Commit 26a76cb6 authored by Tom Lane's avatar Tom Lane

Restrict pgbench's zipfian parameter to ensure good performance.

Remove the code that supported zipfian distribution parameters less
than 1.0, as it had undocumented performance hazards, and it's not
clear that the case is useful enough to justify either fixing or
documenting those hazards.

Also, since the code path for parameter > 1.0 could perform badly
for values very close to 1.0, establish a minimum allowed value
of 1.001.  This solution seems superior to the previous vague
documentation warning about small values not performing well.

Fabien Coelho, per a gripe from Tomas Vondra

Discussion: https://postgr.es/m/b5e172e9-ad22-48a3-86a3-589afa20e8f7@2ndquadrant.com
parent 4fd05bb5
......@@ -1543,29 +1543,17 @@ f(x) = PHI(2.0 * parameter * (x - mu) / (max - min + 1)) /
middle quarter (1.0 / 4.0) of the interval (i.e. from
<literal>3.0 / 8.0</literal> to <literal>5.0 / 8.0</literal>) and 95% from
the middle half (<literal>2.0 / 4.0</literal>) of the interval (second and third
quartiles). The minimum <replaceable>parameter</replaceable> is 2.0 for performance
of the Box-Muller transform.
quartiles). The minimum allowed <replaceable>parameter</replaceable>
value is 2.0.
</para>
</listitem>
<listitem>
<para>
<literal>random_zipfian</literal> generates an approximated bounded Zipfian
distribution. For <replaceable>parameter</replaceable> in (0, 1), an
approximated algorithm is taken from
"Quickly Generating Billion-Record Synthetic Databases",
Jim Gray et al, SIGMOD 1994. For <replaceable>parameter</replaceable>
in (1, 1000), a rejection method is used, based on
"Non-Uniform Random Variate Generation", Luc Devroye, p. 550-551,
Springer 1986. The distribution is not defined when the parameter's
value is 1.0. The function's performance is poor for parameter values
close and above 1.0 and on a small range.
</para>
<para>
<literal>random_zipfian</literal> generates a bounded Zipfian
distribution.
<replaceable>parameter</replaceable> defines how skewed the distribution
is. The larger the <replaceable>parameter</replaceable>, the more
frequently values closer to the beginning of the interval are drawn.
The closer to 0 <replaceable>parameter</replaceable> is,
the flatter (more uniform) the output distribution.
The distribution is such that, assuming the range starts from 1,
the ratio of the probability of drawing <replaceable>k</replaceable>
versus drawing <replaceable>k+1</replaceable> is
......@@ -1576,6 +1564,13 @@ f(x) = PHI(2.0 * parameter * (x - mu) / (max - min + 1)) /
itself is produced <literal>(3/2)*2.5 = 2.76</literal> times more
frequently than <literal>3</literal>, and so on.
</para>
<para>
<application>pgbench</application>'s implementation is based on
"Non-Uniform Random Variate Generation", Luc Devroye, p. 550-551,
Springer 1986. Due to limitations of that algorithm,
the <replaceable>parameter</replaceable> value is restricted to
the range [1.001, 1000].
</para>
</listitem>
</itemizedlist>
......
......@@ -135,10 +135,10 @@ static int pthread_join(pthread_t th, void **thread_return);
#define LOG_STEP_SECONDS 5 /* seconds between log messages */
#define DEFAULT_NXACTS 10 /* default nxacts */
#define ZIPF_CACHE_SIZE 15 /* cache cells number */
#define MIN_GAUSSIAN_PARAM 2.0 /* minimum parameter for gauss */
#define MAX_ZIPFIAN_PARAM 1000 /* maximum parameter for zipfian */
#define MIN_ZIPFIAN_PARAM 1.001 /* minimum parameter for zipfian */
#define MAX_ZIPFIAN_PARAM 1000.0 /* maximum parameter for zipfian */
int nxacts = 0; /* number of transactions per client */
int duration = 0; /* duration in seconds */
......@@ -410,35 +410,6 @@ typedef struct
int ecnt; /* error count */
} CState;
/*
* Cache cell for random_zipfian call
*/
typedef struct
{
/* cell keys */
double s; /* s - parameter of random_zipfian function */
int64 n; /* number of elements in range (max - min + 1) */
double harmonicn; /* generalizedHarmonicNumber(n, s) */
double alpha;
double beta;
double eta;
uint64 last_used; /* last used logical time */
} ZipfCell;
/*
* Zipf cache for zeta values
*/
typedef struct
{
uint64 current; /* counter for LRU cache replacement algorithm */
int nb_cells; /* number of filled cells */
int overflowCount; /* number of cache overflows */
ZipfCell cells[ZIPF_CACHE_SIZE];
} ZipfCache;
/*
* Thread state
*/
......@@ -460,8 +431,6 @@ typedef struct
int64 throttle_trigger; /* previous/next throttling (us) */
FILE *logfile; /* where to log, or NULL */
ZipfCache zipf_cache; /* for thread-safe zipfian random number
* generation */
/* per thread collected stats */
instr_time start_time; /* thread start time */
......@@ -975,77 +944,12 @@ getPoissonRand(RandomState *random_state, double center)
return (int64) (-log(uniform) * center + 0.5);
}
/* helper function for getZipfianRand */
static double
generalizedHarmonicNumber(int64 n, double s)
{
int i;
double ans = 0.0;
for (i = n; i > 1; i--)
ans += pow(i, -s);
return ans + 1.0;
}
/* set harmonicn and other parameters to cache cell */
static void
zipfSetCacheCell(ZipfCell *cell, int64 n, double s)
{
double harmonic2;
cell->n = n;
cell->s = s;
harmonic2 = generalizedHarmonicNumber(2, s);
cell->harmonicn = generalizedHarmonicNumber(n, s);
cell->alpha = 1.0 / (1.0 - s);
cell->beta = pow(0.5, s);
cell->eta = (1.0 - pow(2.0 / n, 1.0 - s)) / (1.0 - harmonic2 / cell->harmonicn);
}
/*
* search for cache cell with keys (n, s)
* and create new cell if it does not exist
*/
static ZipfCell *
zipfFindOrCreateCacheCell(ZipfCache *cache, int64 n, double s)
{
int i,
least_recently_used = 0;
ZipfCell *cell;
/* search cached cell for given parameters */
for (i = 0; i < cache->nb_cells; i++)
{
cell = &cache->cells[i];
if (cell->n == n && cell->s == s)
return &cache->cells[i];
if (cell->last_used < cache->cells[least_recently_used].last_used)
least_recently_used = i;
}
/* create new one if it does not exist */
if (cache->nb_cells < ZIPF_CACHE_SIZE)
i = cache->nb_cells++;
else
{
/* replace LRU cell if cache is full */
i = least_recently_used;
cache->overflowCount++;
}
zipfSetCacheCell(&cache->cells[i], n, s);
cache->cells[i].last_used = cache->current++;
return &cache->cells[i];
}
/*
* Computing zipfian using rejection method, based on
* "Non-Uniform Random Variate Generation",
* Luc Devroye, p. 550-551, Springer 1986.
*
* This works for s > 1.0, but may perform badly for s very close to 1.0.
*/
static int64
computeIterativeZipfian(RandomState *random_state, int64 n, double s)
......@@ -1056,6 +960,10 @@ computeIterativeZipfian(RandomState *random_state, int64 n, double s)
u,
v;
/* Ensure n is sane */
if (n <= 1)
return 1;
while (true)
{
/* random variates */
......@@ -1072,39 +980,16 @@ computeIterativeZipfian(RandomState *random_state, int64 n, double s)
return (int64) x;
}
/*
* Computing zipfian using harmonic numbers, based on algorithm described in
* "Quickly Generating Billion-Record Synthetic Databases",
* Jim Gray et al, SIGMOD 1994
*/
static int64
computeHarmonicZipfian(ZipfCache *zipf_cache, RandomState *random_state,
int64 n, double s)
{
ZipfCell *cell = zipfFindOrCreateCacheCell(zipf_cache, n, s);
double uniform = pg_erand48(random_state->xseed);
double uz = uniform * cell->harmonicn;
if (uz < 1.0)
return 1;
if (uz < 1.0 + cell->beta)
return 2;
return 1 + (int64) (cell->n * pow(cell->eta * uniform - cell->eta + 1.0, cell->alpha));
}
/* random number generator: zipfian distribution from min to max inclusive */
static int64
getZipfianRand(ZipfCache *zipf_cache, RandomState *random_state, int64 min,
int64 max, double s)
getZipfianRand(RandomState *random_state, int64 min, int64 max, double s)
{
int64 n = max - min + 1;
/* abort if parameter is invalid */
Assert(s > 0.0 && s != 1.0 && s <= MAX_ZIPFIAN_PARAM);
Assert(MIN_ZIPFIAN_PARAM <= s && s <= MAX_ZIPFIAN_PARAM);
return min - 1 + ((s > 1)
? computeIterativeZipfian(random_state, n, s)
: computeHarmonicZipfian(zipf_cache, random_state, n, s));
return min - 1 + computeIterativeZipfian(random_state, n, s);
}
/*
......@@ -2426,17 +2311,17 @@ evalStandardFunc(TState *thread, CState *st,
}
else if (func == PGBENCH_RANDOM_ZIPFIAN)
{
if (param <= 0.0 || param == 1.0 || param > MAX_ZIPFIAN_PARAM)
if (param < MIN_ZIPFIAN_PARAM || param > MAX_ZIPFIAN_PARAM)
{
fprintf(stderr,
"zipfian parameter must be in range (0, 1) U (1, %d]"
" (got %f)\n", MAX_ZIPFIAN_PARAM, param);
"zipfian parameter must be in range [%.3f, %.0f]"
" (not %f)\n",
MIN_ZIPFIAN_PARAM, MAX_ZIPFIAN_PARAM, param);
return false;
}
setIntValue(retval,
getZipfianRand(&thread->zipf_cache,
&st->cs_func_rs,
imin, imax, param));
getZipfianRand(&st->cs_func_rs, imin, imax, param));
}
else /* exponential */
{
......@@ -2444,7 +2329,7 @@ evalStandardFunc(TState *thread, CState *st,
{
fprintf(stderr,
"exponential parameter must be greater than zero"
" (got %f)\n", param);
" (not %f)\n", param);
return false;
}
......@@ -4996,8 +4881,6 @@ printResults(TState *threads, StatsData *total, instr_time total_time,
tps_include,
tps_exclude;
int64 ntx = total->cnt - total->skipped;
int i,
totalCacheOverflows = 0;
time_include = INSTR_TIME_GET_DOUBLE(total_time);
......@@ -5025,15 +4908,6 @@ printResults(TState *threads, StatsData *total, instr_time total_time,
printf("number of transactions actually processed: " INT64_FORMAT "\n",
ntx);
}
/* Report zipfian cache overflow */
for (i = 0; i < nthreads; i++)
{
totalCacheOverflows += threads[i].zipf_cache.overflowCount;
}
if (totalCacheOverflows > 0)
{
printf("zipfian cache array overflowed %d time(s)\n", totalCacheOverflows);
}
/* Remaining stats are nonsensical if we failed to execute any xacts */
if (total->cnt <= 0)
......@@ -5916,9 +5790,6 @@ main(int argc, char **argv)
initRandomState(&thread->ts_sample_rs);
thread->logfile = NULL; /* filled in later */
thread->latency_late = 0;
thread->zipf_cache.nb_cells = 0;
thread->zipf_cache.current = 0;
thread->zipf_cache.overflowCount = 0;
initStats(&thread->stats, 0);
nclients_dealt += thread->nstate;
......
......@@ -666,13 +666,13 @@ SELECT LEAST(}.join(', ', (':i') x 256).q{)}
[
'set zipfian param to 1',
2,
[qr{zipfian parameter must be in range \(0, 1\) U \(1, \d+\]}],
[qr{zipfian parameter must be in range \[1\.001, 1000\]}],
q{\set i random_zipfian(0, 10, 1)}
],
[
'set zipfian param too large',
2,
[qr{zipfian parameter must be in range \(0, 1\) U \(1, \d+\]}],
[qr{zipfian parameter must be in range \[1\.001, 1000\]}],
q{\set i random_zipfian(0, 10, 1000000)}
],
[
......@@ -802,33 +802,6 @@ for my $e (@errors)
{ $n => $script });
}
# zipfian cache array overflow
pgbench(
'-t 1', 0,
[ qr{processed: 1/1}, qr{zipfian cache array overflowed 1 time\(s\)} ],
[qr{^}],
'pgbench zipfian array overflow on random_zipfian',
{
'001_pgbench_random_zipfian' => q{
\set i random_zipfian(1, 100, 0.5)
\set i random_zipfian(2, 100, 0.5)
\set i random_zipfian(3, 100, 0.5)
\set i random_zipfian(4, 100, 0.5)
\set i random_zipfian(5, 100, 0.5)
\set i random_zipfian(6, 100, 0.5)
\set i random_zipfian(7, 100, 0.5)
\set i random_zipfian(8, 100, 0.5)
\set i random_zipfian(9, 100, 0.5)
\set i random_zipfian(10, 100, 0.5)
\set i random_zipfian(11, 100, 0.5)
\set i random_zipfian(12, 100, 0.5)
\set i random_zipfian(13, 100, 0.5)
\set i random_zipfian(14, 100, 0.5)
\set i random_zipfian(15, 100, 0.5)
\set i random_zipfian(16, 100, 0.5)
}
});
# throttling
pgbench(
'-t 100 -S --rate=100000 --latency-limit=1000000 -c 2 -n -r',
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment