Commit 13661ddd authored by Dean Rasheed's avatar Dean Rasheed

Add functions gcd() and lcm() for integer and numeric types.

These compute the greatest common divisor and least common multiple of
a pair of numbers using the Euclidean algorithm.

Vik Fearing, reviewed by Fabien Coelho.

Discussion: https://postgr.es/m/adbd3e0b-e3f1-5bbc-21db-03caf1cef0f7@2ndquadrant.com
parent 530609aa
......@@ -870,6 +870,40 @@
<entry><literal>-43</literal></entry>
</row>
<row>
<entry>
<indexterm>
<primary>gcd</primary>
</indexterm>
<literal><function>gcd(<replaceable>a</replaceable>, <replaceable>b</replaceable>)</function></literal>
</entry>
<entry>(same as argument types)</entry>
<entry>
greatest common divisor (the largest positive number that divides both
inputs with no remainder); returns <literal>0</literal> if both inputs
are zero
</entry>
<entry><literal>gcd(1071, 462)</literal></entry>
<entry><literal>21</literal></entry>
</row>
<row>
<entry>
<indexterm>
<primary>lcm</primary>
</indexterm>
<literal><function>lcm(<replaceable>a</replaceable>, <replaceable>b</replaceable>)</function></literal>
</entry>
<entry>(same as argument types)</entry>
<entry>
least common multiple (the smallest strictly positive number that is
an integral multiple of both inputs); returns <literal>0</literal> if
either input is zero
</entry>
<entry><literal>lcm(1071, 462)</literal></entry>
<entry><literal>23562</literal></entry>
</row>
<row>
<entry>
<indexterm>
......
......@@ -1196,6 +1196,132 @@ int2abs(PG_FUNCTION_ARGS)
PG_RETURN_INT16(result);
}
/*
* Greatest Common Divisor
*
* Returns the largest positive integer that exactly divides both inputs.
* Special cases:
* - gcd(x, 0) = gcd(0, x) = abs(x)
* because 0 is divisible by anything
* - gcd(0, 0) = 0
* complies with the previous definition and is a common convention
*
* Special care must be taken if either input is INT_MIN --- gcd(0, INT_MIN),
* gcd(INT_MIN, 0) and gcd(INT_MIN, INT_MIN) are all equal to abs(INT_MIN),
* which cannot be represented as a 32-bit signed integer.
*/
static int32
int4gcd_internal(int32 arg1, int32 arg2)
{
int32 swap;
int32 a1, a2;
/*
* Put the greater absolute value in arg1.
*
* This would happen automatically in the loop below, but avoids an
* expensive modulo operation, and simplifies the special-case handling
* for INT_MIN below.
*
* We do this in negative space in order to handle INT_MIN.
*/
a1 = (arg1 < 0) ? arg1 : -arg1;
a2 = (arg2 < 0) ? arg2 : -arg2;
if (a1 > a2)
{
swap = arg1;
arg1 = arg2;
arg2 = swap;
}
/* Special care needs to be taken with INT_MIN. See comments above. */
if (arg1 == PG_INT32_MIN)
{
if (arg2 == 0 || arg2 == PG_INT32_MIN)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
/*
* Some machines throw a floating-point exception for INT_MIN % -1,
* which is a bit silly since the correct answer is perfectly
* well-defined, namely zero. Guard against this and just return the
* result, gcd(INT_MIN, -1) = 1.
*/
if (arg2 == -1)
return 1;
}
/* Use the Euclidean algorithm to find the GCD */
while (arg2 != 0)
{
swap = arg2;
arg2 = arg1 % arg2;
arg1 = swap;
}
/*
* Make sure the result is positive. (We know we don't have INT_MIN
* anymore).
*/
if (arg1 < 0)
arg1 = -arg1;
return arg1;
}
Datum
int4gcd(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
int32 result;
result = int4gcd_internal(arg1, arg2);
PG_RETURN_INT32(result);
}
/*
* Least Common Multiple
*/
Datum
int4lcm(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int32 arg2 = PG_GETARG_INT32(1);
int32 gcd;
int32 result;
/*
* Handle lcm(x, 0) = lcm(0, x) = 0 as a special case. This prevents a
* division-by-zero error below when x is zero, and an overflow error from
* the GCD computation when x = INT_MIN.
*/
if (arg1 == 0 || arg2 == 0)
PG_RETURN_INT32(0);
/* lcm(x, y) = abs(x / gcd(x, y) * y) */
gcd = int4gcd_internal(arg1, arg2);
arg1 = arg1 / gcd;
if (unlikely(pg_mul_s32_overflow(arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
/* If the result is INT_MIN, it cannot be represented. */
if (unlikely(result == PG_INT32_MIN))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
if (result < 0)
result = -result;
PG_RETURN_INT32(result);
}
Datum
int2larger(PG_FUNCTION_ARGS)
{
......
......@@ -667,6 +667,132 @@ int8mod(PG_FUNCTION_ARGS)
PG_RETURN_INT64(arg1 % arg2);
}
/*
* Greatest Common Divisor
*
* Returns the largest positive integer that exactly divides both inputs.
* Special cases:
* - gcd(x, 0) = gcd(0, x) = abs(x)
* because 0 is divisible by anything
* - gcd(0, 0) = 0
* complies with the previous definition and is a common convention
*
* Special care must be taken if either input is INT64_MIN ---
* gcd(0, INT64_MIN), gcd(INT64_MIN, 0) and gcd(INT64_MIN, INT64_MIN) are
* all equal to abs(INT64_MIN), which cannot be represented as a 64-bit signed
* integer.
*/
static int64
int8gcd_internal(int64 arg1, int64 arg2)
{
int64 swap;
int64 a1, a2;
/*
* Put the greater absolute value in arg1.
*
* This would happen automatically in the loop below, but avoids an
* expensive modulo operation, and simplifies the special-case handling
* for INT64_MIN below.
*
* We do this in negative space in order to handle INT64_MIN.
*/
a1 = (arg1 < 0) ? arg1 : -arg1;
a2 = (arg2 < 0) ? arg2 : -arg2;
if (a1 > a2)
{
swap = arg1;
arg1 = arg2;
arg2 = swap;
}
/* Special care needs to be taken with INT64_MIN. See comments above. */
if (arg1 == PG_INT64_MIN)
{
if (arg2 == 0 || arg2 == PG_INT64_MIN)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
/*
* Some machines throw a floating-point exception for INT64_MIN % -1,
* which is a bit silly since the correct answer is perfectly
* well-defined, namely zero. Guard against this and just return the
* result, gcd(INT64_MIN, -1) = 1.
*/
if (arg2 == -1)
return 1;
}
/* Use the Euclidean algorithm to find the GCD */
while (arg2 != 0)
{
swap = arg2;
arg2 = arg1 % arg2;
arg1 = swap;
}
/*
* Make sure the result is positive. (We know we don't have INT64_MIN
* anymore).
*/
if (arg1 < 0)
arg1 = -arg1;
return arg1;
}
Datum
int8gcd(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = int8gcd_internal(arg1, arg2);
PG_RETURN_INT64(result);
}
/*
* Least Common Multiple
*/
Datum
int8lcm(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 gcd;
int64 result;
/*
* Handle lcm(x, 0) = lcm(0, x) = 0 as a special case. This prevents a
* division-by-zero error below when x is zero, and an overflow error from
* the GCD computation when x = INT64_MIN.
*/
if (arg1 == 0 || arg2 == 0)
PG_RETURN_INT64(0);
/* lcm(x, y) = abs(x / gcd(x, y) * y) */
gcd = int8gcd_internal(arg1, arg2);
arg1 = arg1 / gcd;
if (unlikely(pg_mul_s64_overflow(arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
/* If the result is INT64_MIN, it cannot be represented. */
if (unlikely(result == PG_INT64_MIN))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
if (result < 0)
result = -result;
PG_RETURN_INT64(result);
}
Datum
int8inc(PG_FUNCTION_ARGS)
......
......@@ -521,6 +521,8 @@ static void mod_var(const NumericVar *var1, const NumericVar *var2,
static void ceil_var(const NumericVar *var, NumericVar *result);
static void floor_var(const NumericVar *var, NumericVar *result);
static void gcd_var(const NumericVar *var1, const NumericVar *var2,
NumericVar *result);
static void sqrt_var(const NumericVar *arg, NumericVar *result, int rscale);
static void exp_var(const NumericVar *arg, NumericVar *result, int rscale);
static int estimate_ln_dweight(const NumericVar *var);
......@@ -2838,6 +2840,107 @@ numeric_larger(PG_FUNCTION_ARGS)
* ----------------------------------------------------------------------
*/
/*
* numeric_gcd() -
*
* Calculate the greatest common divisor of two numerics
*/
Datum
numeric_gcd(PG_FUNCTION_ARGS)
{
Numeric num1 = PG_GETARG_NUMERIC(0);
Numeric num2 = PG_GETARG_NUMERIC(1);
NumericVar arg1;
NumericVar arg2;
NumericVar result;
Numeric res;
/*
* Handle NaN
*/
if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
PG_RETURN_NUMERIC(make_result(&const_nan));
/*
* Unpack the arguments
*/
init_var_from_num(num1, &arg1);
init_var_from_num(num2, &arg2);
init_var(&result);
/*
* Find the GCD and return the result
*/
gcd_var(&arg1, &arg2, &result);
res = make_result(&result);
free_var(&result);
PG_RETURN_NUMERIC(res);
}
/*
* numeric_lcm() -
*
* Calculate the least common multiple of two numerics
*/
Datum
numeric_lcm(PG_FUNCTION_ARGS)
{
Numeric num1 = PG_GETARG_NUMERIC(0);
Numeric num2 = PG_GETARG_NUMERIC(1);
NumericVar arg1;
NumericVar arg2;
NumericVar result;
Numeric res;
/*
* Handle NaN
*/
if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
PG_RETURN_NUMERIC(make_result(&const_nan));
/*
* Unpack the arguments
*/
init_var_from_num(num1, &arg1);
init_var_from_num(num2, &arg2);
init_var(&result);
/*
* Compute the result using lcm(x, y) = abs(x / gcd(x, y) * y), returning
* zero if either input is zero.
*
* Note that the division is guaranteed to be exact, returning an integer
* result, so the LCM is an integral multiple of both x and y. A display
* scale of Min(x.dscale, y.dscale) would be sufficient to represent it,
* but as with other numeric functions, we choose to return a result whose
* display scale is no smaller than either input.
*/
if (arg1.ndigits == 0 || arg2.ndigits == 0)
set_var_from_var(&const_zero, &result);
else
{
gcd_var(&arg1, &arg2, &result);
div_var(&arg1, &result, &result, 0, false);
mul_var(&arg2, &result, &result, arg2.dscale);
result.sign = NUMERIC_POS;
}
result.dscale = Max(arg1.dscale, arg2.dscale);
res = make_result(&result);
free_var(&result);
PG_RETURN_NUMERIC(res);
}
/*
* numeric_fac()
*
......@@ -8039,6 +8142,74 @@ floor_var(const NumericVar *var, NumericVar *result)
}
/*
* gcd_var() -
*
* Calculate the greatest common divisor of two numerics at variable level
*/
static void
gcd_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result)
{
int res_dscale;
int cmp;
NumericVar tmp_arg;
NumericVar mod;
res_dscale = Max(var1->dscale, var2->dscale);
/*
* Arrange for var1 to be the number with the greater absolute value.
*
* This would happen automatically in the loop below, but avoids an
* expensive modulo operation.
*/
cmp = cmp_abs(var1, var2);
if (cmp < 0)
{
const NumericVar *tmp = var1;
var1 = var2;
var2 = tmp;
}
/*
* Also avoid the taking the modulo if the inputs have the same absolute
* value, or if the smaller input is zero.
*/
if (cmp == 0 || var2->ndigits == 0)
{
set_var_from_var(var1, result);
result->sign = NUMERIC_POS;
result->dscale = res_dscale;
return;
}
init_var(&tmp_arg);
init_var(&mod);
/* Use the Euclidean algorithm to find the GCD */
set_var_from_var(var1, &tmp_arg);
set_var_from_var(var2, result);
for (;;)
{
/* this loop can take a while, so allow it to be interrupted */
CHECK_FOR_INTERRUPTS();
mod_var(&tmp_arg, result, &mod);
if (mod.ndigits == 0)
break;
set_var_from_var(result, &tmp_arg);
set_var_from_var(&mod, result);
}
result->sign = NUMERIC_POS;
result->dscale = res_dscale;
free_var(&tmp_arg);
free_var(&mod);
}
/*
* sqrt_var() -
*
......
......@@ -53,6 +53,6 @@
*/
/* yyyymmddN */
#define CATALOG_VERSION_NO 202001171
#define CATALOG_VERSION_NO 202001251
#endif
......@@ -1818,6 +1818,20 @@
proname => 'mod', prorettype => 'int8', proargtypes => 'int8 int8',
prosrc => 'int8mod' },
{ oid => '8463', descr => 'greatest common divisor',
proname => 'gcd', prorettype => 'int4', proargtypes => 'int4 int4',
prosrc => 'int4gcd' },
{ oid => '8464', descr => 'greatest common divisor',
proname => 'gcd', prorettype => 'int8', proargtypes => 'int8 int8',
prosrc => 'int8gcd' },
{ oid => '8465', descr => 'least common multiple',
proname => 'lcm', prorettype => 'int4', proargtypes => 'int4 int4',
prosrc => 'int4lcm' },
{ oid => '8466', descr => 'least common multiple',
proname => 'lcm', prorettype => 'int8', proargtypes => 'int8 int8',
prosrc => 'int8lcm' },
{ oid => '944', descr => 'convert text to char',
proname => 'char', prorettype => 'char', proargtypes => 'text',
prosrc => 'text_char' },
......@@ -4218,6 +4232,12 @@
{ oid => '1729',
proname => 'numeric_mod', prorettype => 'numeric',
proargtypes => 'numeric numeric', prosrc => 'numeric_mod' },
{ oid => '8467', descr => 'greatest common divisor',
proname => 'gcd', prorettype => 'numeric', proargtypes => 'numeric numeric',
prosrc => 'numeric_gcd' },
{ oid => '8468', descr => 'least common multiple',
proname => 'lcm', prorettype => 'numeric', proargtypes => 'numeric numeric',
prosrc => 'numeric_lcm' },
{ oid => '1730', descr => 'square root',
proname => 'sqrt', prorettype => 'numeric', proargtypes => 'numeric',
prosrc => 'numeric_sqrt' },
......
......@@ -403,3 +403,49 @@ FROM (VALUES (-2.5::numeric),
2.5 | 3
(7 rows)
-- test gcd()
SELECT a, b, gcd(a, b), gcd(a, -b), gcd(b, a), gcd(-b, a)
FROM (VALUES (0::int4, 0::int4),
(0::int4, 6410818::int4),
(61866666::int4, 6410818::int4),
(-61866666::int4, 6410818::int4),
((-2147483648)::int4, 1::int4),
((-2147483648)::int4, 2147483647::int4),
((-2147483648)::int4, 1073741824::int4)) AS v(a, b);
a | b | gcd | gcd | gcd | gcd
-------------+------------+------------+------------+------------+------------
0 | 0 | 0 | 0 | 0 | 0
0 | 6410818 | 6410818 | 6410818 | 6410818 | 6410818
61866666 | 6410818 | 1466 | 1466 | 1466 | 1466
-61866666 | 6410818 | 1466 | 1466 | 1466 | 1466
-2147483648 | 1 | 1 | 1 | 1 | 1
-2147483648 | 2147483647 | 1 | 1 | 1 | 1
-2147483648 | 1073741824 | 1073741824 | 1073741824 | 1073741824 | 1073741824
(7 rows)
SELECT gcd((-2147483648)::int4, 0::int4); -- overflow
ERROR: integer out of range
SELECT gcd((-2147483648)::int4, (-2147483648)::int4); -- overflow
ERROR: integer out of range
-- test lcm()
SELECT a, b, lcm(a, b), lcm(a, -b), lcm(b, a), lcm(-b, a)
FROM (VALUES (0::int4, 0::int4),
(0::int4, 42::int4),
(42::int4, 42::int4),
(330::int4, 462::int4),
(-330::int4, 462::int4),
((-2147483648)::int4, 0::int4)) AS v(a, b);
a | b | lcm | lcm | lcm | lcm
-------------+-----+------+------+------+------
0 | 0 | 0 | 0 | 0 | 0
0 | 42 | 0 | 0 | 0 | 0
42 | 42 | 42 | 42 | 42 | 42
330 | 462 | 2310 | 2310 | 2310 | 2310
-330 | 462 | 2310 | 2310 | 2310 | 2310
-2147483648 | 0 | 0 | 0 | 0 | 0
(6 rows)
SELECT lcm((-2147483648)::int4, 1::int4); -- overflow
ERROR: integer out of range
SELECT lcm(2147483647::int4, 2147483646::int4); -- overflow
ERROR: integer out of range
......@@ -886,3 +886,49 @@ FROM (VALUES (-2.5::numeric),
2.5 | 3
(7 rows)
-- test gcd()
SELECT a, b, gcd(a, b), gcd(a, -b), gcd(b, a), gcd(-b, a)
FROM (VALUES (0::int8, 0::int8),
(0::int8, 29893644334::int8),
(288484263558::int8, 29893644334::int8),
(-288484263558::int8, 29893644334::int8),
((-9223372036854775808)::int8, 1::int8),
((-9223372036854775808)::int8, 9223372036854775807::int8),
((-9223372036854775808)::int8, 4611686018427387904::int8)) AS v(a, b);
a | b | gcd | gcd | gcd | gcd
----------------------+---------------------+---------------------+---------------------+---------------------+---------------------
0 | 0 | 0 | 0 | 0 | 0
0 | 29893644334 | 29893644334 | 29893644334 | 29893644334 | 29893644334
288484263558 | 29893644334 | 6835958 | 6835958 | 6835958 | 6835958
-288484263558 | 29893644334 | 6835958 | 6835958 | 6835958 | 6835958
-9223372036854775808 | 1 | 1 | 1 | 1 | 1
-9223372036854775808 | 9223372036854775807 | 1 | 1 | 1 | 1
-9223372036854775808 | 4611686018427387904 | 4611686018427387904 | 4611686018427387904 | 4611686018427387904 | 4611686018427387904
(7 rows)
SELECT gcd((-9223372036854775808)::int8, 0::int8); -- overflow
ERROR: bigint out of range
SELECT gcd((-9223372036854775808)::int8, (-9223372036854775808)::int8); -- overflow
ERROR: bigint out of range
-- test lcm()
SELECT a, b, lcm(a, b), lcm(a, -b), lcm(b, a), lcm(-b, a)
FROM (VALUES (0::int8, 0::int8),
(0::int8, 29893644334::int8),
(29893644334::int8, 29893644334::int8),
(288484263558::int8, 29893644334::int8),
(-288484263558::int8, 29893644334::int8),
((-9223372036854775808)::int8, 0::int8)) AS v(a, b);
a | b | lcm | lcm | lcm | lcm
----------------------+-------------+------------------+------------------+------------------+------------------
0 | 0 | 0 | 0 | 0 | 0
0 | 29893644334 | 0 | 0 | 0 | 0
29893644334 | 29893644334 | 29893644334 | 29893644334 | 29893644334 | 29893644334
288484263558 | 29893644334 | 1261541684539134 | 1261541684539134 | 1261541684539134 | 1261541684539134
-288484263558 | 29893644334 | 1261541684539134 | 1261541684539134 | 1261541684539134 | 1261541684539134
-9223372036854775808 | 0 | 0 | 0 | 0 | 0
(6 rows)
SELECT lcm((-9223372036854775808)::int8, 1::int8); -- overflow
ERROR: bigint out of range
SELECT lcm(9223372036854775807::int8, 9223372036854775806::int8); -- overflow
ERROR: bigint out of range
......@@ -2220,3 +2220,47 @@ SELECT SUM((-9999)::numeric) FROM generate_series(1, 100000);
-999900000
(1 row)
--
-- Tests for GCD()
--
SELECT a, b, gcd(a, b), gcd(a, -b), gcd(-b, a), gcd(-b, -a)
FROM (VALUES (0::numeric, 0::numeric),
(0::numeric, numeric 'NaN'),
(0::numeric, 46375::numeric),
(433125::numeric, 46375::numeric),
(43312.5::numeric, 4637.5::numeric),
(4331.250::numeric, 463.75000::numeric)) AS v(a, b);
a | b | gcd | gcd | gcd | gcd
----------+-----------+---------+---------+---------+---------
0 | 0 | 0 | 0 | 0 | 0
0 | NaN | NaN | NaN | NaN | NaN
0 | 46375 | 46375 | 46375 | 46375 | 46375
433125 | 46375 | 875 | 875 | 875 | 875
43312.5 | 4637.5 | 87.5 | 87.5 | 87.5 | 87.5
4331.250 | 463.75000 | 8.75000 | 8.75000 | 8.75000 | 8.75000
(6 rows)
--
-- Tests for LCM()
--
SELECT a,b, lcm(a, b), lcm(a, -b), lcm(-b, a), lcm(-b, -a)
FROM (VALUES (0::numeric, 0::numeric),
(0::numeric, numeric 'NaN'),
(0::numeric, 13272::numeric),
(13272::numeric, 13272::numeric),
(423282::numeric, 13272::numeric),
(42328.2::numeric, 1327.2::numeric),
(4232.820::numeric, 132.72000::numeric)) AS v(a, b);
a | b | lcm | lcm | lcm | lcm
----------+-----------+--------------+--------------+--------------+--------------
0 | 0 | 0 | 0 | 0 | 0
0 | NaN | NaN | NaN | NaN | NaN
0 | 13272 | 0 | 0 | 0 | 0
13272 | 13272 | 13272 | 13272 | 13272 | 13272
423282 | 13272 | 11851896 | 11851896 | 11851896 | 11851896
42328.2 | 1327.2 | 1185189.6 | 1185189.6 | 1185189.6 | 1185189.6
4232.820 | 132.72000 | 118518.96000 | 118518.96000 | 118518.96000 | 118518.96000
(7 rows)
SELECT lcm(9999 * (10::numeric)^131068 + (10::numeric^131068 - 1), 2); -- overflow
ERROR: value overflows numeric format
......@@ -155,3 +155,28 @@ FROM (VALUES (-2.5::numeric),
(0.5::numeric),
(1.5::numeric),
(2.5::numeric)) t(x);
-- test gcd()
SELECT a, b, gcd(a, b), gcd(a, -b), gcd(b, a), gcd(-b, a)
FROM (VALUES (0::int4, 0::int4),
(0::int4, 6410818::int4),
(61866666::int4, 6410818::int4),
(-61866666::int4, 6410818::int4),
((-2147483648)::int4, 1::int4),
((-2147483648)::int4, 2147483647::int4),
((-2147483648)::int4, 1073741824::int4)) AS v(a, b);
SELECT gcd((-2147483648)::int4, 0::int4); -- overflow
SELECT gcd((-2147483648)::int4, (-2147483648)::int4); -- overflow
-- test lcm()
SELECT a, b, lcm(a, b), lcm(a, -b), lcm(b, a), lcm(-b, a)
FROM (VALUES (0::int4, 0::int4),
(0::int4, 42::int4),
(42::int4, 42::int4),
(330::int4, 462::int4),
(-330::int4, 462::int4),
((-2147483648)::int4, 0::int4)) AS v(a, b);
SELECT lcm((-2147483648)::int4, 1::int4); -- overflow
SELECT lcm(2147483647::int4, 2147483646::int4); -- overflow
......@@ -225,3 +225,28 @@ FROM (VALUES (-2.5::numeric),
(0.5::numeric),
(1.5::numeric),
(2.5::numeric)) t(x);
-- test gcd()
SELECT a, b, gcd(a, b), gcd(a, -b), gcd(b, a), gcd(-b, a)
FROM (VALUES (0::int8, 0::int8),
(0::int8, 29893644334::int8),
(288484263558::int8, 29893644334::int8),
(-288484263558::int8, 29893644334::int8),
((-9223372036854775808)::int8, 1::int8),
((-9223372036854775808)::int8, 9223372036854775807::int8),
((-9223372036854775808)::int8, 4611686018427387904::int8)) AS v(a, b);
SELECT gcd((-9223372036854775808)::int8, 0::int8); -- overflow
SELECT gcd((-9223372036854775808)::int8, (-9223372036854775808)::int8); -- overflow
-- test lcm()
SELECT a, b, lcm(a, b), lcm(a, -b), lcm(b, a), lcm(-b, a)
FROM (VALUES (0::int8, 0::int8),
(0::int8, 29893644334::int8),
(29893644334::int8, 29893644334::int8),
(288484263558::int8, 29893644334::int8),
(-288484263558::int8, 29893644334::int8),
((-9223372036854775808)::int8, 0::int8)) AS v(a, b);
SELECT lcm((-9223372036854775808)::int8, 1::int8); -- overflow
SELECT lcm(9223372036854775807::int8, 9223372036854775806::int8); -- overflow
......@@ -1073,3 +1073,28 @@ select trim_scale(1e100);
-- cases that need carry propagation
SELECT SUM(9999::numeric) FROM generate_series(1, 100000);
SELECT SUM((-9999)::numeric) FROM generate_series(1, 100000);
--
-- Tests for GCD()
--
SELECT a, b, gcd(a, b), gcd(a, -b), gcd(-b, a), gcd(-b, -a)
FROM (VALUES (0::numeric, 0::numeric),
(0::numeric, numeric 'NaN'),
(0::numeric, 46375::numeric),
(433125::numeric, 46375::numeric),
(43312.5::numeric, 4637.5::numeric),
(4331.250::numeric, 463.75000::numeric)) AS v(a, b);
--
-- Tests for LCM()
--
SELECT a,b, lcm(a, b), lcm(a, -b), lcm(-b, a), lcm(-b, -a)
FROM (VALUES (0::numeric, 0::numeric),
(0::numeric, numeric 'NaN'),
(0::numeric, 13272::numeric),
(13272::numeric, 13272::numeric),
(423282::numeric, 13272::numeric),
(42328.2::numeric, 1327.2::numeric),
(4232.820::numeric, 132.72000::numeric)) AS v(a, b);
SELECT lcm(9999 * (10::numeric)^131068 + (10::numeric^131068 - 1), 2); -- overflow
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment