- 18 Jan, 2017 1 commit
-
-
Tom Lane authored
In an RLS query, we must ensure that security filter quals are evaluated before ordinary query quals, in case the latter contain "leaky" functions that could expose the contents of sensitive rows. The original implementation of RLS planning ensured this by pushing the scan of a secured table into a sub-query that it marked as a security-barrier view. Unfortunately this results in very inefficient plans in many cases, because the sub-query cannot be flattened and gets planned independently of the rest of the query. To fix, drop the use of sub-queries to enforce RLS qual order, and instead mark each qual (RestrictInfo) with a security_level field establishing its priority for evaluation. Quals must be evaluated in security_level order, except that "leakproof" quals can be allowed to go ahead of quals of lower security_level, if it's helpful to do so. This has to be enforced within the ordering of any one list of quals to be evaluated at a table scan node, and we also have to ensure that quals are not chosen for early evaluation (i.e., use as an index qual or TID scan qual) if they're not allowed to go ahead of other quals at the scan node. This is sufficient to fix the problem for RLS quals, since we only support RLS policies on simple tables and thus RLS quals will always exist at the table scan level only. Eventually these qual ordering rules should be enforced for join quals as well, which would permit improving planning for explicit security-barrier views; but that's a task for another patch. Note that FDWs would need to be aware of these rules --- and not, for example, send an insecure qual for remote execution --- but since we do not yet allow RLS policies on foreign tables, the case doesn't arise. This will need to be addressed before we can allow such policies. Patch by me, reviewed by Stephen Frost and Dean Rasheed. Discussion: https://postgr.es/m/8185.1477432701@sss.pgh.pa.us
-
- 01 Jul, 2016 1 commit
-
-
Tom Lane authored
In the previous design, the GetForeignUpperPaths FDW callback hook was called before we got around to labeling upper relations with the proper consider_parallel flag; this meant that any upper paths created by an FDW would be marked not-parallel-safe. While that's probably just as well right now, we aren't going to want it to be true forever. Hence, abandon the idea that FDWs should be allowed to inject upper paths before the core code has gotten around to creating the relevant upper relation. (Well, actually they still can, but it's on their own heads how well it works.) Instead, adopt the same API already designed for create_upper_paths_hook: we call GetForeignUpperPaths after each upperrel has been created and populated with the paths the core planner knows how to make.
-
- 30 Apr, 2016 1 commit
-
-
Tom Lane authored
We mustn't run generate_gather_paths() during add_paths_to_joinrel(), because that function can be invoked multiple times for the same target joinrel. Not only is it wasteful to build GatherPaths repeatedly, but a later add_partial_path() could delete the partial path that a previously created GatherPath depends on. Instead establish the convention that we do generate_gather_paths() for a rel only just before set_cheapest(). The code was accidentally not broken for baserels, because as of today there never is more than one partial path for a baserel. But that assumption obviously has a pretty short half-life, so move the generate_gather_paths() calls for those cases as well. Also add some generic comments explaining how and why this all works. Per fuzz testing by Andreas Seltenreich. Report: <871t5pgwdt.fsf@credativ.de>
-
- 21 Apr, 2016 1 commit
-
-
Robert Haas authored
It's not necessarily just scanning a base relation any more. Amit Langote and Etsuro Fujita
-
- 17 Mar, 2016 1 commit
-
-
Robert Haas authored
Jim Nasby
-
- 15 Mar, 2016 1 commit
-
-
Tom Lane authored
This is basically like the just-added create_upper_paths_hook, but control is funneled only to the FDW responsible for all the baserels of the current query; so providing such a callback is much less likely to add useless overhead than using the hook function is. The documentation is a bit sketchy. We'll likely want to improve it, and/or adjust the call conventions, when we get some experience with actually using this callback. Hopefully somebody will find time to experiment with it before 9.6 feature freeze.
-
- 08 Mar, 2016 1 commit
-
-
Tom Lane authored
Per David Rowley.
-
- 07 Mar, 2016 1 commit
-
-
Tom Lane authored
I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
-
- 20 Jan, 2016 1 commit
-
-
Robert Haas authored
The core innovation of this patch is the introduction of the concept of a partial path; that is, a path which if executed in parallel will generate a subset of the output rows in each process. Gathering a partial path produces an ordinary (complete) path. This allows us to generate paths for parallel joins by joining a partial path for one side (which at the baserel level is currently always a Partial Seq Scan) to an ordinary path on the other side. This is subject to various restrictions at present, especially that this strategy seems unlikely to be sensible for merge joins, so only nested loops and hash joins paths are generated. This also allows an Append node to be pushed below a Gather node in the case of a partitioned table. Testing revealed that early versions of this patch made poor decisions in some cases, which turned out to be caused by the fact that the original cost model for Parallel Seq Scan wasn't very good. So this patch tries to make some modest improvements in that area. There is much more to be done in the area of generating good parallel plans in all cases, but this seems like a useful step forward. Patch by me, reviewed by Dilip Kumar and Amit Kapila.
-
- 01 Oct, 2015 1 commit
-
-
Tom Lane authored
Etsuro Fujita spotted a thinko in the README commentary.
-
- 06 Aug, 2015 1 commit
-
-
Tom Lane authored
Further testing revealed that commit f69b4b94 was still a few bricks shy of a load: minor tweaking of the previous test cases resulted in the same wrong-outer-join-order problem coming back. After study I concluded that my previous changes in make_outerjoininfo() were just accidentally masking the problem, and should be reverted in favor of forcing syntactic join order whenever an upper outer join's predicate doesn't mention a lower outer join's LHS. This still allows the chained-outer-joins style that is the normally optimizable case. I also tightened things up some more in join_is_legal(). It seems to me on review that what's really happening in the exception case where we ignore a mismatched special join is that we're allowing the proposed join to associate into the RHS of the outer join we're comparing it to. As such, we should *always* insist that the proposed join be a left join, which eliminates a bunch of rather dubious argumentation. The case where we weren't enforcing that was the one that was already known buggy anyway (it had a violatable Assert before the aforesaid commit) so it hardly deserves a lot of deference. Back-patch to all active branches, like the previous patch. The added regression test case failed in all branches back to 9.1, and I think it's only an unrelated change in costing calculations that kept 9.0 from choosing a broken plan.
-
- 03 Jun, 2015 1 commit
-
-
Tom Lane authored
When the inner side of a nestloop SEMI or ANTI join is an indexscan that uses all the join clauses as indexquals, it can be presumed that both matched and unmatched outer rows will be processed very quickly: for matched rows, we'll stop after fetching one row from the indexscan, while for unmatched rows we'll have an indexscan that finds no matching index entries, which should also be quick. The planner already knew about this, but it was nonetheless charging for at least one full run of the inner indexscan, as a consequence of concerns about the behavior of materialized inner scans --- but those concerns don't apply in the fast case. If the inner side has low cardinality (many matching rows) this could make an indexscan plan look far more expensive than it actually is. To fix, rearrange the work in initial_cost_nestloop/final_cost_nestloop so that we don't add the inner scan cost until we've inspected the indexquals, and then we can add either the full-run cost or just the first tuple's cost as appropriate. Experimentation with this fix uncovered another problem: add_path and friends were coded to disregard cheap startup cost when considering parameterized paths. That's usually okay (and desirable, because it thins the path herd faster); but in this fast case for SEMI/ANTI joins, it could result in throwing away the desired plain indexscan path in favor of a bitmap scan path before we ever get to the join costing logic. In the many-matching-rows cases of interest here, a bitmap scan will do a lot more work than required, so this is a problem. To fix, add a per-relation flag consider_param_startup that works like the existing consider_startup flag, but applies to parameterized paths, and set it for relations that are the inside of a SEMI or ANTI join. To make this patch reasonably safe to back-patch, care has been taken to avoid changing the planner's behavior except in the very narrow case of SEMI/ANTI joins with inner indexscans. There are places in compare_path_costs_fuzzily and add_path_precheck that are not terribly consistent with the new approach, but changing them will affect planner decisions at the margins in other cases, so we'll leave that for a HEAD-only fix. Back-patch to 9.3; before that, the consider_startup flag didn't exist, meaning that the second aspect of the patch would be too invasive. Per a complaint from Peter Holzer and analysis by Tomas Vondra.
-
- 20 May, 2015 1 commit
-
-
Heikki Linnakangas authored
Use "a" and "an" correctly, mostly in comments. Two error messages were also fixed (they were just elogs, so no translation work required). Two function comments in pg_proc.h were also fixed. Etsuro Fujita reported one of these, but I found a lot more with grep. Also fix a few other typos spotted while grepping for the a/an typos. For example, "consists out of ..." -> "consists of ...". Plus a "though"/ "through" mixup reported by Euler Taveira. Many of these typos were in old code, which would be nice to backpatch to make future backpatching easier. But much of the code was new, and I didn't feel like crafting separate patches for each branch. So no backpatching.
-
- 28 Feb, 2015 1 commit
-
-
Tom Lane authored
Part of the intent of the parameterized-path mechanism was to handle star-schema queries efficiently, but some overly-restrictive search limiting logic added in commit e2fa76d8 prevented such cases from working as desired. Fix that and add a regression test about it. Per gripe from Marc Cousin. This is arguably a bug rather than a new feature, so back-patch to 9.2 where parameterized paths were introduced.
-
- 05 Nov, 2013 1 commit
-
-
Tom Lane authored
Constant quals aren't handled the same way they used to be. Also, add mention of a couple more major steps in grouping_planner. Per complaint a couple months back from Etsuro Fujita.
-
- 19 Aug, 2013 1 commit
-
-
Tom Lane authored
In an example such as SELECT * FROM i LEFT JOIN LATERAL (SELECT * FROM j WHERE i.n = j.n) j ON true; it is safe to pull up the LATERAL subquery into its parent, but we must then treat the "i.n = j.n" clause as a qual clause of the LEFT JOIN. The previous coding in deconstruct_recurse mistakenly labeled the clause as "is_pushed_down", resulting in wrong semantics if the clause were applied at the join node, as per an example submitted awhile ago by Jeremy Evans. To fix, postpone processing of such clauses until we return back up to the appropriate recursion depth in deconstruct_recurse. In addition, tighten the is-safe-to-pull-up checks in is_simple_subquery; we previously missed the possibility that the LATERAL subquery might itself contain an outer join that makes lateral references in lower quals unsafe. A regression test case equivalent to Jeremy's example was already in my commit of yesterday, but was giving the wrong results because of this bug. This patch fixes the expected output for that, and also adds a test case for the second problem.
-
- 18 Aug, 2013 1 commit
-
-
Tom Lane authored
The planner largely failed to consider the possibility that a PlaceHolderVar's expression might contain a lateral reference to a Var coming from somewhere outside the PHV's syntactic scope. We had a previous report of a problem in this area, which I tried to fix in a quick-hack way in commit 4da6439b, but Antonin Houska pointed out that there were still some problems, and investigation turned up other issues. This patch largely reverts that commit in favor of a more thoroughly thought-through solution. The new theory is that a PHV's ph_eval_at level cannot be higher than its original syntactic level. If it contains lateral references, those don't change the ph_eval_at level, but rather they create a lateral-reference requirement for the ph_eval_at join relation. The code in joinpath.c needs to handle that. Another issue is that createplan.c wasn't handling nested PlaceHolderVars properly. In passing, push knowledge of lateral-reference checks for join clauses into join_clause_is_movable_to. This is mainly so that FDWs don't need to deal with it. This patch doesn't fix the original join-qual-placement problem reported by Jeremy Evans (and indeed, one of the new regression test cases shows the wrong answer because of that). But the PlaceHolderVar problems need to be fixed before that issue can be addressed, so committing this separately seems reasonable.
-
- 05 Aug, 2013 1 commit
-
-
Tom Lane authored
Formerly, query_planner returned one or possibly two Paths for the topmost join relation, so that grouping_planner didn't see the join RelOptInfo (at least not directly; it didn't have any hesitation about examining cheapest_path->parent, though). However, correct selection of the Paths involved a significant amount of coupling between query_planner and grouping_planner, a problem which has gotten worse over time. It seems best to give up on this API choice and instead return the topmost RelOptInfo explicitly. Then grouping_planner can pull out the Paths it wants from the rel's path list. In this way we can remove all knowledge of grouping behaviors from query_planner. The only real benefit of the old way is that in the case of an empty FROM clause, we never made any RelOptInfos at all, just a Path. Now we have to gin up a dummy RelOptInfo to represent the empty FROM clause. That's not a very big deal though. While at it, simplify query_planner's API a bit more by having the caller set up root->tuple_fraction and root->limit_tuples, rather than passing those values as separate parameters. Since query_planner no longer does anything with either value, requiring it to fill the PlannerInfo fields seemed pretty arbitrary. This patch just rearranges code; it doesn't (intentionally) change any behaviors. Followup patches will do more interesting things.
-
- 29 Apr, 2013 1 commit
-
-
Tom Lane authored
This patch gets rid of the concept of, and infrastructure for, non-canonical PathKeys; we now only ever create canonical pathkey lists. The need for non-canonical pathkeys came from the desire to have grouping_planner initialize query_pathkeys and related pathkey lists before calling query_planner. However, since query_planner didn't actually *do* anything with those lists before they'd been made canonical, we can get rid of the whole mess by just not creating the lists at all until the point where we formerly canonicalized them. There are several ways in which we could implement that without making query_planner itself deal with grouping/sorting features (which are supposed to be the province of grouping_planner). I chose to add a callback function to query_planner's API; other alternatives would have required adding more fields to PlannerInfo, which while not bad in itself would create an ABI break for planner-related plugins in the 9.2 release series. This still breaks ABI for anything that calls query_planner directly, but it seems somewhat unlikely that there are any such plugins. I had originally conceived of this change as merely a step on the way to fixing bug #8049 from Teun Hoogendoorn; but it turns out that this fixes that bug all by itself, as per the added regression test. The reason is that now get_eclass_for_sort_expr is adding the ORDER BY expression at the end of EquivalenceClass creation not the start, and so anything that is in a multi-member EquivalenceClass has already been created with correct em_nullable_relids. I am suspicious that there are related scenarios in which we still need to teach get_eclass_for_sort_expr to compute correct nullable_relids, but am not eager to risk destabilizing either 9.2 or 9.3 to fix bugs that are only hypothetical. So for the moment, do this and stop here. Back-patch to 9.2 but not to earlier branches, since they don't exhibit this bug for lack of join-clause-movement logic that depends on em_nullable_relids being correct. (We might have to revisit that choice if any related bugs turn up.) In 9.2, don't change the signature of make_pathkeys_for_sortclauses nor remove canonicalize_pathkeys, so as not to risk more plugin breakage than we have to.
-
- 30 Aug, 2012 1 commit
-
-
Tom Lane authored
In the initial cut at LATERAL, I kept the rule that cheapest_total_path was always unparameterized, which meant it had to be NULL if the relation has no unparameterized paths. It turns out to work much more nicely if we always have *some* path nominated as cheapest-total for each relation. In particular, let's still say it's the cheapest unparameterized path if there is one; if not, take the cheapest-total-cost path among those of the minimum available parameterization. (The first rule is actually a special case of the second.) This allows reversion of some temporary lobotomizations I'd put in place. In particular, the planner can now consider hash and merge joins for joins below a parameter-supplying nestloop, even if there aren't any unparameterized paths available. This should bring planning of LATERAL-containing queries to the same level as queries not using that feature. Along the way, simplify management of parameterized paths in add_path() and friends. In the original coding for parameterized paths in 9.2, I tried to minimize the logic changes in add_path(), so it just treated parameterization as yet another dimension of comparison for paths. We later made it ignore pathkeys (sort ordering) of parameterized paths, on the grounds that ordering isn't a useful property for the path on the inside of a nestloop, so we might as well get rid of useless parameterized paths as quickly as possible. But we didn't take that reasoning as far as we should have. Startup cost isn't a useful property inside a nestloop either, so add_path() ought to discount startup cost of parameterized paths as well. Having done that, the secondary sorting I'd implemented (in add_parameterized_path) is no longer needed --- any parameterized path that survives add_path() at all is worth considering at higher levels. So this should be a bit faster as well as simpler.
-
- 19 Apr, 2012 1 commit
-
-
Tom Lane authored
This patch adjusts the treatment of parameterized paths so that all paths with the same parameterization (same set of required outer rels) for the same relation will have the same rowcount estimate. We cache the rowcount estimates to ensure that property, and hopefully save a few cycles too. Doing this makes it practical for add_path_precheck to operate without a rowcount estimate: it need only assume that paths with different parameterizations never dominate each other, which is close enough to true anyway for coarse filtering, because normally a more-parameterized path should yield fewer rows thanks to having more join clauses to apply. In add_path, we do the full nine yards of comparing rowcount estimates along with everything else, so that we can discard parameterized paths that don't actually have an advantage. This fixes some issues I'd found with add_path rejecting parameterized paths on the grounds that they were more expensive than not-parameterized ones, even though they yielded many fewer rows and hence would be cheaper once subsequent joining was considered. To make the same-rowcounts assumption valid, we have to require that any parameterized path enforce *all* join clauses that could be obtained from the particular set of outer rels, even if not all of them are useful for indexing. This is required at both base scans and joins. It's a good thing anyway since the net impact is that join quals are checked at the lowest practical level in the join tree. Hence, discard the original rather ad-hoc mechanism for choosing parameterization joinquals, and build a better one that has a more principled rule for when clauses can be moved. The original rule was actually buggy anyway for lack of knowledge about which relations are part of an outer join's outer side; getting this right requires adding an outer_relids field to RestrictInfo.
-
- 16 Mar, 2012 1 commit
-
-
Tom Lane authored
In commit 57664ed2 I tried to fix a bug reported by Teodor Sigaev by making non-simple-Var output columns distinct (by wrapping their expressions with dummy PlaceHolderVar nodes). This did not work too well. Commit b28ffd0f fixed some ensuing problems with matching to child indexes, but per a recent report from Claus Stadler, constraint exclusion of UNION ALL subqueries was still broken, because constant-simplification didn't handle the injected PlaceHolderVars well either. On reflection, the original patch was quite misguided: there is no reason to expect that EquivalenceClass child members will be distinct. So instead of trying to make them so, we should ensure that we can cope with the situation when they're not. Accordingly, this patch reverts the code changes in the above-mentioned commits (though the regression test cases they added stay). Instead, I've added assorted defenses to make sure that duplicate EC child members don't cause any problems. Teodor's original problem ("MergeAppend child's targetlist doesn't match MergeAppend") is addressed more directly by revising prepare_sort_from_pathkeys to let the parent MergeAppend's sort list guide creation of each child's sort list. In passing, get rid of add_sort_column; as far as I can tell, testing for duplicate sort keys at this stage is dead code. Certainly it doesn't trigger often enough to be worth expending cycles on in ordinary queries. And keeping the test would've greatly complicated the new logic in prepare_sort_from_pathkeys, because comparing pathkey list entries against a previous output array requires that we not skip any entries in the list. Back-patch to 9.1, like the previous patches. The only known issue in this area that wasn't caused by the ill-advised previous patches was the MergeAppend planning failure, which of course is not relevant before 9.1. It's possible that we need some of the new defenses against duplicate child EC entries in older branches, but until there's some clear evidence of that I'm going to refrain from back-patching further.
-
- 28 Jan, 2012 1 commit
-
-
Tom Lane authored
This patch fixes the planner so that it can generate nestloop-with- inner-indexscan plans even with one or more levels of joining between the indexscan and the nestloop join that is supplying the parameter. The executor was fixed to handle such cases some time ago, but the planner was not ready. This should improve our plans in many situations where join ordering restrictions formerly forced complete table scans. There is probably a fair amount of tuning work yet to be done, because of various heuristics that have been added to limit the number of parameterized paths considered. However, we are not going to find out what needs to be adjusted until the code gets some real-world use, so it's time to get it in there where it can be tested easily. Note API change for index AM amcostestimate functions. I'm not aware of any non-core index AMs, but if there are any, they will need minor adjustments.
-
- 20 Feb, 2011 1 commit
-
-
Tom Lane authored
This commit provides the core code and documentation needed. A contrib module test case will follow shortly. Shigeru Hanada, Jan Urbanski, Heikki Linnakangas
-
- 29 Oct, 2010 1 commit
-
-
Tom Lane authored
Zoltan Boszormenyi exhibited a test case in which planning time was dominated by construction of EquivalenceClasses and PathKeys that had no actual relevance to the query (and in fact got discarded immediately). This happened because we generated PathKeys describing the sort ordering of every index on every table in the query, and only after that checked to see if the sort ordering was relevant. The EC/PK construction code is O(N^2) in the number of ECs, which is all right for the intended number of such objects, but it gets out of hand if there are ECs for lots of irrelevant indexes. To fix, twiddle the handling of mergeclauses a little bit to ensure that every interesting EC is created before we begin path generation. (This doesn't cost anything --- in fact I think it's a bit cheaper than before --- since we always eventually created those ECs anyway.) Then, if an index column can't be found in any pre-existing EC, we know that that sort ordering is irrelevant for the query. Instead of creating a useless EC, we can just not build a pathkey for the index column in the first place. The index will still be considered if it's useful for non-order-related reasons, but we will think of its output as unsorted.
-
- 14 Oct, 2010 1 commit
-
-
Tom Lane authored
This patch eliminates the former need to sort the output of an Append scan when an ordered scan of an inheritance tree is wanted. This should be particularly useful for fast-start cases such as queries with LIMIT. Original patch by Greg Stark, with further hacking by Hans-Jurgen Schonig, Robert Haas, and Tom Lane.
-
- 20 Sep, 2010 1 commit
-
-
Magnus Hagander authored
-
- 19 Aug, 2010 1 commit
-
-
Peter Eisentraut authored
at end of files.
-
- 28 Mar, 2010 1 commit
-
-
Tom Lane authored
fixes things so that it works for cases where nested removals are possible. The overhead of the optimization should be significantly less, as well.
-
- 29 Sep, 2009 1 commit
-
-
Tom Lane authored
The original coding correctly noted that these aren't just redundancies (they're effectively X IS NOT NULL, assuming = is strict). However, they got treated that way if X happened to be in a single-member EquivalenceClass already, which could happen if there was an ORDER BY X clause, for instance. The simplest and most reliable solution seems to be to not try to process such clauses through the EquivalenceClass machinery; just throw them back for traditional processing. The amount of work that'd be needed to be smarter than that seems out of proportion to the benefit. Per bug #5084 from Bernt Marius Johnsen, and analysis by Andrew Gierth.
-
- 17 Sep, 2009 1 commit
-
-
Tom Lane authored
is unique and is not referenced above the join. In this case the inner side doesn't affect the query result and can be thrown away entirely. Although perhaps nobody would ever write such a thing by hand, it's a reasonably common case in machine-generated SQL. The current implementation only recognizes the case where the inner side is a simple relation with a unique index matching the query conditions. This is enough for the use-cases that have been shown so far, but we might want to try to handle other cases later. Robert Haas, somewhat rewritten by Tom
-
- 21 Jul, 2009 1 commit
-
-
Tom Lane authored
reorder a semijoin into or out of the righthand side of another semijoin, but actually it doesn't work to reorder it into or out of the righthand side of a left or antijoin, either. Per bug #4906 from Mathieu Fenniak. This was sloppy thinking on my part. This identity does work: ( A left join B on (Pab) ) semijoin C on (Pac) == ( A semijoin C on (Pac) ) left join B on (Pab) but I failed to see that that doesn't mean this does: ( A left join B on (Pab) ) semijoin C on (Pbc) != A left join ( B semijoin C on (Pbc) ) on (Pab)
-
- 27 Feb, 2009 1 commit
-
-
Tom Lane authored
of the associativity of antijoins. Also improve optimizer/README discussion of outer join ordering rules.
-
- 14 Aug, 2008 1 commit
-
-
Tom Lane authored
the old JOIN_IN code, but antijoins are new functionality.) Teach the planner to convert appropriate EXISTS and NOT EXISTS subqueries into semi and anti joins respectively. Also, LEFT JOINs with suitable upper-level IS NULL filters are recognized as being anti joins. Unify the InClauseInfo and OuterJoinInfo infrastructure into "SpecialJoinInfo". With that change, it becomes possible to associate a SpecialJoinInfo with every join attempt, which permits some cleanup of join selectivity estimation. That needs to be taken much further than this patch does, but the next step is to change the API for oprjoin selectivity functions, which seems like material for a separate patch. So for the moment the output size estimates for semi and especially anti joins are quite bogus.
-
- 02 Aug, 2008 1 commit
-
-
Tom Lane authored
as per my recent proposal: 1. Fold SortClause and GroupClause into a single node type SortGroupClause. We were already relying on them to be struct-equivalent, so using two node tags wasn't accomplishing much except to get in the way of comparing items with equal(). 2. Add an "eqop" field to SortGroupClause to carry the associated equality operator. This is cheap for the parser to get at the same time it's looking up the sort operator, and storing it eliminates the need for repeated not-so-cheap lookups during planning. In future this will also let us represent GROUP/DISTINCT operations on datatypes that have hash opclasses but no btree opclasses (ie, they have equality but no natural sort order). The previous representation simply didn't work for that, since its only indicator of comparison semantics was a sort operator. 3. Add a hasDistinctOn boolean to struct Query to explicitly record whether the distinctClause came from DISTINCT or DISTINCT ON. This allows removing some complicated and not 100% bulletproof code that attempted to figure that out from the distinctClause alone. This patch doesn't in itself create any new capability, but it's necessary infrastructure for future attempts to use hash-based grouping for DISTINCT and UNION/INTERSECT/EXCEPT.
-
- 09 Apr, 2008 3 commits
-
-
Bruce Momjian authored
-
Bruce Momjian authored
-
Bruce Momjian authored
-
- 21 Mar, 2008 1 commit
-
-
Bruce Momjian authored
-
- 20 Mar, 2008 1 commit
-
-
Bruce Momjian authored
-