Commit 54705ca5 authored by Meet Narendra's avatar Meet Narendra 💬

Final model

parent c926f916
*pycache* *pycache*
*.pdf *.pdf
*.csv *.csv
*.ipynb
*Logs*
matplotlib==3.5.1
numpy==1.21.5
Pillow==9.2.0
torch==1.12.1+cpu
torchvision==0.13.1+cpu
import logging
import os
#Author: @meetdoshi
class Logger:
'''
Singleton logger class
'''
_instance = None
_logHandler = None
_formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
def __new__(cls,*args,**kwargs):
if not cls._instance:
os.system("rm -rf Logs/")
os.mkdir("Logs/")
logHandler = logging.FileHandler("Logs/style_transfer.log")
logHandler.setFormatter(cls._formatter)
cls._logHandler = logging.getLogger("Logs/style_transfer.log")
cls._logHandler.setLevel(logging.INFO)
cls._logHandler.addHandler(logHandler)
cls._instance = super(Logger, cls).__new__(cls,*args,**kwargs)
return cls._instance
def logger(self):
return self._logHandler
'''
#Demo use
if __name__ == "__main__":
a = Logger()
b = Logger()
print(a is b)
INFO = a.logger()
ERROR = b.logger()
INFO.info("TEST")
ERROR.info("ERROR")
'''
import numpy as np
import torch
from logger import Logger
LOGGER = Logger().logger()
class Loss:
@staticmethod
def adversarial_G():
'''
L_gan(G,Dy,X,Y) =
'''
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment