Commit 46391aa2 authored by Paras Garg's avatar Paras Garg

mm1

parents
File added
#
# Students' Makefile for the Malloc Lab
#
TEAM = TIGERS
VERSION = 1
CC = gcc
CFLAGS = -Wall -O2 -m32
OBJS = mdriver.o mm.o memlib.o fsecs.o fcyc.o clock.o ftimer.o
OBJS1 = mdriver.o mm1.o memlib.o fsecs.o fcyc.o clock.o ftimer.o
OBJS2 = mdriver.o mm2.o memlib.o fsecs.o fcyc.o clock.o ftimer.o
mdriver: $(OBJS) $(OBJS1) $(OBJS2)
$(CC) $(CFLAGS) -o mdriver $(OBJS)
$(CC) $(CFLAGS) -o mdriver1 $(OBJS1)
$(CC) $(CFLAGS) -o mdriver2 $(OBJS2)
mdriver.o: mdriver.c fsecs.h fcyc.h clock.h memlib.h config.h mm.h
memlib.o: memlib.c memlib.h
mm.o: mm.c mm.h memlib.h
mm1.o: mm1.c mm.h memlib.h
mm2.o: mm2.c mm.h memlib.h
fsecs.o: fsecs.c fsecs.h config.h
fcyc.o: fcyc.c fcyc.h
ftimer.o: ftimer.c ftimer.h config.h
clock.o: clock.c clock.h
clean:
rm -f *~ *.o mdriver
rm -f *~ *.o mdriver1
rm -f *~ *.o mdriver2
#####################################################################
# CS:APP Malloc Lab
# Handout files for students
#
# Copyright (c) 2002, R. Bryant and D. O'Hallaron, All rights reserved.
# May not be used, modified, or copied without permission.
#
######################################################################
***********
Main Files:
***********
mdriver.c
The malloc driver that tests your mm.c file
short{1,2}-bal.rep
Two tiny tracefiles to help you get started.
Makefile
Builds the driver
**********************************
Other support files for the driver
**********************************
config.h Configures the malloc lab driver
fsecs.{c,h} Wrapper function for the different timer packages
clock.{c,h} Routines for accessing the Pentium and Alpha cycle counters
fcyc.{c,h} Timer functions based on cycle counters
ftimer.{c,h} Timer functions based on interval timers and gettimeofday()
memlib.{c,h} Models the heap and sbrk function
*******************************
Building and running the driver
*******************************
To build the driver, type "make" to the shell.
To run the driver on a tiny test trace: (for the naive implementation)
shell> ./mdriver -V -f traces/short1-bal.rep
To run the driver on a tiny test trace: (for the mm1.c)
shell> ./mdriver1 -V -f traces/short1-bal.rep
To run the driver on a tiny test trace: (for the mm2.c)
shell> ./mdriver2 -V -f traces/short1-bal.rep
The -V option prints out helpful tracing and summary information.
To get a list of the driver flags:
shell> ./mdriver -h
/*
* clock.c - Routines for using the cycle counters on x86,
* Alpha, and Sparc boxes.
*
* Copyright (c) 2002, R. Bryant and D. O'Hallaron, All rights reserved.
* May not be used, modified, or copied without permission.
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/times.h>
#include "clock.h"
/*******************************************************
* Machine dependent functions
*
* Note: the constants __i386__ and __alpha
* are set by GCC when it calls the C preprocessor
* You can verify this for yourself using gcc -v.
*******************************************************/
#if defined(__i386__)
/*******************************************************
* Pentium versions of start_counter() and get_counter()
*******************************************************/
/* $begin x86cyclecounter */
/* Initialize the cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;
/* Set *hi and *lo to the high and low order bits of the cycle counter.
Implementation requires assembly code to use the rdtsc instruction. */
void access_counter(unsigned *hi, unsigned *lo)
{
asm("rdtsc; movl %%edx,%0; movl %%eax,%1" /* Read cycle counter */
: "=r" (*hi), "=r" (*lo) /* and move results to */
: /* No input */ /* the two outputs */
: "%edx", "%eax");
}
/* Record the current value of the cycle counter. */
void start_counter()
{
access_counter(&cyc_hi, &cyc_lo);
}
/* Return the number of cycles since the last call to start_counter. */
double get_counter()
{
unsigned ncyc_hi, ncyc_lo;
unsigned hi, lo, borrow;
double result;
/* Get cycle counter */
access_counter(&ncyc_hi, &ncyc_lo);
/* Do double precision subtraction */
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
result = (double) hi * (1 << 30) * 4 + lo;
if (result < 0) {
fprintf(stderr, "Error: counter returns neg value: %.0f\n", result);
}
return result;
}
/* $end x86cyclecounter */
#elif defined(__alpha)
/****************************************************
* Alpha versions of start_counter() and get_counter()
***************************************************/
/* Initialize the cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;
/* Use Alpha cycle timer to compute cycles. Then use
measured clock speed to compute seconds
*/
/*
* counterRoutine is an array of Alpha instructions to access
* the Alpha's processor cycle counter. It uses the rpcc
* instruction to access the counter. This 64 bit register is
* divided into two parts. The lower 32 bits are the cycles
* used by the current process. The upper 32 bits are wall
* clock cycles. These instructions read the counter, and
* convert the lower 32 bits into an unsigned int - this is the
* user space counter value.
* NOTE: The counter has a very limited time span. With a
* 450MhZ clock the counter can time things for about 9
* seconds. */
static unsigned int counterRoutine[] =
{
0x601fc000u,
0x401f0000u,
0x6bfa8001u
};
/* Cast the above instructions into a function. */
static unsigned int (*counter)(void)= (void *)counterRoutine;
void start_counter()
{
/* Get cycle counter */
cyc_hi = 0;
cyc_lo = counter();
}
double get_counter()
{
unsigned ncyc_hi, ncyc_lo;
unsigned hi, lo, borrow;
double result;
ncyc_lo = counter();
ncyc_hi = 0;
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
result = (double) hi * (1 << 30) * 4 + lo;
if (result < 0) {
fprintf(stderr, "Error: Cycle counter returning negative value: %.0f\n", result);
}
return result;
}
#else
/****************************************************************
* All the other platforms for which we haven't implemented cycle
* counter routines. Newer models of sparcs (v8plus) have cycle
* counters that can be accessed from user programs, but since there
* are still many sparc boxes out there that don't support this, we
* haven't provided a Sparc version here.
***************************************************************/
void start_counter()
{
printf("ERROR: You are trying to use a start_counter routine in clock.c\n");
printf("that has not been implemented yet on this platform.\n");
printf("Please choose another timing package in config.h.\n");
exit(1);
}
double get_counter()
{
printf("ERROR: You are trying to use a get_counter routine in clock.c\n");
printf("that has not been implemented yet on this platform.\n");
printf("Please choose another timing package in config.h.\n");
exit(1);
}
#endif
/*******************************
* Machine-independent functions
******************************/
double ovhd()
{
/* Do it twice to eliminate cache effects */
int i;
double result;
for (i = 0; i < 2; i++) {
start_counter();
result = get_counter();
}
return result;
}
/* $begin mhz */
/* Estimate the clock rate by measuring the cycles that elapse */
/* while sleeping for sleeptime seconds */
double mhz_full(int verbose, int sleeptime)
{
double rate;
start_counter();
sleep(sleeptime);
rate = get_counter() / (1e6*sleeptime);
if (verbose)
printf("Processor clock rate ~= %.1f MHz\n", rate);
return rate;
}
/* $end mhz */
/* Version using a default sleeptime */
double mhz(int verbose)
{
return mhz_full(verbose, 2);
}
/** Special counters that compensate for timer interrupt overhead */
static double cyc_per_tick = 0.0;
#define NEVENT 100
#define THRESHOLD 1000
#define RECORDTHRESH 3000
/* Attempt to see how much time is used by timer interrupt */
static void callibrate(int verbose)
{
double oldt;
struct tms t;
clock_t oldc;
int e = 0;
times(&t);
oldc = t.tms_utime;
start_counter();
oldt = get_counter();
while (e <NEVENT) {
double newt = get_counter();
if (newt-oldt >= THRESHOLD) {
clock_t newc;
times(&t);
newc = t.tms_utime;
if (newc > oldc) {
double cpt = (newt-oldt)/(newc-oldc);
if ((cyc_per_tick == 0.0 || cyc_per_tick > cpt) && cpt > RECORDTHRESH)
cyc_per_tick = cpt;
/*
if (verbose)
printf("Saw event lasting %.0f cycles and %d ticks. Ratio = %f\n",
newt-oldt, (int) (newc-oldc), cpt);
*/
e++;
oldc = newc;
}
oldt = newt;
}
}
if (verbose)
printf("Setting cyc_per_tick to %f\n", cyc_per_tick);
}
static clock_t start_tick = 0;
void start_comp_counter()
{
struct tms t;
if (cyc_per_tick == 0.0)
callibrate(0);
times(&t);
start_tick = t.tms_utime;
start_counter();
}
double get_comp_counter()
{
double time = get_counter();
double ctime;
struct tms t;
clock_t ticks;
times(&t);
ticks = t.tms_utime - start_tick;
ctime = time - ticks*cyc_per_tick;
/*
printf("Measured %.0f cycles. Ticks = %d. Corrected %.0f cycles\n",
time, (int) ticks, ctime);
*/
return ctime;
}
/* Routines for using cycle counter */
/* Start the counter */
void start_counter();
/* Get # cycles since counter started */
double get_counter();
/* Measure overhead for counter */
double ovhd();
/* Determine clock rate of processor (using a default sleeptime) */
double mhz(int verbose);
/* Determine clock rate of processor, having more control over accuracy */
double mhz_full(int verbose, int sleeptime);
/** Special counters that compensate for timer interrupt overhead */
void start_comp_counter();
double get_comp_counter();
#ifndef __CONFIG_H_
#define __CONFIG_H_
/*
* config.h - malloc lab configuration file
*
* Copyright (c) 2002, R. Bryant and D. O'Hallaron, All rights reserved.
* May not be used, modified, or copied without permission.
*/
/*
* This is the default path where the driver will look for the
* default tracefiles. You can override it at runtime with the -t flag.
*/
#define TRACEDIR "/afs/cs/project/ics2/im/labs/malloclab/traces/"
/*
* This is the list of default tracefiles in TRACEDIR that the driver
* will use for testing. Modify this if you want to add or delete
* traces from the driver's test suite. For example, if you don't want
* your students to implement realloc, you can delete the last two
* traces.
*/
#define DEFAULT_TRACEFILES \
"amptjp-bal.rep",\
"cccp-bal.rep",\
"cp-decl-bal.rep",\
"expr-bal.rep",\
"coalescing-bal.rep",\
"random-bal.rep",\
"random2-bal.rep",\
"binary-bal.rep",\
"binary2-bal.rep",\
"realloc-bal.rep",\
"realloc2-bal.rep"
/*
* This constant gives the estimated performance of the libc malloc
* package using our traces on some reference system, typically the
* same kind of system the students use. Its purpose is to cap the
* contribution of throughput to the performance index. Once the
* students surpass the AVG_LIBC_THRUPUT, they get no further benefit
* to their score. This deters students from building extremely fast,
* but extremely stupid malloc packages.
*/
#define AVG_LIBC_THRUPUT 600E3 /* 600 Kops/sec */
/*
* This constant determines the contributions of space utilization
* (UTIL_WEIGHT) and throughput (1 - UTIL_WEIGHT) to the performance
* index.
*/
#define UTIL_WEIGHT .60
/*
* Alignment requirement in bytes (either 4 or 8)
*/
#define ALIGNMENT 8
/*
* Maximum heap size in bytes
*/
#define MAX_HEAP (20*(1<<20)) /* 20 MB */
/*****************************************************************************
* Set exactly one of these USE_xxx constants to "1" to select a timing method
*****************************************************************************/
#define USE_FCYC 0 /* cycle counter w/K-best scheme (x86 & Alpha only) */
#define USE_ITIMER 0 /* interval timer (any Unix box) */
#define USE_GETTOD 1 /* gettimeofday (any Unix box) */
#endif /* __CONFIG_H */
/*
* fcyc.c - Estimate the time (in CPU cycles) used by a function f
*
* Copyright (c) 2002, R. Bryant and D. O'Hallaron, All rights reserved.
* May not be used, modified, or copied without permission.
*
* Uses the cycle timer routines in clock.c to estimate the
* the time in CPU cycles for a function f.
*/
#include <stdlib.h>
#include <sys/times.h>
#include <stdio.h>
#include "fcyc.h"
#include "clock.h"
/* Default values */
#define K 3 /* Value of K in K-best scheme */
#define MAXSAMPLES 20 /* Give up after MAXSAMPLES */
#define EPSILON 0.01 /* K samples should be EPSILON of each other*/
#define COMPENSATE 0 /* 1-> try to compensate for clock ticks */
#define CLEAR_CACHE 0 /* Clear cache before running test function */
#define CACHE_BYTES (1<<19) /* Max cache size in bytes */
#define CACHE_BLOCK 32 /* Cache block size in bytes */
static int kbest = K;
static int maxsamples = MAXSAMPLES;
static double epsilon = EPSILON;
static int compensate = COMPENSATE;
static int clear_cache = CLEAR_CACHE;
static int cache_bytes = CACHE_BYTES;
static int cache_block = CACHE_BLOCK;
static int *cache_buf = NULL;
static double *values = NULL;
static int samplecount = 0;
/* for debugging only */
#define KEEP_VALS 0
#define KEEP_SAMPLES 0
#if KEEP_SAMPLES
static double *samples = NULL;
#endif
/*
* init_sampler - Start new sampling process
*/
static void init_sampler()
{
if (values)
free(values);
values = calloc(kbest, sizeof(double));
#if KEEP_SAMPLES
if (samples)
free(samples);
/* Allocate extra for wraparound analysis */
samples = calloc(maxsamples+kbest, sizeof(double));
#endif
samplecount = 0;
}
/*
* add_sample - Add new sample
*/
static void add_sample(double val)
{
int pos = 0;
if (samplecount < kbest) {
pos = samplecount;
values[pos] = val;
} else if (val < values[kbest-1]) {
pos = kbest-1;
values[pos] = val;
}
#if KEEP_SAMPLES
samples[samplecount] = val;
#endif
samplecount++;
/* Insertion sort */
while (pos > 0 && values[pos-1] > values[pos]) {
double temp = values[pos-1];
values[pos-1] = values[pos];
values[pos] = temp;
pos--;
}
}
/*
* has_converged- Have kbest minimum measurements converged within epsilon?
*/
static int has_converged()
{
return
(samplecount >= kbest) &&
((1 + epsilon)*values[0] >= values[kbest-1]);
}
/*
* clear - Code to clear cache
*/
static volatile int sink = 0;
static void clear()
{
int x = sink;
int *cptr, *cend;
int incr = cache_block/sizeof(int);
if (!cache_buf) {
cache_buf = malloc(cache_bytes);
if (!cache_buf) {
fprintf(stderr, "Fatal error. Malloc returned null when trying to clear cache\n");
exit(1);
}
}
cptr = (int *) cache_buf;
cend = cptr + cache_bytes/sizeof(int);
while (cptr < cend) {
x += *cptr;
cptr += incr;
}
sink = x;
}
/*
* fcyc - Use K-best scheme to estimate the running time of function f
*/
double fcyc(test_funct f, void *argp)
{
double result;
init_sampler();
if (compensate) {
do {
double cyc;
if (clear_cache)
clear();
start_comp_counter();
f(argp);
cyc = get_comp_counter();
add_sample(cyc);
} while (!has_converged() && samplecount < maxsamples);
} else {
do {
double cyc;
if (clear_cache)
clear();
start_counter();
f(argp);
cyc = get_counter();
add_sample(cyc);
} while (!has_converged() && samplecount < maxsamples);
}
#ifdef DEBUG
{
int i;
printf(" %d smallest values: [", kbest);
for (i = 0; i < kbest; i++)
printf("%.0f%s", values[i], i==kbest-1 ? "]\n" : ", ");
}
#endif
result = values[0];
#if !KEEP_VALS
free(values);
values = NULL;
#endif
return result;
}
/*************************************************************
* Set the various parameters used by the measurement routines
************************************************************/
/*
* set_fcyc_clear_cache - When set, will run code to clear cache
* before each measurement.
* Default = 0
*/
void set_fcyc_clear_cache(int clear)
{
clear_cache = clear;
}
/*
* set_fcyc_cache_size - Set size of cache to use when clearing cache
* Default = 1<<19 (512KB)
*/
void set_fcyc_cache_size(int bytes)
{
if (bytes != cache_bytes) {
cache_bytes = bytes;
if (cache_buf) {
free(cache_buf);
cache_buf = NULL;
}
}
}
/*
* set_fcyc_cache_block - Set size of cache block
* Default = 32
*/
void set_fcyc_cache_block(int bytes) {
cache_block = bytes;
}
/*
* set_fcyc_compensate- When set, will attempt to compensate for
* timer interrupt overhead
* Default = 0
*/
void set_fcyc_compensate(int compensate_arg)
{
compensate = compensate_arg;
}
/*
* set_fcyc_k - Value of K in K-best measurement scheme
* Default = 3
*/
void set_fcyc_k(int k)
{
kbest = k;
}
/*
* set_fcyc_maxsamples - Maximum number of samples attempting to find
* K-best within some tolerance.
* When exceeded, just return best sample found.
* Default = 20
*/
void set_fcyc_maxsamples(int maxsamples_arg)
{
maxsamples = maxsamples_arg;
}
/*
* set_fcyc_epsilon - Tolerance required for K-best
* Default = 0.01
*/
void set_fcyc_epsilon(double epsilon_arg)
{
epsilon = epsilon_arg;
}
/*
* fcyc.h - prototypes for the routines in fcyc.c that estimate the
* time in CPU cycles used by a test function f
*
* Copyright (c) 2002, R. Bryant and D. O'Hallaron, All rights reserved.
* May not be used, modified, or copied without permission.
*
*/
/* The test function takes a generic pointer as input */
typedef void (*test_funct)(void *);
/* Compute number of cycles used by test function f */
double fcyc(test_funct f, void* argp);
/*********************************************************
* Set the various parameters used by measurement routines
*********************************************************/
/*
* set_fcyc_clear_cache - When set, will run code to clear cache
* before each measurement.
* Default = 0
*/
void set_fcyc_clear_cache(int clear);
/*
* set_fcyc_cache_size - Set size of cache to use when clearing cache
* Default = 1<<19 (512KB)
*/
void set_fcyc_cache_size(int bytes);
/*
* set_fcyc_cache_block - Set size of cache block
* Default = 32
*/
void set_fcyc_cache_block(int bytes);
/*
* set_fcyc_compensate- When set, will attempt to compensate for
* timer interrupt overhead
* Default = 0
*/
void set_fcyc_compensate(int compensate_arg);
/*
* set_fcyc_k - Value of K in K-best measurement scheme
* Default = 3
*/
void set_fcyc_k(int k);
/*
* set_fcyc_maxsamples - Maximum number of samples attempting to find
* K-best within some tolerance.
* When exceeded, just return best sample found.
* Default = 20
*/
void set_fcyc_maxsamples(int maxsamples_arg);
/*
* set_fcyc_epsilon - Tolerance required for K-best
* Default = 0.01
*/
void set_fcyc_epsilon(double epsilon_arg);
/****************************
* High-level timing wrappers
****************************/
#include <stdio.h>
#include "fsecs.h"
#include "fcyc.h"
#include "clock.h"
#include "ftimer.h"
#include "config.h"
static double Mhz; /* estimated CPU clock frequency */
extern int verbose; /* -v option in mdriver.c */
/*
* init_fsecs - initialize the timing package
*/
void init_fsecs(void)
{
Mhz = 0; /* keep gcc -Wall happy */
#if USE_FCYC
if (verbose)
printf("Measuring performance with a cycle counter.\n");
/* set key parameters for the fcyc package */
set_fcyc_maxsamples(20);
set_fcyc_clear_cache(1);
set_fcyc_compensate(1);
set_fcyc_epsilon(0.01);
set_fcyc_k(3);
Mhz = mhz(verbose > 0);
#elif USE_ITIMER
if (verbose)
printf("Measuring performance with the interval timer.\n");
#elif USE_GETTOD
if (verbose)
printf("Measuring performance with gettimeofday().\n");
#endif
}
/*
* fsecs - Return the running time of a function f (in seconds)
*/
double fsecs(fsecs_test_funct f, void *argp)
{
#if USE_FCYC
double cycles = fcyc(f, argp);
return cycles/(Mhz*1e6);
#elif USE_ITIMER
return ftimer_itimer(f, argp, 10);
#elif USE_GETTOD
return ftimer_gettod(f, argp, 10);
#endif
}
typedef void (*fsecs_test_funct)(void *);
void init_fsecs(void);
double fsecs(fsecs_test_funct f, void *argp);
/*
* ftimer.c - Estimate the time (in seconds) used by a function f
*
* Copyright (c) 2002, R. Bryant and D. O'Hallaron, All rights reserved.
* May not be used, modified, or copied without permission.
*
* Function timers that estimate the running time (in seconds) of a function f.
* ftimer_itimer: version that uses the interval timer
* ftimer_gettod: version that uses gettimeofday
*/
#include <stdio.h>
#include <sys/time.h>
#include "ftimer.h"
/* function prototypes */
static void init_etime(void);
static double get_etime(void);
/*
* ftimer_itimer - Use the interval timer to estimate the running time
* of f(argp). Return the average of n runs.
*/
double ftimer_itimer(ftimer_test_funct f, void *argp, int n)
{
double start, tmeas;
int i;
init_etime();
start = get_etime();
for (i = 0; i < n; i++)
f(argp);
tmeas = get_etime() - start;
return tmeas / n;
}
/*
* ftimer_gettod - Use gettimeofday to estimate the running time of
* f(argp). Return the average of n runs.
*/
double ftimer_gettod(ftimer_test_funct f, void *argp, int n)
{
int i;
struct timeval stv, etv;
double diff;
gettimeofday(&stv, NULL);
for (i = 0; i < n; i++)
f(argp);
gettimeofday(&etv,NULL);
diff = 1E3*(etv.tv_sec - stv.tv_sec) + 1E-3*(etv.tv_usec-stv.tv_usec);
diff /= n;
return (1E-3*diff);
}
/*
* Routines for manipulating the Unix interval timer
*/
/* The initial value of the interval timer */
#define MAX_ETIME 86400
/* static variables that hold the initial value of the interval timer */
static struct itimerval first_u; /* user time */
static struct itimerval first_r; /* real time */
static struct itimerval first_p; /* prof time*/
/* init the timer */
static void init_etime(void)
{
first_u.it_interval.tv_sec = 0;
first_u.it_interval.tv_usec = 0;
first_u.it_value.tv_sec = MAX_ETIME;
first_u.it_value.tv_usec = 0;
setitimer(ITIMER_VIRTUAL, &first_u, NULL);
first_r.it_interval.tv_sec = 0;
first_r.it_interval.tv_usec = 0;
first_r.it_value.tv_sec = MAX_ETIME;
first_r.it_value.tv_usec = 0;
setitimer(ITIMER_REAL, &first_r, NULL);
first_p.it_interval.tv_sec = 0;
first_p.it_interval.tv_usec = 0;
first_p.it_value.tv_sec = MAX_ETIME;
first_p.it_value.tv_usec = 0;
setitimer(ITIMER_PROF, &first_p, NULL);
}
/* return elapsed real seconds since call to init_etime */
static double get_etime(void) {
struct itimerval v_curr;
struct itimerval r_curr;
struct itimerval p_curr;
getitimer(ITIMER_VIRTUAL, &v_curr);
getitimer(ITIMER_REAL,&r_curr);
getitimer(ITIMER_PROF,&p_curr);
return (double) ((first_p.it_value.tv_sec - r_curr.it_value.tv_sec) +
(first_p.it_value.tv_usec - r_curr.it_value.tv_usec)*1e-6);
}
/*
* Function timers
*/
typedef void (*ftimer_test_funct)(void *);
/* Estimate the running time of f(argp) using the Unix interval timer.
Return the average of n runs */
double ftimer_itimer(ftimer_test_funct f, void *argp, int n);
/* Estimate the running time of f(argp) using gettimeofday
Return the average of n runs */
double ftimer_gettod(ftimer_test_funct f, void *argp, int n);
This diff is collapsed.
/*
* memlib.c - a module that simulates the memory system. Needed because it
* allows us to interleave calls from the student's malloc package
* with the system's malloc package in libc.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <unistd.h>
#include <sys/mman.h>
#include <string.h>
#include <errno.h>
#include "memlib.h"
#include "config.h"
/* private variables */
static char *mem_start_brk; /* points to first byte of heap */
static char *mem_brk; /* points to last byte of heap */
static char *mem_max_addr; /* largest legal heap address */
/*
* mem_init - initialize the memory system model
*/
void mem_init(void)
{
/* allocate the storage we will use to model the available VM */
if ((mem_start_brk = (char *)malloc(MAX_HEAP)) == NULL) {
fprintf(stderr, "mem_init_vm: malloc error\n");
exit(1);
}
mem_max_addr = mem_start_brk + MAX_HEAP; /* max legal heap address */
mem_brk = mem_start_brk; /* heap is empty initially */
}
/*
* mem_deinit - free the storage used by the memory system model
*/
void mem_deinit(void)
{
free(mem_start_brk);
}
/*
* mem_reset_brk - reset the simulated brk pointer to make an empty heap
*/
void mem_reset_brk()
{
mem_brk = mem_start_brk;
}
/*
* mem_sbrk - simple model of the sbrk function. Extends the heap
* by incr bytes and returns the start address of the new area. In
* this model, the heap cannot be shrunk.
*/
void *mem_sbrk(int incr)
{
char *old_brk = mem_brk;
if ( (incr < 0) || ((mem_brk + incr) > mem_max_addr)) {
errno = ENOMEM;
fprintf(stderr, "ERROR: mem_sbrk failed. Ran out of memory...\n");
return (void *)-1;
}
mem_brk += incr;
return (void *)old_brk;
}
/*
* mem_heap_lo - return address of the first heap byte
*/
void *mem_heap_lo()
{
return (void *)mem_start_brk;
}
/*
* mem_heap_hi - return address of last heap byte
*/
void *mem_heap_hi()
{
return (void *)(mem_brk - 1);
}
/*
* mem_heapsize() - returns the heap size in bytes
*/
size_t mem_heapsize()
{
return (size_t)(mem_brk - mem_start_brk);
}
/*
* mem_pagesize() - returns the page size of the system
*/
size_t mem_pagesize()
{
return (size_t)getpagesize();
}
#include <unistd.h>
void mem_init(void);
void mem_deinit(void);
void *mem_sbrk(int incr);
void mem_reset_brk(void);
void *mem_heap_lo(void);
void *mem_heap_hi(void);
size_t mem_heapsize(void);
size_t mem_pagesize(void);
/*
* mm-naive.c - The fastest, least memory-efficient malloc package.
*
* In this naive approach, a block is allocated by simply incrementing
* the brk pointer. A block is pure payload. There are no headers or
* footers. Blocks are never coalesced or reused. Realloc is
* implemented directly using mm_malloc and mm_free.
*
* NOTE TO STUDENTS: Replace this header comment with your own header
* comment that gives a high level description of your solution.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <unistd.h>
#include <string.h>
#include "mm.h"
#include "memlib.h"
/*********************************************************
* NOTE TO STUDENTS: Before you do anything else, please
* provide your team information in the following struct.
********************************************************/
team_t team = {
/* Team name */
"team name",
/* First member's full name */
"member 1",
/* First member's email address */
"member_1@cse.iitb.ac.in",
/* Second member's full name (leave blank if none) */
"member 2",
/* Second member's email address (leave blank if none) */
"member_2@cse.iitb.ac.in"
};
/* single word (4) or double word (8) alignment */
#define ALIGNMENT 8
/* rounds up to the nearest multiple of ALIGNMENT */
#define ALIGN(size) (((size) + (ALIGNMENT-1)) & ~0x7)
#define SIZE_T_SIZE (ALIGN(sizeof(size_t)))
/*
* mm_init - initialize the malloc package.
*/
void *init_mem_sbrk_break = NULL;
int mm_init(void)
{
//This function is called every time before each test run of the trace.
//It should reset the entire state of your malloc or the consecutive trace runs will give wrong answer.
/*
* This function should initialize and reset any data structures used to represent the starting state(empty heap)
*
* This function will be called multiple time in the driver code "mdriver.c"
*/
return 0; //Returns 0 on successfull initialization.
}
//---------------------------------------------------------------------------------------------------------------
/*
* mm_malloc - Allocate a block by incrementing the brk pointer.
* Always allocate a block whose size is a multiple of the alignment.
*/
void *mm_malloc(size_t size)
{
/*
* This function should keep track of the allocated memory blocks.
* The block allocation should minimize the number of holes (chucks of unusable memory) in the heap memory.
* The previously freed memory blocks should be reused.
* If no appropriate free block is available then the increase the heap size using 'mem_sbrk(size)'.
* Try to keep the heap size as small as possible.
*/
if(size <= 0){ // Invalid request size
return NULL;
}
size = ((size+7)/8)*8; //size alligned to 8 bytes
return mem_sbrk(size); //mem_sbrk() is wrapper function for the sbrk() system call.
//Please use mem_sbrk() instead of sbrk() otherwise the evaluation results
//may give wrong results
}
void mm_free(void *ptr)
{
/*
* Searches the previously allocated node for memory block with base address ptr.
*
* It should also perform coalesceing on both ends i.e. if the consecutive memory blocks are
* free(not allocated) then they should be combined into a single block.
*
* It should also keep track of all the free memory blocks.
* If the freed block is at the end of the heap then you can also decrease the heap size
* using 'mem_sbrk(-size)'.
*/
}
/*
* mm_realloc - Implemented simply in terms of mm_malloc and mm_free
*/
void *mm_realloc(void *ptr, size_t size)
{
size = ((size+7)/8)*8; //8-byte alignement
if(ptr == NULL){ //memory was not previously allocated
return mm_malloc(size);
}
if(size == 0){ //new size is zero
mm_free(ptr);
return NULL;
}
/*
* This function should also copy the content of the previous memory block into the new block.
* You can use 'memcpy()' for this purpose.
*
* The data structures corresponding to free memory blocks and allocated memory
* blocks should also be updated.
*/
mm_free(ptr);
return mem_sbrk(size);
}
#include <stdio.h>
extern int mm_init (void);
extern void *mm_malloc (size_t size);
extern void mm_free (void *ptr);
extern void *mm_realloc(void *ptr, size_t size);
/*
* Students work in teams of one or two. Teams enter their team name,
* personal names and login IDs in a struct of this
* type in their bits.c file.
*/
typedef struct {
char *teamname; /* ID1+ID2 or ID1 */
char *name1; /* full name of first member */
char *id1; /* login ID of first member */
char *name2; /* full name of second member (if any) */
char *id2; /* login ID of second member */
} team_t;
extern team_t team;
/*
* mm-naive.c - The fastest, least memory-efficient malloc package.
*
* In this naive approach, a block is allocated by simply incrementing
* the brk pointer. A block is pure payload. There are no headers or
* footers. Blocks are never coalesced or reused. Realloc is
* implemented directly using mm_malloc and mm_free.
*
* NOTE TO STUDENTS: Replace this header comment with your own header
* comment that gives a high level description of your solution.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <unistd.h>
#include <string.h>
#include "mm.h"
#include "memlib.h"
/*********************************************************
* NOTE TO STUDENTS: Before you do anything else, please
* provide your team information in the following struct.
********************************************************/
team_t team = {
/* Team name */
"team name",
/* First member's full name */
"member 1",
/* First member's email address */
"member_1@cse.iitb.ac.in",
/* Second member's full name (leave blank if none) */
"member 2",
/* Second member's email address (leave blank if none) */
"member_2@cse.iitb.ac.in"
};
/* single word (4) or double word (8) alignment */
#define ALIGNMENT 8
/* rounds up to the nearest multiple of ALIGNMENT */
#define ALIGN(size) (((size) + (ALIGNMENT-1)) & ~0x7)
#define SIZE_T_SIZE (ALIGN(sizeof(size_t)))
/*
* mm_init - initialize the malloc package.
*/
void *init_mem_sbrk_break = NULL;
int mm_init(void)
{
//This function is called every time before each test run of the trace.
//It should reset the entire state of your malloc or the consecutive trace runs will give wrong answer.
/*
* This function should initialize and reset any data structures used to represent the starting state(empty heap)
*
* This function will be called multiple time in the driver code "mdriver.c"
*/
return 0; //Returns 0 on successfull initialization.
}
//---------------------------------------------------------------------------------------------------------------
/*
* mm_malloc - Allocate a block by incrementing the brk pointer.
* Always allocate a block whose size is a multiple of the alignment.
*/
void *mm_malloc(size_t size)
{
/*
* This function should keep track of the allocated memory blocks.
* The block allocation should minimize the number of holes (chucks of unusable memory) in the heap memory.
* The previously freed memory blocks should be reused.
* If no appropriate free block is available then the increase the heap size using 'mem_sbrk(size)'.
* Try to keep the heap size as small as possible.
*/
if(size <= 0){ // Invalid request size
return NULL;
}
size = ((size+7)/8)*8; //size alligned to 8 bytes
return mem_sbrk(size); //mem_sbrk() is wrapper function for the sbrk() system call.
//Please use mem_sbrk() instead of sbrk() otherwise the evaluation results
//may give wrong results
}
void mm_free(void *ptr)
{
/*
* Searches the previously allocated node for memory block with base address ptr.
*
* It should also perform coalesceing on both ends i.e. if the consecutive memory blocks are
* free(not allocated) then they should be combined into a single block.
*
* It should also keep track of all the free memory blocks.
* If the freed block is at the end of the heap then you can also decrease the heap size
* using 'mem_sbrk(-size)'.
*/
}
/*
* mm_realloc - Implemented simply in terms of mm_malloc and mm_free
*/
void *mm_realloc(void *ptr, size_t size)
{
size = ((size+7)/8)*8; //8-byte alignement
if(ptr == NULL){ //memory was not previously allocated
return mm_malloc(size);
}
if(size == 0){ //new size is zero
mm_free(ptr);
return NULL;
}
/*
* This function should also copy the content of the previous memory block into the new block.
* You can use 'memcpy()' for this purpose.
*
* The data structures corresponding to free memory blocks and allocated memory
* blocks should also be updated.
*/
mm_free(ptr);
return mem_sbrk(size);
}
This diff is collapsed.
/*
* mm-naive.c - The fastest, least memory-efficient malloc package.
*
* In this naive approach, a block is allocated by simply incrementing
* the brk pointer. A block is pure payload. There are no headers or
* footers. Blocks are never coalesced or reused. Realloc is
* implemented directly using mm_malloc and mm_free.
*
* NOTE TO STUDENTS: Replace this header comment with your own header
* comment that gives a high level description of your solution.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <unistd.h>
#include <string.h>
#include "mm.h"
#include "memlib.h"
/*********************************************************
* NOTE TO STUDENTS: Before you do anything else, please
* provide your team information in the following struct.
********************************************************/
team_t team = {
/* Team name */
"team name",
/* First member's full name */
"paras garg",
/* First member's email address */
"parasgarg@cse.iitb.ac.in",
/* Second member's full name (leave blank if none) */
"Ketan shashikant kulkarni",
/* Second member's email address (leave blank if none) */
"member_2@cse.iitb.ac.in"
};
/* single word (4) or double word (8) alignment */
#define ALIGNMENT 8
/* rounds up to the nearest multiple of ALIGNMENT */
#define ALIGN(size) (((size) + (ALIGNMENT-1)) & ~0x7)
#define SIZE_T_SIZE (ALIGN(sizeof(size_t)))
/*
* mm_init - initialize the malloc package.
*/
void *init_mem_sbrk_break = NULL;
int mm_init(void)
{
//This function is called every time before each test run of the trace.
//It should reset the entire state of your malloc or the consecutive trace runs will give wrong answer.
/*
* This function should initialize and reset any data structures used to represent the starting state(empty heap)
*
* This function will be called multiple time in the driver code "mdriver.c"
*/
return 0; //Returns 0 on successfull initialization.
}
//---------------------------------------------------------------------------------------------------------------
/*
* mm_malloc - Allocate a block by incrementing the brk pointer.
* Always allocate a block whose size is a multiple of the alignment.
*/
void *mm_malloc(size_t size)
{
/*
* This function should keep track of the allocated memory blocks.
* The block allocation should minimize the number of holes (chucks of unusable memory) in the heap memory.
* The previously freed memory blocks should be reused.
* If no appropriate free block is available then the increase the heap size using 'mem_sbrk(size)'.
* Try to keep the heap size as small as possible.
*/
if(size <= 0){ // Invalid request size
return NULL;
}
size = ((size+7)/8)*8; //size alligned to 8 bytes
return mem_sbrk(size); //mem_sbrk() is wrapper function for the sbrk() system call.
//Please use mem_sbrk() instead of sbrk() otherwise the evaluation results
//may give wrong results
}
void mm_free(void *ptr)
{
/*
* Searches the previously allocated node for memory block with base address ptr.
*
* It should also perform coalesceing on both ends i.e. if the consecutive memory blocks are
* free(not allocated) then they should be combined into a single block.
*
* It should also keep track of all the free memory blocks.
* If the freed block is at the end of the heap then you can also decrease the heap size
* using 'mem_sbrk(-size)'.
*/
}
/*
* mm_realloc - Implemented simply in terms of mm_malloc and mm_free
*/
void *mm_realloc(void *ptr, size_t size)
{
size = ((size+7)/8)*8; //8-byte alignement
if(ptr == NULL){ //memory was not previously allocated
return mm_malloc(size);
}
if(size == 0){ //new size is zero
mm_free(ptr);
return NULL;
}
/*
* This function should also copy the content of the previous memory block into the new block.
* You can use 'memcpy()' for this purpose.
*
* The data structures corresponding to free memory blocks and allocated memory
* blocks should also be updated.
*/
mm_free(ptr);
return mem_sbrk(size);
}
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
20000
6
12
1
a 0 2040
a 1 2040
f 1
a 2 48
a 3 4072
f 3
a 4 4072
f 0
f 2
a 5 4072
f 4
f 5
20000
6
12
1
a 0 2040
a 1 4010
a 2 48
a 3 4072
a 4 4072
a 5 4072
f 0
f 1
f 2
f 3
f 4
f 5
20000
4
10
1
a 0 4072
f 0
a 1 48
a 2 48
a 3 48
f 2
f 1
f 3
a 0 4080
f 0
File added
#ifndef __CONFIG_H_
#define __CONFIG_H_
/*
* config.h - malloc lab configuration file
*
* Copyright (c) 2002, R. Bryant and D. O'Hallaron, All rights reserved.
* May not be used, modified, or copied without permission.
*/
/*
* This is the default path where the driver will look for the
* default tracefiles. You can override it at runtime with the -t flag.
*/
#define TRACEDIR "/afs/cs/project/ics2/im/labs/malloclab/traces/"
/*
* This is the list of default tracefiles in TRACEDIR that the driver
* will use for testing. Modify this if you want to add or delete
* traces from the driver's test suite. For example, if you don't want
* your students to implement realloc, you can delete the last two
* traces.
*/
#define DEFAULT_TRACEFILES \
"amptjp-bal.rep",\
"cccp-bal.rep",\
"cp-decl-bal.rep",\
"expr-bal.rep",\
"coalescing-bal.rep",\
"random-bal.rep",\
"random2-bal.rep",\
"binary-bal.rep",\
"binary2-bal.rep",\
"realloc-bal.rep",\
"realloc2-bal.rep"
/*
* This constant gives the estimated performance of the libc malloc
* package using our traces on some reference system, typically the
* same kind of system the students use. Its purpose is to cap the
* contribution of throughput to the performance index. Once the
* students surpass the AVG_LIBC_THRUPUT, they get no further benefit
* to their score. This deters students from building extremely fast,
* but extremely stupid malloc packages.
*/
#define AVG_LIBC_THRUPUT 600E3 /* 600 Kops/sec */
/*
* This constant determines the contributions of space utilization
* (UTIL_WEIGHT) and throughput (1 - UTIL_WEIGHT) to the performance
* index.
*/
#define UTIL_WEIGHT .60
/*
* Alignment requirement in bytes (either 4 or 8)
*/
#define ALIGNMENT 8
/*
* Maximum heap size in bytes
*/
#define MAX_HEAP (20*(1<<20)) /* 20 MB */
/*****************************************************************************
* Set exactly one of these USE_xxx constants to "1" to select a timing method
*****************************************************************************/
#define USE_FCYC 0 /* cycle counter w/K-best scheme (x86 & Alpha only) */
#define USE_ITIMER 0 /* interval timer (any Unix box) */
#define USE_GETTOD 1 /* gettimeofday (any Unix box) */
#endif /* __CONFIG_H */
/*
* memlib.c - a module that simulates the memory system. Needed because it
* allows us to interleave calls from the student's malloc package
* with the system's malloc package in libc.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <unistd.h>
#include <sys/mman.h>
#include <string.h>
#include <errno.h>
#include "memlib.h"
#include "config.h"
/* private variables */
static char *mem_start_brk; /* points to first byte of heap */
static char *mem_brk; /* points to last byte of heap */
static char *mem_max_addr; /* largest legal heap address */
/*
* mem_init - initialize the memory system model
*/
void mem_init(void)
{
/* allocate the storage we will use to model the available VM */
if ((mem_start_brk = (char *)malloc(MAX_HEAP)) == NULL) {
fprintf(stderr, "mem_init_vm: malloc error\n");
exit(1);
}
mem_max_addr = mem_start_brk + MAX_HEAP; /* max legal heap address */
mem_brk = mem_start_brk; /* heap is empty initially */
}
/*
* mem_deinit - free the storage used by the memory system model
*/
void mem_deinit(void)
{
free(mem_start_brk);
}
/*
* mem_reset_brk - reset the simulated brk pointer to make an empty heap
*/
void mem_reset_brk()
{
mem_brk = mem_start_brk;
}
/*
* mem_sbrk - simple model of the sbrk function. Extends the heap
* by incr bytes and returns the start address of the new area. In
* this model, the heap cannot be shrunk.
*/
void *mem_sbrk(int incr)
{
char *old_brk = mem_brk;
if ( (incr < 0) || ((mem_brk + incr) > mem_max_addr)) {
errno = ENOMEM;
fprintf(stderr, "ERROR: mem_sbrk failed. Ran out of memory...\n");
return (void *)-1;
}
mem_brk += incr;
return (void *)old_brk;
}
/*
* mem_heap_lo - return address of the first heap byte
*/
void *mem_heap_lo()
{
return (void *)mem_start_brk;
}
/*
* mem_heap_hi - return address of last heap byte
*/
void *mem_heap_hi()
{
return (void *)(mem_brk - 1);
}
/*
* mem_heapsize() - returns the heap size in bytes
*/
size_t mem_heapsize()
{
return (size_t)(mem_brk - mem_start_brk);
}
/*
* mem_pagesize() - returns the page size of the system
*/
size_t mem_pagesize()
{
return (size_t)getpagesize();
}
#include <unistd.h>
void mem_init(void);
void mem_deinit(void);
void *mem_sbrk(int incr);
void mem_reset_brk(void);
void *mem_heap_lo(void);
void *mem_heap_hi(void);
size_t mem_heapsize(void);
size_t mem_pagesize(void);
#include <stdio.h>
extern int mm_init (void);
extern void *mm_malloc (size_t size);
extern void mm_free (void *ptr);
extern void *mm_realloc(void *ptr, size_t size);
/*
* Students work in teams of one or two. Teams enter their team name,
* personal names and login IDs in a struct of this
* type in their bits.c file.
*/
typedef struct {
char *teamname; /* ID1+ID2 or ID1 */
char *name1; /* full name of first member */
char *id1; /* login ID of first member */
char *name2; /* full name of second member (if any) */
char *id2; /* login ID of second member */
} team_t;
extern team_t team;
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment