Commit 06b95689 authored by Abhishek Kumar's avatar Abhishek Kumar

Merge branch 'trained' into 'master'

Tuned Modification

See merge request mlproject2022/sign-language-classifier!4
parents 0a266d02 f5e79840
This diff is collapsed.
This source diff could not be displayed because it is too large. You can view the blob instead.
This diff is collapsed.
This source diff could not be displayed because it is too large. You can view the blob instead.
This diff is collapsed.
This diff is collapsed.
This source diff could not be displayed because it is too large. You can view the blob instead.
File added
This source diff could not be displayed because it is too large. You can view the blob instead.
precision recall f1-score support
0 0.41 0.95 0.57 331
1 0.96 0.88 0.92 432
2 0.95 0.93 0.94 310
3 0.90 0.74 0.81 245
4 0.81 0.86 0.83 498
5 0.74 0.90 0.81 247
6 0.88 0.71 0.78 348
7 0.92 0.81 0.86 436
8 0.80 0.73 0.77 288
9 0.70 0.51 0.59 331
10 0.82 0.90 0.86 209
11 0.72 0.50 0.59 394
12 0.71 0.47 0.56 291
13 0.98 0.65 0.78 246
14 0.78 0.86 0.82 347
15 0.53 0.74 0.62 164
16 0.24 0.38 0.29 144
17 0.35 0.46 0.39 246
18 0.68 0.62 0.65 248
19 0.50 0.56 0.53 266
20 0.77 0.60 0.68 346
21 0.66 0.70 0.68 206
22 0.69 0.60 0.64 267
23 0.67 0.46 0.54 332
accuracy 0.70 7172
macro avg 0.71 0.69 0.69 7172
weighted avg 0.74 0.70 0.71 7172
precision recall f1-score support
0 0.53 0.95 0.68 331
1 0.95 0.93 0.94 432
2 0.99 0.89 0.94 310
3 0.96 0.59 0.73 245
4 0.88 1.00 0.94 498
5 1.00 0.91 0.96 247
6 1.00 0.69 0.82 348
7 0.94 0.89 0.91 436
8 0.52 1.00 0.69 288
9 1.00 0.80 0.89 331
10 1.00 0.93 0.96 209
11 0.97 0.74 0.84 394
12 0.79 0.82 0.80 291
13 1.00 0.83 0.91 246
14 0.93 0.85 0.89 347
15 1.00 0.99 0.99 164
16 0.77 0.86 0.81 144
17 1.00 0.48 0.65 246
18 0.71 0.68 0.70 248
19 0.70 0.82 0.75 266
20 1.00 0.53 0.70 346
21 0.85 1.00 0.92 206
22 0.78 0.96 0.86 267
23 0.69 0.82 0.75 332
accuracy 0.83 7172
macro avg 0.87 0.83 0.83 7172
weighted avg 0.88 0.83 0.84 7172
precision recall f1-score support
0 0.83 1.00 0.91 331
1 1.00 0.99 1.00 432
2 0.92 0.88 0.90 310
3 0.94 0.96 0.95 245
4 0.92 1.00 0.96 498
5 1.00 1.00 1.00 247
6 0.92 0.70 0.80 348
7 0.86 0.94 0.90 436
8 0.87 1.00 0.93 288
9 0.96 0.96 0.96 331
10 0.88 0.89 0.88 209
11 0.98 0.94 0.96 394
12 1.00 0.95 0.97 291
13 0.84 0.81 0.83 246
14 1.00 0.99 0.99 347
15 0.93 1.00 0.96 164
16 0.75 0.57 0.65 144
17 0.83 0.84 0.83 246
18 0.69 0.82 0.75 248
19 0.91 0.98 0.94 266
20 0.89 0.68 0.77 346
21 0.98 1.00 0.99 206
22 0.86 0.92 0.89 267
23 1.00 0.88 0.94 332
accuracy 0.91 7172
macro avg 0.91 0.90 0.90 7172
weighted avg 0.91 0.91 0.91 7172
precision recall f1-score support
0 0.98 1.00 0.99 331
1 1.00 1.00 1.00 432
2 1.00 1.00 1.00 310
3 1.00 1.00 1.00 245
4 0.98 1.00 0.99 498
5 1.00 1.00 1.00 247
6 0.94 0.95 0.94 348
7 0.96 0.95 0.96 436
8 0.94 1.00 0.97 288
9 1.00 0.98 0.99 331
10 0.91 1.00 0.95 209
11 1.00 1.00 1.00 394
12 1.00 0.93 0.96 291
13 1.00 1.00 1.00 246
14 1.00 1.00 1.00 347
15 1.00 1.00 1.00 164
16 0.98 0.72 0.83 144
17 0.98 0.96 0.97 246
18 0.92 0.83 0.88 248
19 0.93 0.99 0.96 266
20 0.95 1.00 0.97 346
21 1.00 1.00 1.00 206
22 0.93 1.00 0.96 267
23 1.00 0.94 0.97 332
accuracy 0.97 7172
macro avg 0.97 0.97 0.97 7172
weighted avg 0.98 0.97 0.97 7172
precision recall f1-score support
0 0.99 1.00 1.00 331
1 1.00 1.00 1.00 432
2 1.00 1.00 1.00 310
3 1.00 1.00 1.00 245
4 1.00 1.00 1.00 498
5 1.00 1.00 1.00 247
6 1.00 1.00 1.00 348
7 1.00 1.00 1.00 436
8 1.00 1.00 1.00 288
9 1.00 1.00 1.00 331
10 1.00 1.00 1.00 209
11 1.00 1.00 1.00 394
12 1.00 1.00 1.00 291
13 1.00 1.00 1.00 246
14 1.00 1.00 1.00 347
15 1.00 1.00 1.00 164
16 1.00 1.00 1.00 144
17 1.00 1.00 1.00 246
18 1.00 1.00 1.00 248
19 1.00 1.00 1.00 266
20 0.99 1.00 1.00 346
21 1.00 1.00 1.00 206
22 1.00 1.00 1.00 267
23 1.00 0.98 0.99 332
accuracy 1.00 7172
macro avg 1.00 1.00 1.00 7172
weighted avg 1.00 1.00 1.00 7172
precision recall f1-score support
0 0.84 1.00 0.91 331
1 0.94 0.93 0.93 432
2 0.97 1.00 0.98 310
3 0.76 0.94 0.84 245
4 0.79 0.97 0.87 498
5 0.88 0.93 0.91 247
6 0.91 0.94 0.92 348
7 0.96 0.95 0.95 436
8 0.86 0.69 0.77 288
10 0.82 0.59 0.69 331
11 0.95 0.93 0.94 209
12 0.79 0.52 0.63 394
13 0.79 0.64 0.70 291
14 1.00 0.92 0.96 246
15 0.99 1.00 1.00 347
16 0.95 1.00 0.97 164
17 0.33 0.61 0.43 144
18 0.67 0.86 0.76 246
19 0.74 0.69 0.71 248
20 0.43 0.66 0.52 266
21 0.69 0.53 0.60 346
22 0.74 0.74 0.74 206
23 0.82 0.69 0.75 267
24 0.97 0.70 0.81 332
accuracy 0.81 7172
macro avg 0.82 0.81 0.80 7172
weighted avg 0.83 0.81 0.81 7172
precision recall f1-score support
0 0.93 1.00 0.96 331
1 1.00 0.99 1.00 432
2 0.88 0.99 0.93 310
3 0.95 1.00 0.97 245
4 0.94 0.99 0.97 498
5 0.76 0.83 0.80 247
6 0.94 0.90 0.92 348
7 0.97 0.95 0.96 436
8 0.82 0.90 0.85 288
10 0.81 0.66 0.73 331
11 0.87 1.00 0.93 209
12 0.84 0.73 0.78 394
13 0.90 0.67 0.77 291
14 0.95 0.85 0.89 246
15 1.00 1.00 1.00 347
16 1.00 0.99 1.00 164
17 0.33 0.61 0.43 144
18 0.72 0.81 0.76 246
19 0.84 0.69 0.76 248
20 0.62 0.64 0.63 266
21 0.79 0.62 0.69 346
22 0.64 0.80 0.71 206
23 0.84 0.81 0.83 267
24 0.85 0.76 0.80 332
accuracy 0.85 7172
macro avg 0.84 0.84 0.84 7172
weighted avg 0.86 0.85 0.85 7172
......@@ -32,7 +32,7 @@ def save_model_history(model_history, model_name):
def save_results(y_test, y_pred, model_name="model"):
with open('./results/svm_scores.txt', 'w') as f:
with open("./results/"+model_name+"_scores.txt", 'w') as f:
print(metrics.classification_report(y_test, y_pred), file = f)
print(metrics.classification_report(y_test, y_pred))
# Confusion matrix
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment