Use Append rather than MergeAppend for scanning ordered partitions.
If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
Showing
This diff is collapsed.
This diff is collapsed.
Please register or sign in to comment