Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
0266827f
Commit
0266827f
authored
Oct 06, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
misc changes
parent
ce2cc714
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
6 additions
and
16 deletions
+6
-16
examples/HED/hed.py
examples/HED/hed.py
+2
-3
tensorpack/dataflow/imgaug/noname.py
tensorpack/dataflow/imgaug/noname.py
+1
-0
tensorpack/tfutils/symbolic_functions.py
tensorpack/tfutils/symbolic_functions.py
+3
-13
No files found.
examples/HED/hed.py
View file @
0266827f
...
@@ -133,7 +133,7 @@ def get_data(name):
...
@@ -133,7 +133,7 @@ def get_data(name):
if
isTrain
:
if
isTrain
:
shape_aug
=
[
shape_aug
=
[
imgaug
.
RandomResize
(
xrange
=
(
0.7
,
1.5
),
yrange
=
(
0.7
,
1.5
),
imgaug
.
RandomResize
(
xrange
=
(
0.7
,
1.5
),
yrange
=
(
0.7
,
1.5
),
aspect_ratio_thres
=
0.1
),
aspect_ratio_thres
=
0.1
5
),
imgaug
.
RotationAndCropValid
(
90
),
imgaug
.
RotationAndCropValid
(
90
),
CropMultiple16
(),
CropMultiple16
(),
imgaug
.
Flip
(
horiz
=
True
),
imgaug
.
Flip
(
horiz
=
True
),
...
@@ -192,8 +192,7 @@ def get_config():
...
@@ -192,8 +192,7 @@ def get_config():
ModelSaver
(),
ModelSaver
(),
HumanHyperParamSetter
(
'learning_rate'
),
HumanHyperParamSetter
(
'learning_rate'
),
InferenceRunner
(
dataset_val
,
InferenceRunner
(
dataset_val
,
BinaryClassificationStats
(
'prediction'
,
BinaryClassificationStats
(
'prediction'
,
'edgemap'
))
'edgemap'
))
]),
]),
model
=
Model
(),
model
=
Model
(),
step_per_epoch
=
step_per_epoch
,
step_per_epoch
=
step_per_epoch
,
...
...
tensorpack/dataflow/imgaug/noname.py
View file @
0266827f
...
@@ -85,6 +85,7 @@ class RandomResize(ImageAugmentor):
...
@@ -85,6 +85,7 @@ class RandomResize(ImageAugmentor):
cnt
+=
1
cnt
+=
1
if
cnt
>
50
:
if
cnt
>
50
:
logger
.
warn
(
"RandomResize failed to augment an image"
)
logger
.
warn
(
"RandomResize failed to augment an image"
)
return
img
.
shape
[
1
],
img
.
shape
[
0
]
def
_augment
(
self
,
img
,
dsize
):
def
_augment
(
self
,
img
,
dsize
):
return
cv2
.
resize
(
img
,
dsize
,
interpolation
=
cv2
.
INTER_CUBIC
)
return
cv2
.
resize
(
img
,
dsize
,
interpolation
=
cv2
.
INTER_CUBIC
)
...
...
tensorpack/tfutils/symbolic_functions.py
View file @
0266827f
...
@@ -29,15 +29,6 @@ def batch_flatten(x):
...
@@ -29,15 +29,6 @@ def batch_flatten(x):
return
tf
.
reshape
(
x
,
[
-
1
,
np
.
prod
(
shape
)])
return
tf
.
reshape
(
x
,
[
-
1
,
np
.
prod
(
shape
)])
return
tf
.
reshape
(
x
,
tf
.
pack
([
tf
.
shape
(
x
)[
0
],
-
1
]))
return
tf
.
reshape
(
x
,
tf
.
pack
([
tf
.
shape
(
x
)[
0
],
-
1
]))
def
logSoftmax
(
x
):
"""
Batch log softmax.
:param x: NxC tensor.
:returns: NxC tensor.
"""
logger
.
warn
(
"symbf.logSoftmax is deprecated in favor of tf.nn.log_softmax"
)
return
tf
.
nn
.
log_softmax
(
x
)
def
class_balanced_binary_class_cross_entropy
(
pred
,
label
,
name
=
'cross_entropy_loss'
):
def
class_balanced_binary_class_cross_entropy
(
pred
,
label
,
name
=
'cross_entropy_loss'
):
"""
"""
The class-balanced cross entropy loss for binary classification,
The class-balanced cross entropy loss for binary classification,
...
@@ -56,10 +47,9 @@ def class_balanced_binary_class_cross_entropy(pred, label, name='cross_entropy_l
...
@@ -56,10 +47,9 @@ def class_balanced_binary_class_cross_entropy(pred, label, name='cross_entropy_l
beta
=
count_neg
/
(
count_neg
+
count_pos
)
beta
=
count_neg
/
(
count_neg
+
count_pos
)
eps
=
1e-8
eps
=
1e-8
loss_pos
=
-
beta
*
tf
.
reduce_mean
(
y
*
tf
.
log
(
tf
.
abs
(
z
)
+
eps
),
1
)
loss_pos
=
-
beta
*
tf
.
reduce_mean
(
y
*
tf
.
log
(
z
+
eps
))
loss_neg
=
(
1.
-
beta
)
*
tf
.
reduce_mean
((
1.
-
y
)
*
tf
.
log
(
tf
.
abs
(
1.
-
z
)
+
eps
),
1
)
loss_neg
=
(
1.
-
beta
)
*
tf
.
reduce_mean
((
1.
-
y
)
*
tf
.
log
(
1.
-
z
+
eps
))
cost
=
tf
.
sub
(
loss_pos
,
loss_neg
)
cost
=
tf
.
sub
(
loss_pos
,
loss_neg
,
name
=
name
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
name
)
return
cost
return
cost
def
print_stat
(
x
,
message
=
None
):
def
print_stat
(
x
,
message
=
None
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment