Commit 73d1040b authored by Tom Lane's avatar Tom Lane

Fix eqjoinsel() to make use of new statistics.

parent a001f135
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
* *
* *
* IDENTIFICATION * IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/utils/adt/selfuncs.c,v 1.90 2001/05/20 20:28:19 tgl Exp $ * $Header: /cvsroot/pgsql/src/backend/utils/adt/selfuncs.c,v 1.91 2001/05/27 17:37:48 tgl Exp $
* *
*------------------------------------------------------------------------- *-------------------------------------------------------------------------
*/ */
...@@ -940,9 +940,7 @@ Datum ...@@ -940,9 +940,7 @@ Datum
eqjoinsel(PG_FUNCTION_ARGS) eqjoinsel(PG_FUNCTION_ARGS)
{ {
Query *root = (Query *) PG_GETARG_POINTER(0); Query *root = (Query *) PG_GETARG_POINTER(0);
#ifdef NOT_USED /* see neqjoinsel() before removing me! */
Oid operator = PG_GETARG_OID(1); Oid operator = PG_GETARG_OID(1);
#endif
List *args = (List *) PG_GETARG_POINTER(2); List *args = (List *) PG_GETARG_POINTER(2);
Var *var1; Var *var1;
Var *var2; Var *var2;
...@@ -958,73 +956,219 @@ eqjoinsel(PG_FUNCTION_ARGS) ...@@ -958,73 +956,219 @@ eqjoinsel(PG_FUNCTION_ARGS)
HeapTuple statsTuple2 = NULL; HeapTuple statsTuple2 = NULL;
Form_pg_statistic stats1 = NULL; Form_pg_statistic stats1 = NULL;
Form_pg_statistic stats2 = NULL; Form_pg_statistic stats2 = NULL;
double nd1, double nd1 = DEFAULT_NUM_DISTINCT;
nd2; double nd2 = DEFAULT_NUM_DISTINCT;
bool have_mcvs1 = false;
if (var1 == NULL) Datum *values1 = NULL;
{ int nvalues1 = 0;
nd1 = DEFAULT_NUM_DISTINCT; float4 *numbers1 = NULL;
} int nnumbers1 = 0;
else bool have_mcvs2 = false;
Datum *values2 = NULL;
int nvalues2 = 0;
float4 *numbers2 = NULL;
int nnumbers2 = 0;
if (var1 != NULL)
{ {
/* get stats for the attribute, if available */ /* get stats for the attribute, if available */
Oid relid1 = getrelid(var1->varno, root->rtable); Oid relid1 = getrelid(var1->varno, root->rtable);
if (relid1 == InvalidOid) if (relid1 != InvalidOid)
nd1 = DEFAULT_NUM_DISTINCT;
else
{ {
statsTuple1 = SearchSysCache(STATRELATT, statsTuple1 = SearchSysCache(STATRELATT,
ObjectIdGetDatum(relid1), ObjectIdGetDatum(relid1),
Int16GetDatum(var1->varattno), Int16GetDatum(var1->varattno),
0, 0); 0, 0);
if (HeapTupleIsValid(statsTuple1)) if (HeapTupleIsValid(statsTuple1))
{
stats1 = (Form_pg_statistic) GETSTRUCT(statsTuple1); stats1 = (Form_pg_statistic) GETSTRUCT(statsTuple1);
have_mcvs1 = get_attstatsslot(statsTuple1,
var1->vartype,
var1->vartypmod,
STATISTIC_KIND_MCV,
InvalidOid,
&values1, &nvalues1,
&numbers1, &nnumbers1);
}
nd1 = get_att_numdistinct(root, var1, stats1); nd1 = get_att_numdistinct(root, var1, stats1);
} }
} }
if (var2 == NULL) if (var2 != NULL)
{
nd2 = DEFAULT_NUM_DISTINCT;
}
else
{ {
/* get stats for the attribute, if available */ /* get stats for the attribute, if available */
Oid relid2 = getrelid(var2->varno, root->rtable); Oid relid2 = getrelid(var2->varno, root->rtable);
if (relid2 == InvalidOid) if (relid2 != InvalidOid)
nd2 = DEFAULT_NUM_DISTINCT;
else
{ {
statsTuple2 = SearchSysCache(STATRELATT, statsTuple2 = SearchSysCache(STATRELATT,
ObjectIdGetDatum(relid2), ObjectIdGetDatum(relid2),
Int16GetDatum(var2->varattno), Int16GetDatum(var2->varattno),
0, 0); 0, 0);
if (HeapTupleIsValid(statsTuple2)) if (HeapTupleIsValid(statsTuple2))
{
stats2 = (Form_pg_statistic) GETSTRUCT(statsTuple2); stats2 = (Form_pg_statistic) GETSTRUCT(statsTuple2);
have_mcvs2 = get_attstatsslot(statsTuple2,
var2->vartype,
var2->vartypmod,
STATISTIC_KIND_MCV,
InvalidOid,
&values2, &nvalues2,
&numbers2, &nnumbers2);
}
nd2 = get_att_numdistinct(root, var2, stats2); nd2 = get_att_numdistinct(root, var2, stats2);
} }
} }
/* if (have_mcvs1 && have_mcvs2)
* Estimate the join selectivity as 1 / sqrt(nd1*nd2) {
* (can we produce any theory for this)? /*
* * We have most-common-value lists for both relations. Run
* XXX possibility to do better: if both attributes have histograms * through the lists to see which MCVs actually join to each
* then we could determine the exact join selectivity between the * other with the given operator. This allows us to determine
* MCV sets, and only have to assume the join behavior of the non-MCV * the exact join selectivity for the portion of the relations
* values. This could be a big win when the MCVs cover a large part * represented by the MCV lists. We still have to estimate for
* of the population. * the remaining population, but in a skewed distribution this
* * gives us a big leg up in accuracy. For motivation see the
* XXX what about nulls? * analysis in Y. Ioannidis and S. Christodoulakis, "On the
*/ * propagation of errors in the size of join results", Technical
selec = 1.0 / sqrt(nd1 * nd2); * Report 1018, Computer Science Dept., University of Wisconsin,
if (selec > 1.0) * Madison, March 1991 (available from ftp.cs.wisc.edu).
selec = 1.0; */
FmgrInfo eqproc;
bool *hasmatch1;
bool *hasmatch2;
double matchprodfreq,
matchfreq1,
matchfreq2,
unmatchfreq1,
unmatchfreq2,
otherfreq1,
otherfreq2,
totalsel1,
totalsel2;
int i,
nmatches;
fmgr_info(get_opcode(operator), &eqproc);
hasmatch1 = (bool *) palloc(nvalues1 * sizeof(bool));
memset(hasmatch1, 0, nvalues1 * sizeof(bool));
hasmatch2 = (bool *) palloc(nvalues2 * sizeof(bool));
memset(hasmatch2, 0, nvalues2 * sizeof(bool));
/*
* Note we assume that each MCV will match at most one member of
* the other MCV list. If the operator isn't really equality,
* there could be multiple matches --- but we don't look for them,
* both for speed and because the math wouldn't add up...
*/
matchprodfreq = 0.0;
nmatches = 0;
for (i = 0; i < nvalues1; i++)
{
int j;
for (j = 0; j < nvalues2; j++)
{
if (hasmatch2[j])
continue;
if (DatumGetBool(FunctionCall2(&eqproc,
values1[i],
values2[j])))
{
hasmatch1[i] = hasmatch2[j] = true;
matchprodfreq += numbers1[i] * numbers2[j];
nmatches++;
break;
}
}
}
/* Sum up frequencies of matched and unmatched MCVs */
matchfreq1 = unmatchfreq1 = 0.0;
for (i = 0; i < nvalues1; i++)
{
if (hasmatch1[i])
matchfreq1 += numbers1[i];
else
unmatchfreq1 += numbers1[i];
}
matchfreq2 = unmatchfreq2 = 0.0;
for (i = 0; i < nvalues2; i++)
{
if (hasmatch2[i])
matchfreq2 += numbers2[i];
else
unmatchfreq2 += numbers2[i];
}
pfree(hasmatch1);
pfree(hasmatch2);
/*
* Compute total frequency of non-null values that are not in
* the MCV lists.
*/
otherfreq1 = 1.0 - stats1->stanullfrac - matchfreq1 - unmatchfreq1;
otherfreq2 = 1.0 - stats2->stanullfrac - matchfreq2 - unmatchfreq2;
/*
* We can estimate the total selectivity from the point of view
* of relation 1 as: the known selectivity for matched MCVs, plus
* unmatched MCVs that are assumed to match against random members
* of relation 2's non-MCV population, plus non-MCV values that
* are assumed to match against random members of relation 2's
* unmatched MCVs plus non-MCV values.
*/
totalsel1 = matchprodfreq;
if (nd2 > nvalues2)
totalsel1 += unmatchfreq1 * otherfreq2 / (nd2 - nvalues2);
if (nd2 > nmatches)
totalsel1 += otherfreq1 * (otherfreq2 + unmatchfreq2) /
(nd2 - nmatches);
/* Same estimate from the point of view of relation 2. */
totalsel2 = matchprodfreq;
if (nd1 > nvalues1)
totalsel2 += unmatchfreq2 * otherfreq1 / (nd1 - nvalues1);
if (nd1 > nmatches)
totalsel2 += otherfreq2 * (otherfreq1 + unmatchfreq1) /
(nd1 - nmatches);
/*
* For robustness, we average the two estimates. (Can a case
* be made for taking the min or max instead?)
*/
selec = (totalsel1 + totalsel2) * 0.5;
}
else
{
/*
* We do not have MCV lists for both sides. Estimate the
* join selectivity as MIN(1/nd1, 1/nd2). This is plausible
* if we assume that the values are about equally distributed:
* a given tuple of rel1 will join to either 0 or N2/nd2 rows
* of rel2, so total join rows are at most N1*N2/nd2 giving
* a join selectivity of not more than 1/nd2. By the same logic
* it is not more than 1/nd1, so MIN(1/nd1, 1/nd2) is an upper
* bound. Using the MIN() means we estimate from the point of
* view of the relation with smaller nd (since the larger nd is
* determining the MIN). It is reasonable to assume that most
* tuples in this rel will have join partners, so the bound is
* probably reasonably tight and should be taken as-is.
*
* XXX Can we be smarter if we have an MCV list for just one side?
* It seems that if we assume equal distribution for the other
* side, we end up with the same answer anyway.
*/
if (nd1 > nd2)
selec = 1.0 / nd1;
else
selec = 1.0 / nd2;
}
if (have_mcvs1)
free_attstatsslot(var1->vartype, values1, nvalues1,
numbers1, nnumbers1);
if (have_mcvs2)
free_attstatsslot(var2->vartype, values2, nvalues2,
numbers2, nnumbers2);
if (HeapTupleIsValid(statsTuple1)) if (HeapTupleIsValid(statsTuple1))
ReleaseSysCache(statsTuple1); ReleaseSysCache(statsTuple1);
if (HeapTupleIsValid(statsTuple2)) if (HeapTupleIsValid(statsTuple2))
...@@ -1039,14 +1183,30 @@ eqjoinsel(PG_FUNCTION_ARGS) ...@@ -1039,14 +1183,30 @@ eqjoinsel(PG_FUNCTION_ARGS)
Datum Datum
neqjoinsel(PG_FUNCTION_ARGS) neqjoinsel(PG_FUNCTION_ARGS)
{ {
Query *root = (Query *) PG_GETARG_POINTER(0);
Oid operator = PG_GETARG_OID(1);
List *args = (List *) PG_GETARG_POINTER(2);
Oid eqop;
float8 result; float8 result;
/* /*
* XXX we skip looking up the negator operator here because we know * We want 1 - eqjoinsel() where the equality operator is the one
* eqjoinsel() won't look at it anyway. If eqjoinsel() ever does * associated with this != operator, that is, its negator.
* look, this routine will need to look more like neqsel() does.
*/ */
result = DatumGetFloat8(eqjoinsel(fcinfo)); eqop = get_negator(operator);
if (eqop)
{
result = DatumGetFloat8(DirectFunctionCall3(eqjoinsel,
PointerGetDatum(root),
ObjectIdGetDatum(eqop),
PointerGetDatum(args)));
}
else
{
/* Use default selectivity (should we raise an error instead?) */
result = DEFAULT_EQ_SEL;
}
result = 1.0 - result; result = 1.0 - result;
PG_RETURN_FLOAT8(result); PG_RETURN_FLOAT8(result);
} }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment