):
"""
Implemented Trained Ternary Quantization:
https://arxiv.org/abs/1612.01064
Code modified from the authors' at:
https://github.com/czhu95/ternarynet/blob/master/examples/Ternary-Net/ternary.py
"""
G
=
tf
.
get_default_graph
()
shape
=
x
.
get_shape
()
thre_x
=
tf
.
stop_gradient
(
tf
.
reduce_max
(
tf
.
abs
(
x
))
*
thresh
)
w_p
=
tf
.
get_variable
(
'Wp'
,
initializer
=
1.0
,
dtype
=
tf
.
float32
)
w_n
=
tf
.
get_variable
(
'Wn'
,
initializer
=
1.0
,
dtype
=
tf
.
float32
)
tf
.
summary
.
scalar
(
w_p
.
op
.
name
+
'-summary'
,
w_p
)
tf
.
summary
.
scalar
(
w_n
.
op
.
name
+
'-summary'
,
w_n
)
mask
=
tf
.
ones
(
shape
)
mask_p
=
tf
.
where
(
x
>
thre_x
,
tf
.
ones
(
shape
)
*
w_p
,
mask
)
mask_np
=
tf
.
where
(
x
<
-
thre_x
,
tf
.
ones
(
shape
)
*
w_n
,
mask_p
)
mask_z
=
tf
.
where
((
x
<
thre_x
)
&
(
x
>
-
thre_x
),
tf
.
zeros
(
shape
),
mask
)
with
G
.
gradient_override_map
({
"Sign"
:
"Identity"
,
"Mul"
:
"Add"
}):
w
=
tf
.
sign
(
x
)
*
tf
.
stop_gradient
(
mask_z
)
w
=
w
*
mask_np
tf
.
summary
.
histogram
(
w
.
name
,
w
)
return
w
examples/FasterRCNN/README.md
View file @
03f18976
...
@@ -51,14 +51,15 @@ Evaluate the performance of a model and save to json.
...
@@ -51,14 +51,15 @@ Evaluate the performance of a model and save to json.
These models are trained with different configurations on trainval35k and evaluated on minival using mAP@IoU=0.50:0.95.
These models are trained with different configurations on trainval35k and evaluated on minival using mAP@IoU=0.50:0.95.
MaskRCNN results contain both bbox and segm mAP.
MaskRCNN results contain both bbox and segm mAP.
|Backbone|
`FASTRCNN_BATCH`
|resolution |schedule|mAP (bbox/segm)|Time |
|Backbone|
`FASTRCNN_BATCH`
|resolution |schedule|mAP (bbox/segm)|Time
|
| - | - | - | - | - | - |
| - | - | - | - | - | -
|
|R-50 |64 |(600, 1024)|280k |33.1 |18h on 8 V100s|
|R-50 |64 |(600, 1024)|280k |33.1 |18h on 8 V100s|
|R-50 |512 |(800, 1333)|280k |35.6 |55h on 8 P100s|
|R-50 |512 |(800, 1333)|280k |35.6 |55h on 8 P100s|
|R-50 |512 |(800, 1333)|360k |36.6 |49h on 8 V100s|
|R-50 |512 |(800, 1333)|360k |36.6 |49h on 8 V100s|
|R-50 |256 |(800, 1333)|280k |36.8/32.1 |39h on 8 P100s|
|R-50 |256 |(800, 1333)|280k |36.8/32.1 |39h on 8 P100s|
|R-50 |512 |(800, 1333)|360k |37.8/33.2 |51h on 8 V100s|
|R-50 |512 |(800, 1333)|360k |37.8/33.2 |51h on 8 V100s|
|R-101 |512 |(800, 1333)|280k |40.1/34.4 |70h on 8 P100s|
|R-101 |512 |(800, 1333)|280k |40.1/34.4 |70h on 8 P100s|
|R-101 |512 |(800, 1333)|360k |40.8/35.1 |63h on 8 V100s|
The two 360k models have identical configurations with
The two 360k models have identical configurations with
`R50-C4-2x`
configuration in
`R50-C4-2x`
configuration in
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment