Commit 43a899f4 authored by Dean Rasheed's avatar Dean Rasheed

Fix corner-case loss of precision in numeric ln().

When deciding on the local rscale to use for the Taylor series
expansion, ln_var() neglected to account for the fact that the result
is subsequently multiplied by a factor of 2^(nsqrt+1), where nsqrt is
the number of square root operations performed in the range reduction
step, which can be as high as 22 for very large inputs. This could
result in a loss of precision, particularly when combined with large
rscale values, for which a large number of Taylor series terms is
required (up to around 400).

Fix by computing a few extra digits in the Taylor series, based on the
weight of the multiplicative factor log10(2^(nsqrt+1)). It remains to
be proven whether or not the other 8 extra digits used for the Taylor
series is appropriate, but this at least deals with the obvious
oversight of failing to account for the effects of the final
multiplication.

Per report from Justin AnyhowStep. Reviewed by Tom Lane.

Discussion: https://postgr.es/m/16280-279f299d9c06e56f@postgresql.org
parent dba91533
......@@ -8500,6 +8500,7 @@ ln_var(const NumericVar *arg, NumericVar *result, int rscale)
NumericVar ni;
NumericVar elem;
NumericVar fact;
int nsqrt;
int local_rscale;
int cmp;
......@@ -8530,12 +8531,14 @@ ln_var(const NumericVar *arg, NumericVar *result, int rscale)
* rscale as we work so that we keep this many significant digits at each
* step (plus a few more for good measure).
*/
nsqrt = 0;
while (cmp_var(&x, &const_zero_point_nine) <= 0)
{
local_rscale = rscale - x.weight * DEC_DIGITS / 2 + 8;
local_rscale = Max(local_rscale, NUMERIC_MIN_DISPLAY_SCALE);
sqrt_var(&x, &x, local_rscale);
mul_var(&fact, &const_two, &fact, 0);
nsqrt++;
}
while (cmp_var(&x, &const_one_point_one) >= 0)
{
......@@ -8543,6 +8546,7 @@ ln_var(const NumericVar *arg, NumericVar *result, int rscale)
local_rscale = Max(local_rscale, NUMERIC_MIN_DISPLAY_SCALE);
sqrt_var(&x, &x, local_rscale);
mul_var(&fact, &const_two, &fact, 0);
nsqrt++;
}
/*
......@@ -8555,8 +8559,12 @@ ln_var(const NumericVar *arg, NumericVar *result, int rscale)
*
* The convergence of this is not as fast as one would like, but is
* tolerable given that z is small.
*
* The Taylor series result will be multiplied by 2^(nsqrt+1), which has a
* decimal weight of (nsqrt+1) * log10(2), so work with this many extra
* digits of precision (plus a few more for good measure).
*/
local_rscale = rscale + 8;
local_rscale = rscale + (int) ((nsqrt + 1) * 0.301029995663981) + 8;
sub_var(&x, &const_one, result);
add_var(&x, &const_one, &elem);
......
......@@ -1612,6 +1612,25 @@ SELECT x, bc_result, ln(x::numeric), ln(x::numeric)-bc_result AS diff FROM t;
1.0e1000 | 2302.5850929940457 | 2302.5850929940457 | 0.0000000000000
(10 rows)
-- inputs with 1000 decimal places
--
-- bc(1) results computed with a scale of 2000 and rounded to 1000 decimal
-- places
WITH t(x, bc_result) AS (VALUES
(484990182159328900690402236933516249572671683638747490717351807610531884491845416923860371219625151551889257298200816555016472471293780254009492949585031653913930735918829139712249577547959394351523545901788627247613322896296041868431769047433229466634098452564756860190085118463828382895145244362033728480588969626012192733802377468089120757046364393407262957242230928854711898925295251902007136232994524624903257456111389508582206404271734668422903183500589303866613158037169610592539145461637447957948521714058034772237111009429638870236361143304703683377693378577075353794118557951847394763531830696578809001981568860219578880229402696449243344235099860421846016326538272155937175661905904288335499593232232926636205909086901191153907183842087577811871344870731324067822883041265129394268082883745408414994.8967939438561591657171240282983703914075472645212002662497023142663831371447287624846942598424990784971781730103682951722370983277124599054059027055336437808366784501932987082321905202623642371063626378290734289114618092750984153422293450048717769065428713836637664433167768445609659527458911187829232316677137895259433038764404970599325009178297626038331436654541552998098529141205301472138026818453893127265938030066392881979113522757891639646670670272542401773230506961559808927249585675430838495658225557294666522469887436551840596777627408780618586500922973500018513068499587683746133637919751545157547095670767246977244726331271787622126889459658539988980096764323712767863722912919120929339399753431689512753214200090670880647731689804555417871258907716687575767185444541243606329768784843125926070743277339790277626515824924290352180761378846035233155198504033292692893297993698953705472933411199778880561376633444249703838589180474329586470353212010427945060694794274109764269805332803290229,
1864.3702986939570026328504202935192533137907736189919154633800554877738455118081651650863235106905871352085850240570561347180517240105510505203972860921397909573687877993477806728098306202020229409548306695695574102950949468160529713610952021974630774784174851619325758380143625473386495586347322798415543385655090746985183329114860118551572428921774322172798724455202876781611633419444058398798142214904998877857425038669920064728855823072107227506485770367799671977282350083029452784747350395161797215115525867416898416360638482342253129160308632504217096916335590470843180746834864303790913372081974355613359678634194879425862536147988835528973291020680020540866655622823550861337486588647231688134992810403147262346312159819432914207194632564009749236609081399504118359354620598232725290537215007867979331582119891661859015726276335168158288396939655310210558566592649049602925182137256134162660116182293851038854455437841571331011002023088829768308520393956515509475418031437505751407687618234418262),
(87190145885430429849953615409019208993240447426362428988181639909267773304254748257120061524000254226856815085523676417146197197996896030672521334101413071112068202429835905642444187493717977611730127126387257253646790849384975208460867137315507010888782632024640844766297185244443116696943912406389670302370461137850160539373600494054874979342373255280815156048999900951842673141766630630919020492255966628630634124452614590400422133958133100159154995520080124736657520969784129924799670552560034302960877087853678350801769339861812435411200669026902417951572668727488315537985378304242438181615160041688723201917323705450185975141141262578884689500612295576288125956289035673242989906973367691922065122033180281670221390667818909912035903387888639331486823729897326624516015340.0330856710565117793999512551468220085711713631167607285185762046751452975325645379302403715842570486302993296501788672462090620871511446272026693318239212657949496275318383141403236705902077406660768573015707706831878445598837931116223956945944726162551477136715847593742032488181481888084716920605114101902724395659898621880016853548602514706686907951229872573180602614761229992106144727082722940736406782659562775289407005631298246624198606031298081220736931229256511054595028182057216042683060059115371651410352645266000330509331097811566633211452233019461903115970558624057877018778178814946285827512359903934291318219271464841957435711594154280905473802599888081783098187210283997106131616471807951265003903143099667366508222327805543948921694362089860577380749774036318574113007382111997454202845559941557812813566442364810680529092880773126707073967537693927177460459341763934709686530005721141046645111784404932103241501569571235364365556796422998363930810983452790309019295181282099408260156,
1793.5767085750017553306932533574391150814202249805881581227430032600579405884415934520704053351781361105595296647510475380766428668443641914861849764330704062323054023252886955844207807229267936432730818329225450152491146839618683772020068682795388746108876393249306737841247788224204701299467519965182171772253974884845661168860422489046657965359832930382114760565628765599962013955588754803194908990025689040598990346417563277021386852342928910383706995866844541160576254266641602065102228267316550706943783591722246885978355472097314691737807509436806788803362444745551013400341861820755594413819894154786253014501454443272120342005711761286524843010157182464200556865694401941794983935172457481497909987740544409272349152397774548604845897687504977786762391359552407068124283290504752932824699865504970420939586707791994870941813718246825616335675307740641350673558328821461530563823677144691877374809441673507467507447891562257806191361453045937798278733402269265623588493124129181374135958668436774),
(93936642222690597390233191619858485419795942047468396309991947772747208870873993801669373075421461116465960407843923269693395211616591453397070258466704654943689268224479477016161636938138334729982904232438440955361656138189836032891825113139184685132178764873033678116450665758561650355252211196676137179184043639278410827092182700922151290703747496962700158844772453483316974221113826173404445159281421213715669245417896170368554410830320000019029956317336703559699859949692222685614036912057150632902650913831404804982509990655560731349634628713944739168096272097122388116038119844786988276635032016787352796502360718569977397214936366251320294621522016.6483354941025384161536675750898007896744690911429670830432784905421638721478353275821072200938900938046264210604940707974410950770029535636602548377806284157951164875821446035013896786653932045182167021839184824627082391478016195098055107001433336586881395912782883663046617432598969149948351689103230162742769845955320418573803127107923535948653168889411316007796459064267436246637115946581149511513369842911210359447262641996566147462977170742544980481275049898092152042927981394239266559286915303786701737610786594006685748456635797125029722684151298695274097006242412384086302106763844070230264910503179385988626477852818174114043927841085089058972074427820150462261941575665882880501074676800316585217150509780489224388148722603385921057007086785238310735038314861960410473809826927329368597558806004392175746233568789445929554890241140656324160187253042639339549705859147930476532359840809944163908006480881926041259363654863689570520534301207043189181147254153307163555433328278834311658232337,
1510.4332713542154696529645934345554302578243896764921637693542962119938599884313210100957753316832762996428481801312323020427109678979117469716796746760060470871840325255146954580681101106876674367471955788143763250819168311353856748872452260808797135108102729064040463343792765872545182299889360257515315869180266759715933989413256377582681707188367254513700731642913479683031478361835565783219287780434673712341147656477670848734998849030451414278832848680301511646182446524915091598080243532068451726548537866633622180283865668708517173065893429240665300584705585310049892047293928733753369421499719516009692095913169665213597158441636480707309244604139865130782756488091268094213446272360006907802989573582755585110277620911226015342778471352130366770729972784317323917141031824334355639769512749560550167491709646539950725523461943580211843652293561678342656010571108219244870234329176123205423872844099992204896411752620881541000940129833754169391528449211839693800724450201835161044717173715867437))
SELECT trim_scale(ln(x::numeric)-bc_result) AS diff FROM t;
diff
------
0
0
0
(3 rows)
--
-- Tests for LOG() (base 10)
--
......
......@@ -1193,6 +1193,20 @@ WITH t(x, bc_result) AS (VALUES
('1.0e1000', 2302.5850929940457))
SELECT x, bc_result, ln(x::numeric), ln(x::numeric)-bc_result AS diff FROM t;
-- inputs with 1000 decimal places
--
-- bc(1) results computed with a scale of 2000 and rounded to 1000 decimal
-- places
WITH t(x, bc_result) AS (VALUES
(484990182159328900690402236933516249572671683638747490717351807610531884491845416923860371219625151551889257298200816555016472471293780254009492949585031653913930735918829139712249577547959394351523545901788627247613322896296041868431769047433229466634098452564756860190085118463828382895145244362033728480588969626012192733802377468089120757046364393407262957242230928854711898925295251902007136232994524624903257456111389508582206404271734668422903183500589303866613158037169610592539145461637447957948521714058034772237111009429638870236361143304703683377693378577075353794118557951847394763531830696578809001981568860219578880229402696449243344235099860421846016326538272155937175661905904288335499593232232926636205909086901191153907183842087577811871344870731324067822883041265129394268082883745408414994.8967939438561591657171240282983703914075472645212002662497023142663831371447287624846942598424990784971781730103682951722370983277124599054059027055336437808366784501932987082321905202623642371063626378290734289114618092750984153422293450048717769065428713836637664433167768445609659527458911187829232316677137895259433038764404970599325009178297626038331436654541552998098529141205301472138026818453893127265938030066392881979113522757891639646670670272542401773230506961559808927249585675430838495658225557294666522469887436551840596777627408780618586500922973500018513068499587683746133637919751545157547095670767246977244726331271787622126889459658539988980096764323712767863722912919120929339399753431689512753214200090670880647731689804555417871258907716687575767185444541243606329768784843125926070743277339790277626515824924290352180761378846035233155198504033292692893297993698953705472933411199778880561376633444249703838589180474329586470353212010427945060694794274109764269805332803290229,
1864.3702986939570026328504202935192533137907736189919154633800554877738455118081651650863235106905871352085850240570561347180517240105510505203972860921397909573687877993477806728098306202020229409548306695695574102950949468160529713610952021974630774784174851619325758380143625473386495586347322798415543385655090746985183329114860118551572428921774322172798724455202876781611633419444058398798142214904998877857425038669920064728855823072107227506485770367799671977282350083029452784747350395161797215115525867416898416360638482342253129160308632504217096916335590470843180746834864303790913372081974355613359678634194879425862536147988835528973291020680020540866655622823550861337486588647231688134992810403147262346312159819432914207194632564009749236609081399504118359354620598232725290537215007867979331582119891661859015726276335168158288396939655310210558566592649049602925182137256134162660116182293851038854455437841571331011002023088829768308520393956515509475418031437505751407687618234418262),
(87190145885430429849953615409019208993240447426362428988181639909267773304254748257120061524000254226856815085523676417146197197996896030672521334101413071112068202429835905642444187493717977611730127126387257253646790849384975208460867137315507010888782632024640844766297185244443116696943912406389670302370461137850160539373600494054874979342373255280815156048999900951842673141766630630919020492255966628630634124452614590400422133958133100159154995520080124736657520969784129924799670552560034302960877087853678350801769339861812435411200669026902417951572668727488315537985378304242438181615160041688723201917323705450185975141141262578884689500612295576288125956289035673242989906973367691922065122033180281670221390667818909912035903387888639331486823729897326624516015340.0330856710565117793999512551468220085711713631167607285185762046751452975325645379302403715842570486302993296501788672462090620871511446272026693318239212657949496275318383141403236705902077406660768573015707706831878445598837931116223956945944726162551477136715847593742032488181481888084716920605114101902724395659898621880016853548602514706686907951229872573180602614761229992106144727082722940736406782659562775289407005631298246624198606031298081220736931229256511054595028182057216042683060059115371651410352645266000330509331097811566633211452233019461903115970558624057877018778178814946285827512359903934291318219271464841957435711594154280905473802599888081783098187210283997106131616471807951265003903143099667366508222327805543948921694362089860577380749774036318574113007382111997454202845559941557812813566442364810680529092880773126707073967537693927177460459341763934709686530005721141046645111784404932103241501569571235364365556796422998363930810983452790309019295181282099408260156,
1793.5767085750017553306932533574391150814202249805881581227430032600579405884415934520704053351781361105595296647510475380766428668443641914861849764330704062323054023252886955844207807229267936432730818329225450152491146839618683772020068682795388746108876393249306737841247788224204701299467519965182171772253974884845661168860422489046657965359832930382114760565628765599962013955588754803194908990025689040598990346417563277021386852342928910383706995866844541160576254266641602065102228267316550706943783591722246885978355472097314691737807509436806788803362444745551013400341861820755594413819894154786253014501454443272120342005711761286524843010157182464200556865694401941794983935172457481497909987740544409272349152397774548604845897687504977786762391359552407068124283290504752932824699865504970420939586707791994870941813718246825616335675307740641350673558328821461530563823677144691877374809441673507467507447891562257806191361453045937798278733402269265623588493124129181374135958668436774),
(93936642222690597390233191619858485419795942047468396309991947772747208870873993801669373075421461116465960407843923269693395211616591453397070258466704654943689268224479477016161636938138334729982904232438440955361656138189836032891825113139184685132178764873033678116450665758561650355252211196676137179184043639278410827092182700922151290703747496962700158844772453483316974221113826173404445159281421213715669245417896170368554410830320000019029956317336703559699859949692222685614036912057150632902650913831404804982509990655560731349634628713944739168096272097122388116038119844786988276635032016787352796502360718569977397214936366251320294621522016.6483354941025384161536675750898007896744690911429670830432784905421638721478353275821072200938900938046264210604940707974410950770029535636602548377806284157951164875821446035013896786653932045182167021839184824627082391478016195098055107001433336586881395912782883663046617432598969149948351689103230162742769845955320418573803127107923535948653168889411316007796459064267436246637115946581149511513369842911210359447262641996566147462977170742544980481275049898092152042927981394239266559286915303786701737610786594006685748456635797125029722684151298695274097006242412384086302106763844070230264910503179385988626477852818174114043927841085089058972074427820150462261941575665882880501074676800316585217150509780489224388148722603385921057007086785238310735038314861960410473809826927329368597558806004392175746233568789445929554890241140656324160187253042639339549705859147930476532359840809944163908006480881926041259363654863689570520534301207043189181147254153307163555433328278834311658232337,
1510.4332713542154696529645934345554302578243896764921637693542962119938599884313210100957753316832762996428481801312323020427109678979117469716796746760060470871840325255146954580681101106876674367471955788143763250819168311353856748872452260808797135108102729064040463343792765872545182299889360257515315869180266759715933989413256377582681707188367254513700731642913479683031478361835565783219287780434673712341147656477670848734998849030451414278832848680301511646182446524915091598080243532068451726548537866633622180283865668708517173065893429240665300584705585310049892047293928733753369421499719516009692095913169665213597158441636480707309244604139865130782756488091268094213446272360006907802989573582755585110277620911226015342778471352130366770729972784317323917141031824334355639769512749560550167491709646539950725523461943580211843652293561678342656010571108219244870234329176123205423872844099992204896411752620881541000940129833754169391528449211839693800724450201835161044717173715867437))
SELECT trim_scale(ln(x::numeric)-bc_result) AS diff FROM t;
--
-- Tests for LOG() (base 10)
--
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment