Commit 6e4afc45 authored by Meet Narendra's avatar Meet Narendra 💬

Modified preprocess and added device

parent 529337f9
...@@ -2,6 +2,7 @@ import torch ...@@ -2,6 +2,7 @@ import torch
from logger import Logger from logger import Logger
LOGGER = Logger().logger() LOGGER = Logger().logger()
LOGGER.info("Started Feature Maps") LOGGER.info("Started Feature Maps")
device=torch.device( "cuda" if (torch.cude.is_available()) else 'cpu')
#Author: @meetdoshi #Author: @meetdoshi
class FeatureMaps: class FeatureMaps:
def __init__(self,arch="vgg19"): def __init__(self,arch="vgg19"):
......
from os import device_encoding
from logger import Logger from logger import Logger
from torch import transforms import torch
import torchvision.transforms as transforms
from PIL import Image from PIL import Image
import numpy as np import numpy as np
LOGGER = Logger().logger() LOGGER = Logger().logger()
device=torch.device( "cuda" if (torch.cude.is_available()) else 'cpu')
#Author: @meetdoshi #Author: @meetdoshi
class Preprocessor: class Preprocessor:
@staticmethod @staticmethod
...@@ -34,7 +37,8 @@ class Preprocessor: ...@@ -34,7 +37,8 @@ class Preprocessor:
''' '''
loader = transforms.Compose([transforms.ToTensor(),transforms.Resize([224,224]),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225],),]) loader = transforms.Compose([transforms.ToTensor(),transforms.Resize([224,224]),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225],),])
img = loader(img).unsqueeze(0) img = loader(img).unsqueeze(0)
return img assert img.shape == (1,3,224,224)
return img.to(device,torch.float)
@staticmethod @staticmethod
...@@ -46,15 +50,12 @@ class Preprocessor: ...@@ -46,15 +50,12 @@ class Preprocessor:
''' '''
img = Preprocessor.load_image(path) img = Preprocessor.load_image(path)
img = Preprocessor.reshape_img(img) img = Preprocessor.reshape_img(img)
img = Preprocessor.subtract_mean(img) #img = Preprocessor.subtract_mean(img)
return img return img
'''
if __name__=="__main__": if __name__=="__main__":
prec = Preprocessor() prec = Preprocessor()
img = np.zeros(shape=(4,4,3)) img = np.zeros(shape=(4,4,3))
print(img.shape) img = prec.process('test/sem8.jpeg')
for i in range(img.shape[2]): '''
print(img[:,:,i])
img = prec.subtract_mean(img)
for i in range(img.shape[2]):
print(img[:,:,i])
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment