Commit 5dfc1981 authored by Andres Freund's avatar Andres Freund

Use more efficient hashtable for execGrouping.c to speed up hash aggregation.

The more efficient hashtable speeds up hash-aggregations with more than
a few hundred groups significantly. Improvements of over 120% have been
measured.

Due to the the different hash table queries that not fully
determined (e.g. GROUP BY without ORDER BY) may change their result
order.

The conversion is largely straight-forward, except that, due to the
static element types of simplehash.h type hashes, the additional data
some users store in elements (e.g. the per-group working data for hash
aggregaters) is now stored in TupleHashEntryData->additional.  The
meaning of BuildTupleHashTable's entrysize (renamed to additionalsize)
has been changed to only be about the additionally stored size.  That
size is only used for the initial sizing of the hash-table.

Reviewed-By: Tomas Vondra
Discussion: <20160727004333.r3e2k2y6fvk2ntup@alap3.anarazel.de>
parent 75ae538b
......@@ -23,12 +23,25 @@
#include "utils/lsyscache.h"
#include "utils/memutils.h"
static uint32 TupleHashTableHash(struct tuplehash_hash *tb, const MinimalTuple tuple);
static int TupleHashTableMatch(struct tuplehash_hash *tb, const MinimalTuple tuple1, const MinimalTuple tuple2);
static TupleHashTable CurTupleHashTable = NULL;
static uint32 TupleHashTableHash(const void *key, Size keysize);
static int TupleHashTableMatch(const void *key1, const void *key2,
Size keysize);
/*
* Define parameters for tuple hash table code generation. The interface is
* *also* declared in execnodes.h (to generate the types, which are externally
* visible).
*/
#define SH_PREFIX tuplehash
#define SH_ELEMENT_TYPE TupleHashEntryData
#define SH_KEY_TYPE MinimalTuple
#define SH_KEY firstTuple
#define SH_HASH_KEY(tb, key) TupleHashTableHash(tb, key)
#define SH_EQUAL(tb, a, b) TupleHashTableMatch(tb, a, b) == 0
#define SH_SCOPE extern
#define SH_STORE_HASH
#define SH_GET_HASH(tb, a) a->hash
#define SH_DEFINE
#include "lib/simplehash.h"
/*****************************************************************************
......@@ -260,7 +273,7 @@ execTuplesHashPrepare(int numCols,
* eqfunctions: equality comparison functions to use
* hashfunctions: datatype-specific hashing functions to use
* nbuckets: initial estimate of hashtable size
* entrysize: size of each entry (at least sizeof(TupleHashEntryData))
* additionalsize: size of data stored in ->additional
* tablecxt: memory context in which to store table and table entries
* tempcxt: short-lived context for evaluation hash and comparison functions
*
......@@ -275,20 +288,19 @@ TupleHashTable
BuildTupleHashTable(int numCols, AttrNumber *keyColIdx,
FmgrInfo *eqfunctions,
FmgrInfo *hashfunctions,
long nbuckets, Size entrysize,
long nbuckets, Size additionalsize,
MemoryContext tablecxt, MemoryContext tempcxt)
{
TupleHashTable hashtable;
HASHCTL hash_ctl;
Size entrysize = sizeof(TupleHashEntryData) + additionalsize;
Assert(nbuckets > 0);
Assert(entrysize >= sizeof(TupleHashEntryData));
/* Limit initial table size request to not more than work_mem */
nbuckets = Min(nbuckets, (long) ((work_mem * 1024L) / entrysize));
hashtable = (TupleHashTable) MemoryContextAlloc(tablecxt,
sizeof(TupleHashTableData));
hashtable = (TupleHashTable)
MemoryContextAlloc(tablecxt, sizeof(TupleHashTableData));
hashtable->numCols = numCols;
hashtable->keyColIdx = keyColIdx;
......@@ -302,15 +314,8 @@ BuildTupleHashTable(int numCols, AttrNumber *keyColIdx,
hashtable->in_hash_funcs = NULL;
hashtable->cur_eq_funcs = NULL;
MemSet(&hash_ctl, 0, sizeof(hash_ctl));
hash_ctl.keysize = sizeof(TupleHashEntryData);
hash_ctl.entrysize = entrysize;
hash_ctl.hash = TupleHashTableHash;
hash_ctl.match = TupleHashTableMatch;
hash_ctl.hcxt = tablecxt;
hashtable->hashtab = hash_create("TupleHashTable", nbuckets,
&hash_ctl,
HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);
hashtable->hashtab = tuplehash_create(tablecxt, nbuckets);
hashtable->hashtab->private = hashtable;
return hashtable;
}
......@@ -324,18 +329,17 @@ BuildTupleHashTable(int numCols, AttrNumber *keyColIdx,
*
* If isnew isn't NULL, then a new entry is created if no existing entry
* matches. On return, *isnew is true if the entry is newly created,
* false if it existed already. Any extra space in a new entry has been
* zeroed.
* false if it existed already. ->additional_data in the new entry has
* been zeroed.
*/
TupleHashEntry
LookupTupleHashEntry(TupleHashTable hashtable, TupleTableSlot *slot,
bool *isnew)
{
TupleHashEntry entry;
TupleHashEntryData *entry;
MemoryContext oldContext;
TupleHashTable saveCurHT;
TupleHashEntryData dummy;
bool found;
MinimalTuple key;
/* If first time through, clone the input slot to make table slot */
if (hashtable->tableslot == NULL)
......@@ -356,28 +360,17 @@ LookupTupleHashEntry(TupleHashTable hashtable, TupleTableSlot *slot,
/* Need to run the hash functions in short-lived context */
oldContext = MemoryContextSwitchTo(hashtable->tempcxt);
/*
* Set up data needed by hash and match functions
*
* We save and restore CurTupleHashTable just in case someone manages to
* invoke this code re-entrantly.
*/
/* set up data needed by hash and match functions */
hashtable->inputslot = slot;
hashtable->in_hash_funcs = hashtable->tab_hash_funcs;
hashtable->cur_eq_funcs = hashtable->tab_eq_funcs;
saveCurHT = CurTupleHashTable;
CurTupleHashTable = hashtable;
/* Search the hash table */
dummy.firstTuple = NULL; /* flag to reference inputslot */
entry = (TupleHashEntry) hash_search(hashtable->hashtab,
&dummy,
isnew ? HASH_ENTER : HASH_FIND,
&found);
key = NULL; /* flag to reference inputslot */
if (isnew)
{
entry = tuplehash_insert(hashtable->hashtab, key, &found);
if (found)
{
/* found pre-existing entry */
......@@ -385,24 +378,19 @@ LookupTupleHashEntry(TupleHashTable hashtable, TupleTableSlot *slot,
}
else
{
/*
* created new entry
*
* Zero any caller-requested space in the entry. (This zaps the
* "key data" dynahash.c copied into the new entry, but we don't
* care since we're about to overwrite it anyway.)
*/
MemSet(entry, 0, hashtable->entrysize);
/* Copy the first tuple into the table context */
/* created new entry */
*isnew = true;
/* zero caller data */
entry->additional = NULL;
MemoryContextSwitchTo(hashtable->tablecxt);
/* Copy the first tuple into the table context */
entry->firstTuple = ExecCopySlotMinimalTuple(slot);
*isnew = true;
}
}
CurTupleHashTable = saveCurHT;
else
{
entry = tuplehash_lookup(hashtable->hashtab, key);
}
MemoryContextSwitchTo(oldContext);
......@@ -425,34 +413,19 @@ FindTupleHashEntry(TupleHashTable hashtable, TupleTableSlot *slot,
{
TupleHashEntry entry;
MemoryContext oldContext;
TupleHashTable saveCurHT;
TupleHashEntryData dummy;
MinimalTuple key;
/* Need to run the hash functions in short-lived context */
oldContext = MemoryContextSwitchTo(hashtable->tempcxt);
/*
* Set up data needed by hash and match functions
*
* We save and restore CurTupleHashTable just in case someone manages to
* invoke this code re-entrantly.
*/
/* Set up data needed by hash and match functions */
hashtable->inputslot = slot;
hashtable->in_hash_funcs = hashfunctions;
hashtable->cur_eq_funcs = eqfunctions;
saveCurHT = CurTupleHashTable;
CurTupleHashTable = hashtable;
/* Search the hash table */
dummy.firstTuple = NULL; /* flag to reference inputslot */
entry = (TupleHashEntry) hash_search(hashtable->hashtab,
&dummy,
HASH_FIND,
NULL);
CurTupleHashTable = saveCurHT;
key = NULL; /* flag to reference inputslot */
entry = tuplehash_lookup(hashtable->hashtab, key);
MemoryContextSwitchTo(oldContext);
return entry;
......@@ -468,22 +441,18 @@ FindTupleHashEntry(TupleHashTable hashtable, TupleTableSlot *slot,
* This convention avoids the need to materialize virtual input tuples unless
* they actually need to get copied into the table.
*
* CurTupleHashTable must be set before calling this, since dynahash.c
* doesn't provide any API that would let us get at the hashtable otherwise.
*
* Also, the caller must select an appropriate memory context for running
* the hash functions. (dynahash.c doesn't change CurrentMemoryContext.)
*/
static uint32
TupleHashTableHash(const void *key, Size keysize)
TupleHashTableHash(struct tuplehash_hash *tb, const MinimalTuple tuple)
{
MinimalTuple tuple = ((const TupleHashEntryData *) key)->firstTuple;
TupleTableSlot *slot;
TupleHashTable hashtable = CurTupleHashTable;
TupleHashTable hashtable = (TupleHashTable) tb->private;
int numCols = hashtable->numCols;
AttrNumber *keyColIdx = hashtable->keyColIdx;
FmgrInfo *hashfunctions;
uint32 hashkey = 0;
TupleTableSlot *slot;
FmgrInfo *hashfunctions;
int i;
if (tuple == NULL)
......@@ -494,8 +463,12 @@ TupleHashTableHash(const void *key, Size keysize)
}
else
{
/* Process a tuple already stored in the table */
/* (this case never actually occurs in current dynahash.c code) */
/*
* Process a tuple already stored in the table.
*
* (this case never actually occurs due to the way simplehash.h is
* used, as the hash-value is stored in the entries)
*/
slot = hashtable->tableslot;
ExecStoreMinimalTuple(tuple, slot, false);
hashfunctions = hashtable->tab_hash_funcs;
......@@ -530,29 +503,21 @@ TupleHashTableHash(const void *key, Size keysize)
*
* As above, the passed pointers are pointers to TupleHashEntryData.
*
* CurTupleHashTable must be set before calling this, since dynahash.c
* doesn't provide any API that would let us get at the hashtable otherwise.
*
* Also, the caller must select an appropriate memory context for running
* the compare functions. (dynahash.c doesn't change CurrentMemoryContext.)
*/
static int
TupleHashTableMatch(const void *key1, const void *key2, Size keysize)
TupleHashTableMatch(struct tuplehash_hash *tb, const MinimalTuple tuple1, const MinimalTuple tuple2)
{
MinimalTuple tuple1 = ((const TupleHashEntryData *) key1)->firstTuple;
#ifdef USE_ASSERT_CHECKING
MinimalTuple tuple2 = ((const TupleHashEntryData *) key2)->firstTuple;
#endif
TupleTableSlot *slot1;
TupleTableSlot *slot2;
TupleHashTable hashtable = CurTupleHashTable;
TupleHashTable hashtable = (TupleHashTable) tb->private;
/*
* We assume that dynahash.c will only ever call us with the first
* We assume that simplehash.h will only ever call us with the first
* argument being an actual table entry, and the second argument being
* LookupTupleHashEntry's dummy TupleHashEntryData. The other direction
* could be supported too, but is not currently used by dynahash.c.
* could be supported too, but is not currently required.
*/
Assert(tuple1 != NULL);
slot1 = hashtable->tableslot;
......
......@@ -434,20 +434,6 @@ typedef struct AggStatePerPhaseData
Sort *sortnode; /* Sort node for input ordering for phase */
} AggStatePerPhaseData;
/*
* To implement hashed aggregation, we need a hashtable that stores a
* representative tuple and an array of AggStatePerGroup structs for each
* distinct set of GROUP BY column values. We compute the hash key from
* the GROUP BY columns.
*/
typedef struct AggHashEntryData *AggHashEntry;
typedef struct AggHashEntryData
{
TupleHashEntryData shared; /* common header for hash table entries */
/* per-aggregate transition status array */
AggStatePerGroupData pergroup[FLEXIBLE_ARRAY_MEMBER];
} AggHashEntryData;
static void initialize_phase(AggState *aggstate, int newphase);
static TupleTableSlot *fetch_input_tuple(AggState *aggstate);
......@@ -487,7 +473,7 @@ static TupleTableSlot *project_aggregates(AggState *aggstate);
static Bitmapset *find_unaggregated_cols(AggState *aggstate);
static bool find_unaggregated_cols_walker(Node *node, Bitmapset **colnos);
static void build_hash_table(AggState *aggstate);
static AggHashEntry lookup_hash_entry(AggState *aggstate,
static TupleHashEntryData *lookup_hash_entry(AggState *aggstate,
TupleTableSlot *inputslot);
static TupleTableSlot *agg_retrieve_direct(AggState *aggstate);
static void agg_fill_hash_table(AggState *aggstate);
......@@ -1646,6 +1632,12 @@ find_unaggregated_cols_walker(Node *node, Bitmapset **colnos)
/*
* Initialize the hash table to empty.
*
* To implement hashed aggregation, we need a hashtable that stores a
* representative tuple and an array of AggStatePerGroup structs for each
* distinct set of GROUP BY column values. We compute the hash key from the
* GROUP BY columns. The per-group data is allocated in lookup_hash_entry(),
* for each entry.
*
* The hash table always lives in the aggcontext memory context.
*/
static void
......@@ -1653,20 +1645,19 @@ build_hash_table(AggState *aggstate)
{
Agg *node = (Agg *) aggstate->ss.ps.plan;
MemoryContext tmpmem = aggstate->tmpcontext->ecxt_per_tuple_memory;
Size entrysize;
Size additionalsize;
Assert(node->aggstrategy == AGG_HASHED);
Assert(node->numGroups > 0);
entrysize = offsetof(AggHashEntryData, pergroup) +
aggstate->numaggs * sizeof(AggStatePerGroupData);
additionalsize = aggstate->numaggs * sizeof(AggStatePerGroupData);
aggstate->hashtable = BuildTupleHashTable(node->numCols,
node->grpColIdx,
aggstate->phase->eqfunctions,
aggstate->hashfunctions,
node->numGroups,
entrysize,
additionalsize,
aggstate->aggcontexts[0]->ecxt_per_tuple_memory,
tmpmem);
}
......@@ -1723,6 +1714,8 @@ find_hash_columns(AggState *aggstate)
*
* Note that the estimate does not include space for pass-by-reference
* transition data values, nor for the representative tuple of each group.
* Nor does this account of the target fill-factor and growth policy of the
* hash table.
*/
Size
hash_agg_entry_size(int numAggs)
......@@ -1730,11 +1723,10 @@ hash_agg_entry_size(int numAggs)
Size entrysize;
/* This must match build_hash_table */
entrysize = offsetof(AggHashEntryData, pergroup) +
entrysize = sizeof(TupleHashEntryData) +
numAggs * sizeof(AggStatePerGroupData);
entrysize = MAXALIGN(entrysize);
/* Account for hashtable overhead (assuming fill factor = 1) */
entrysize += 3 * sizeof(void *);
return entrysize;
}
......@@ -1744,12 +1736,12 @@ hash_agg_entry_size(int numAggs)
*
* When called, CurrentMemoryContext should be the per-query context.
*/
static AggHashEntry
static TupleHashEntryData *
lookup_hash_entry(AggState *aggstate, TupleTableSlot *inputslot)
{
TupleTableSlot *hashslot = aggstate->hashslot;
ListCell *l;
AggHashEntry entry;
TupleHashEntryData *entry;
bool isnew;
/* if first time through, initialize hashslot by cloning input slot */
......@@ -1771,14 +1763,16 @@ lookup_hash_entry(AggState *aggstate, TupleTableSlot *inputslot)
}
/* find or create the hashtable entry using the filtered tuple */
entry = (AggHashEntry) LookupTupleHashEntry(aggstate->hashtable,
hashslot,
&isnew);
entry = LookupTupleHashEntry(aggstate->hashtable, hashslot, &isnew);
if (isnew)
{
entry->additional = (AggStatePerGroup)
MemoryContextAlloc(aggstate->hashtable->tablecxt,
sizeof(AggStatePerGroupData) * aggstate->numtrans);
/* initialize aggregates for new tuple group */
initialize_aggregates(aggstate, entry->pergroup, 0);
initialize_aggregates(aggstate, (AggStatePerGroup) entry->additional,
0);
}
return entry;
......@@ -2176,7 +2170,7 @@ static void
agg_fill_hash_table(AggState *aggstate)
{
ExprContext *tmpcontext;
AggHashEntry entry;
TupleHashEntryData *entry;
TupleTableSlot *outerslot;
/*
......@@ -2203,9 +2197,9 @@ agg_fill_hash_table(AggState *aggstate)
/* Advance the aggregates */
if (DO_AGGSPLIT_COMBINE(aggstate->aggsplit))
combine_aggregates(aggstate, entry->pergroup);
combine_aggregates(aggstate, (AggStatePerGroup) entry->additional);
else
advance_aggregates(aggstate, entry->pergroup);
advance_aggregates(aggstate, (AggStatePerGroup) entry->additional);
/* Reset per-input-tuple context after each tuple */
ResetExprContext(tmpcontext);
......@@ -2225,7 +2219,7 @@ agg_retrieve_hash_table(AggState *aggstate)
ExprContext *econtext;
AggStatePerAgg peragg;
AggStatePerGroup pergroup;
AggHashEntry entry;
TupleHashEntryData *entry;
TupleTableSlot *firstSlot;
TupleTableSlot *result;
......@@ -2246,7 +2240,7 @@ agg_retrieve_hash_table(AggState *aggstate)
/*
* Find the next entry in the hash table
*/
entry = (AggHashEntry) ScanTupleHashTable(&aggstate->hashiter);
entry = ScanTupleHashTable(aggstate->hashtable, &aggstate->hashiter);
if (entry == NULL)
{
/* No more entries in hashtable, so done */
......@@ -2267,11 +2261,11 @@ agg_retrieve_hash_table(AggState *aggstate)
* Store the copied first input tuple in the tuple table slot reserved
* for it, so that it can be used in ExecProject.
*/
ExecStoreMinimalTuple(entry->shared.firstTuple,
ExecStoreMinimalTuple(entry->firstTuple,
firstSlot,
false);
pergroup = entry->pergroup;
pergroup = (AggStatePerGroup) entry->additional;
finalize_aggregates(aggstate, peragg, pergroup, 0);
......
......@@ -3,6 +3,10 @@
* nodeRecursiveunion.c
* routines to handle RecursiveUnion nodes.
*
* To implement UNION (without ALL), we need a hashtable that stores tuples
* already seen. The hash key is computed from the grouping columns.
*
*
* Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
......@@ -20,17 +24,6 @@
#include "utils/memutils.h"
/*
* To implement UNION (without ALL), we need a hashtable that stores tuples
* already seen. The hash key is computed from the grouping columns.
*/
typedef struct RUHashEntryData *RUHashEntry;
typedef struct RUHashEntryData
{
TupleHashEntryData shared; /* common header for hash table entries */
} RUHashEntryData;
/*
* Initialize the hash table to empty.
......@@ -48,7 +41,7 @@ build_hash_table(RecursiveUnionState *rustate)
rustate->eqfunctions,
rustate->hashfunctions,
node->numGroups,
sizeof(RUHashEntryData),
0,
rustate->tableContext,
rustate->tempContext);
}
......
......@@ -66,19 +66,6 @@ typedef struct SetOpStatePerGroupData
long numRight; /* number of right-input dups in group */
} SetOpStatePerGroupData;
/*
* To implement hashed mode, we need a hashtable that stores a
* representative tuple and the duplicate counts for each distinct set
* of grouping columns. We compute the hash key from the grouping columns.
*/
typedef struct SetOpHashEntryData *SetOpHashEntry;
typedef struct SetOpHashEntryData
{
TupleHashEntryData shared; /* common header for hash table entries */
SetOpStatePerGroupData pergroup;
} SetOpHashEntryData;
static TupleTableSlot *setop_retrieve_direct(SetOpState *setopstate);
static void setop_fill_hash_table(SetOpState *setopstate);
......@@ -141,7 +128,7 @@ build_hash_table(SetOpState *setopstate)
setopstate->eqfunctions,
setopstate->hashfunctions,
node->numGroups,
sizeof(SetOpHashEntryData),
0,
setopstate->tableContext,
setopstate->tempContext);
}
......@@ -238,7 +225,7 @@ setop_retrieve_direct(SetOpState *setopstate)
* get state info from node
*/
outerPlan = outerPlanState(setopstate);
pergroup = setopstate->pergroup;
pergroup = (SetOpStatePerGroup) setopstate->pergroup;
resultTupleSlot = setopstate->ps.ps_ResultTupleSlot;
/*
......@@ -367,7 +354,7 @@ setop_fill_hash_table(SetOpState *setopstate)
{
TupleTableSlot *outerslot;
int flag;
SetOpHashEntry entry;
TupleHashEntryData *entry;
bool isnew;
outerslot = ExecProcNode(outerPlan);
......@@ -383,15 +370,20 @@ setop_fill_hash_table(SetOpState *setopstate)
Assert(in_first_rel);
/* Find or build hashtable entry for this tuple's group */
entry = (SetOpHashEntry)
LookupTupleHashEntry(setopstate->hashtable, outerslot, &isnew);
entry = LookupTupleHashEntry(setopstate->hashtable, outerslot,
&isnew);
/* If new tuple group, initialize counts */
if (isnew)
initialize_counts(&entry->pergroup);
{
entry->additional = (SetOpStatePerGroup)
MemoryContextAlloc(setopstate->hashtable->tablecxt,
sizeof(SetOpStatePerGroupData));
initialize_counts((SetOpStatePerGroup) entry->additional);
}
/* Advance the counts */
advance_counts(&entry->pergroup, flag);
advance_counts((SetOpStatePerGroup) entry->additional, flag);
}
else
{
......@@ -399,12 +391,12 @@ setop_fill_hash_table(SetOpState *setopstate)
in_first_rel = false;
/* For tuples not seen previously, do not make hashtable entry */
entry = (SetOpHashEntry)
LookupTupleHashEntry(setopstate->hashtable, outerslot, NULL);
entry = LookupTupleHashEntry(setopstate->hashtable, outerslot,
NULL);
/* Advance the counts if entry is already present */
if (entry)
advance_counts(&entry->pergroup, flag);
advance_counts((SetOpStatePerGroup) entry->additional, flag);
}
/* Must reset temp context after each hashtable lookup */
......@@ -422,7 +414,7 @@ setop_fill_hash_table(SetOpState *setopstate)
static TupleTableSlot *
setop_retrieve_hash_table(SetOpState *setopstate)
{
SetOpHashEntry entry;
TupleHashEntryData *entry;
TupleTableSlot *resultTupleSlot;
/*
......@@ -438,7 +430,7 @@ setop_retrieve_hash_table(SetOpState *setopstate)
/*
* Find the next entry in the hash table
*/
entry = (SetOpHashEntry) ScanTupleHashTable(&setopstate->hashiter);
entry = ScanTupleHashTable(setopstate->hashtable, &setopstate->hashiter);
if (entry == NULL)
{
/* No more entries in hashtable, so done */
......@@ -450,12 +442,12 @@ setop_retrieve_hash_table(SetOpState *setopstate)
* See if we should emit any copies of this tuple, and if so return
* the first copy.
*/
set_output_count(setopstate, &entry->pergroup);
set_output_count(setopstate, (SetOpStatePerGroup) entry->additional);
if (setopstate->numOutput > 0)
{
setopstate->numOutput--;
return ExecStoreMinimalTuple(entry->shared.firstTuple,
return ExecStoreMinimalTuple(entry->firstTuple,
resultTupleSlot,
false);
}
......
......@@ -508,7 +508,7 @@ buildSubPlanHash(SubPlanState *node, ExprContext *econtext)
node->tab_eq_funcs,
node->tab_hash_funcs,
nbuckets,
sizeof(TupleHashEntryData),
0,
node->hashtablecxt,
node->hashtempcxt);
......@@ -527,7 +527,7 @@ buildSubPlanHash(SubPlanState *node, ExprContext *econtext)
node->tab_eq_funcs,
node->tab_hash_funcs,
nbuckets,
sizeof(TupleHashEntryData),
0,
node->hashtablecxt,
node->hashtempcxt);
}
......@@ -626,7 +626,7 @@ findPartialMatch(TupleHashTable hashtable, TupleTableSlot *slot,
TupleHashEntry entry;
InitTupleHashIterator(hashtable, &hashiter);
while ((entry = ScanTupleHashTable(&hashiter)) != NULL)
while ((entry = ScanTupleHashTable(hashtable, &hashiter)) != NULL)
{
ExecStoreMinimalTuple(entry->firstTuple, hashtable->tableslot, false);
if (!execTuplesUnequal(slot, hashtable->tableslot,
......
......@@ -3292,6 +3292,12 @@ estimate_hashagg_tablesize(Path *path, const AggClauseCosts *agg_costs,
/* plus the per-hash-entry overhead */
hashentrysize += hash_agg_entry_size(agg_costs->numAggs);
/*
* Note that this disregards the effect of fill-factor and growth policy
* of the hash-table. That's probably ok, given default the default
* fill-factor is relatively high. It'd be hard to meaningfully factor in
* "double-in-size" growth policies here.
*/
return hashentrysize * dNumGroups;
}
......
......@@ -140,7 +140,7 @@ extern void execTuplesHashPrepare(int numCols,
extern TupleHashTable BuildTupleHashTable(int numCols, AttrNumber *keyColIdx,
FmgrInfo *eqfunctions,
FmgrInfo *hashfunctions,
long nbuckets, Size entrysize,
long nbuckets, Size additionalsize,
MemoryContext tablecxt,
MemoryContext tempcxt);
extern TupleHashEntry LookupTupleHashEntry(TupleHashTable hashtable,
......
......@@ -499,14 +499,23 @@ typedef struct TupleHashTableData *TupleHashTable;
typedef struct TupleHashEntryData
{
/* firstTuple must be the first field in this struct! */
MinimalTuple firstTuple; /* copy of first tuple in this group */
/* there may be additional data beyond the end of this struct */
} TupleHashEntryData; /* VARIABLE LENGTH STRUCT */
void *additional; /* user data */
uint32 status; /* hash status */
uint32 hash; /* hash value (cached) */
} TupleHashEntryData;
/* define paramters necessary to generate the tuple hash table interface */
#define SH_PREFIX tuplehash
#define SH_ELEMENT_TYPE TupleHashEntryData
#define SH_KEY_TYPE MinimalTuple
#define SH_SCOPE extern
#define SH_DECLARE
#include "lib/simplehash.h"
typedef struct TupleHashTableData
{
HTAB *hashtab; /* underlying dynahash table */
tuplehash_hash *hashtab; /* underlying hash table */
int numCols; /* number of columns in lookup key */
AttrNumber *keyColIdx; /* attr numbers of key columns */
FmgrInfo *tab_hash_funcs; /* hash functions for table datatype(s) */
......@@ -521,7 +530,7 @@ typedef struct TupleHashTableData
FmgrInfo *cur_eq_funcs; /* equality functions for input vs. table */
} TupleHashTableData;
typedef HASH_SEQ_STATUS TupleHashIterator;
typedef tuplehash_iterator TupleHashIterator;
/*
* Use InitTupleHashIterator/TermTupleHashIterator for a read/write scan.
......@@ -529,16 +538,13 @@ typedef HASH_SEQ_STATUS TupleHashIterator;
* explicit scan termination is needed).
*/
#define InitTupleHashIterator(htable, iter) \
hash_seq_init(iter, (htable)->hashtab)
tuplehash_start_iterate(htable->hashtab, iter)
#define TermTupleHashIterator(iter) \
hash_seq_term(iter)
((void) 0)
#define ResetTupleHashIterator(htable, iter) \
do { \
hash_freeze((htable)->hashtab); \
hash_seq_init(iter, (htable)->hashtab); \
} while (0)
#define ScanTupleHashTable(iter) \
((TupleHashEntry) hash_seq_search(iter))
InitTupleHashIterator(htable, iter)
#define ScanTupleHashTable(htable, iter) \
tuplehash_iterate(htable->hashtab, iter)
/* ----------------------------------------------------------------
......
......@@ -2813,6 +2813,8 @@ tsKEY
ts_db_fctx
ts_tokentype
tsearch_readline_state
tuplehash_hash
tuplehash_iterator
txid
tzEntry
u1byte
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment