nodeAgg.c 29.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
/*-------------------------------------------------------------------------
 *
 * nodeAgg.c
 *	  Routines to handle aggregate nodes.
 *
 *	  ExecAgg evaluates each aggregate in the following steps:
 *
 *		 transvalue = initcond
 *		 foreach input_value do
 *			transvalue = transfunc(transvalue, input_value)
 *		 result = finalfunc(transvalue)
 *
 *	  If a finalfunc is not supplied then the result is just the ending
 *	  value of transvalue.
 *
 *	  If transfunc is marked "strict" in pg_proc and initcond is NULL,
 *	  then the first non-NULL input_value is assigned directly to transvalue,
 *	  and transfunc isn't applied until the second non-NULL input_value.
 *	  The agg's input type and transtype must be the same in this case!
 *
 *	  If transfunc is marked "strict" then NULL input_values are skipped,
 *	  keeping the previous transvalue.  If transfunc is not strict then it
 *	  is called for every input tuple and must deal with NULL initcond
 *	  or NULL input_value for itself.
 *
 *	  If finalfunc is marked "strict" then it is not called when the
 *	  ending transvalue is NULL, instead a NULL result is created
 *	  automatically (this is just the usual handling of strict functions,
 *	  of course).  A non-strict finalfunc can make its own choice of
 *	  what to return for a NULL ending transvalue.
 *
 *	  When the transvalue datatype is pass-by-reference, we have to be
 *	  careful to ensure that the values survive across tuple cycles yet
 *	  are not allowed to accumulate until end of query.  We do this by
 *	  "ping-ponging" between two memory contexts; successive calls to the
 *	  transfunc are executed in alternate contexts, passing the previous
 *	  transvalue that is in the other context.  At the beginning of each
 *	  tuple cycle we can reset the current output context to avoid memory
 *	  usage growth.  Note: we must use MemoryContextContains() to check
 *	  whether the transfunc has perhaps handed us back one of its input
 *	  values rather than a freshly palloc'd value; if so, we copy the value
 *	  to the context we want it in.
 *
 *
 * Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *	  $Header: /cvsroot/pgsql/src/backend/executor/nodeAgg.c,v 1.74 2001/02/15 21:47:08 tgl Exp $
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include "access/heapam.h"
#include "catalog/pg_aggregate.h"
#include "catalog/pg_operator.h"
#include "executor/executor.h"
#include "executor/nodeAgg.h"
#include "optimizer/clauses.h"
#include "parser/parse_coerce.h"
#include "parser/parse_expr.h"
#include "parser/parse_oper.h"
#include "parser/parse_type.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
#include "utils/tuplesort.h"
#include "utils/datum.h"

/*
 * AggStatePerAggData - per-aggregate working state for the Agg scan
 */
typedef struct AggStatePerAggData
{

	/*
	 * These values are set up during ExecInitAgg() and do not change
	 * thereafter:
	 */

	/* Link to Aggref node this working state is for */
	Aggref	   *aggref;

	/* Oids of transfer functions */
	Oid			transfn_oid;
	Oid			finalfn_oid;	/* may be InvalidOid */

	/*
	 * fmgr lookup data for transfer functions --- only valid when
	 * corresponding oid is not InvalidOid.  Note in particular that
	 * fn_strict flags are kept here.
	 */
	FmgrInfo	transfn;
	FmgrInfo	finalfn;

	/*
	 * Type of input data and Oid of sort operator to use for it; only
	 * set/used when aggregate has DISTINCT flag.  (These are not used
	 * directly by nodeAgg, but must be passed to the Tuplesort object.)
	 */
	Oid			inputType;
	Oid			sortOperator;

	/*
	 * fmgr lookup data for input type's equality operator --- only
	 * set/used when aggregate has DISTINCT flag.
	 */
	FmgrInfo	equalfn;

	/*
	 * initial value from pg_aggregate entry
	 */
	Datum		initValue;
	bool		initValueIsNull;

	/*
	 * We need the len and byval info for the agg's input, result, and
	 * transition data types in order to know how to copy/delete values.
	 */
	int16		inputtypeLen,
				resulttypeLen,
				transtypeLen;
	bool		inputtypeByVal,
				resulttypeByVal,
				transtypeByVal;

	/*
	 * These values are working state that is initialized at the start of
	 * an input tuple group and updated for each input tuple.
	 *
	 * For a simple (non DISTINCT) aggregate, we just feed the input values
	 * straight to the transition function.  If it's DISTINCT, we pass
	 * the input values into a Tuplesort object; then at completion of the
	 * input tuple group, we scan the sorted values, eliminate duplicates,
	 * and run the transition function on the rest.
	 */

	Tuplesortstate *sortstate;	/* sort object, if a DISTINCT agg */

	Datum		transValue;
	bool		transValueIsNull;

	bool		noTransValue;	/* true if transValue not set yet */

	/*
	 * Note: noTransValue initially has the same value as transValueIsNull,
	 * and if true both are cleared to false at the same time.  They are
	 * not the same though: if transfn later returns a NULL, we want to
	 * keep that NULL and not auto-replace it with a later input value.
	 * Only the first non-NULL input will be auto-substituted.
	 */
} AggStatePerAggData;


static void initialize_aggregate(AggStatePerAgg peraggstate);
static void advance_transition_function(AggStatePerAgg peraggstate,
										Datum newVal, bool isNull);
static void process_sorted_aggregate(AggState *aggstate,
									 AggStatePerAgg peraggstate);
static void finalize_aggregate(AggStatePerAgg peraggstate,
				   Datum *resultVal, bool *resultIsNull);


/*
 * Initialize one aggregate for a new set of input values.
 *
 * When called, CurrentMemoryContext should be the per-query context.
 */
static void
initialize_aggregate(AggStatePerAgg peraggstate)
{
	Aggref	   *aggref = peraggstate->aggref;

	/*
	 * Start a fresh sort operation for each DISTINCT aggregate.
	 */
	if (aggref->aggdistinct)
	{

		/*
		 * In case of rescan, maybe there could be an uncompleted sort
		 * operation?  Clean it up if so.
		 */
		if (peraggstate->sortstate)
			tuplesort_end(peraggstate->sortstate);

		peraggstate->sortstate =
			tuplesort_begin_datum(peraggstate->inputType,
								  peraggstate->sortOperator,
								  false);
	}

	/*
	 * (Re)set transValue to the initial value.
	 *
	 * Note that when the initial value is pass-by-ref, we just reuse it
	 * without copying for each group.  Hence, transition function
	 * had better not scribble on its input, or it will fail for GROUP BY!
	 */
	peraggstate->transValue = peraggstate->initValue;
	peraggstate->transValueIsNull = peraggstate->initValueIsNull;

	/* ------------------------------------------
	 * If the initial value for the transition state doesn't exist in the
	 * pg_aggregate table then we will let the first non-NULL value returned
	 * from the outer procNode become the initial value. (This is useful for
	 * aggregates like max() and min().)  The noTransValue flag signals that
	 * we still need to do this.
	 * ------------------------------------------
	 */
	peraggstate->noTransValue = peraggstate->initValueIsNull;
}

/*
 * Given a new input value, advance the transition function of an aggregate.
 *
 * When called, CurrentMemoryContext should be the context we want the
 * transition function result to be delivered into on this cycle.
 */
static void
advance_transition_function(AggStatePerAgg peraggstate,
							Datum newVal, bool isNull)
{
	FunctionCallInfoData	fcinfo;

	if (peraggstate->transfn.fn_strict)
	{
		if (isNull)
		{
			/*
			 * For a strict transfn, nothing happens at a NULL input tuple;
			 * we just keep the prior transValue.  However, if the transtype
			 * is pass-by-ref, we have to copy it into the new context
			 * because the old one is going to get reset.
			 */
			if (!peraggstate->transValueIsNull)
				peraggstate->transValue = datumCopy(peraggstate->transValue,
												peraggstate->transtypeByVal,
												peraggstate->transtypeLen);
			return;
		}
		if (peraggstate->noTransValue)
		{
			/*
			 * transValue has not been initialized. This is the first non-NULL
			 * input value. We use it as the initial value for transValue.
			 * (We already checked that the agg's input type is binary-
			 * compatible with its transtype, so straight copy here is OK.)
			 *
			 * We had better copy the datum if it is pass-by-ref, since
			 * the given pointer may be pointing into a scan tuple that
			 * will be freed on the next iteration of the scan.
			 */
			peraggstate->transValue = datumCopy(newVal,
												peraggstate->transtypeByVal,
												peraggstate->transtypeLen);
			peraggstate->transValueIsNull = false;
			peraggstate->noTransValue = false;
			return;
		}
		if (peraggstate->transValueIsNull)
		{
			/*
			 * Don't call a strict function with NULL inputs.  Note it is
			 * possible to get here despite the above tests, if the transfn
			 * is strict *and* returned a NULL on a prior cycle.  If that
			 * happens we will propagate the NULL all the way to the end.
			 */
			return;
		}
	}

	/* OK to call the transition function */
	MemSet(&fcinfo, 0, sizeof(fcinfo));
	fcinfo.flinfo = &peraggstate->transfn;
	fcinfo.nargs = 2;
	fcinfo.arg[0] = peraggstate->transValue;
	fcinfo.argnull[0] = peraggstate->transValueIsNull;
	fcinfo.arg[1] = newVal;
	fcinfo.argnull[1] = isNull;

	newVal = FunctionCallInvoke(&fcinfo);

	/*
	 * If the transition function was uncooperative, it may have
	 * given us a pass-by-ref result that points at the scan tuple
	 * or the prior-cycle working memory.  Copy it into the active
	 * context if it doesn't look right.
	 */
	if (!peraggstate->transtypeByVal && !fcinfo.isnull &&
		! MemoryContextContains(CurrentMemoryContext,
								DatumGetPointer(newVal)))
		newVal = datumCopy(newVal,
						   peraggstate->transtypeByVal,
						   peraggstate->transtypeLen);

	peraggstate->transValue = newVal;
	peraggstate->transValueIsNull = fcinfo.isnull;
}

/*
 * Run the transition function for a DISTINCT aggregate.  This is called
 * after we have completed entering all the input values into the sort
 * object.  We complete the sort, read out the values in sorted order,
 * and run the transition function on each non-duplicate value.
 *
 * When called, CurrentMemoryContext should be the per-query context.
 */
static void
process_sorted_aggregate(AggState *aggstate,
						 AggStatePerAgg peraggstate)
{
	Datum		oldVal = (Datum) 0;
	bool		haveOldVal = false;
	MemoryContext oldContext;
	Datum		newVal;
	bool		isNull;

	tuplesort_performsort(peraggstate->sortstate);

	/*
	 * Note: if input type is pass-by-ref, the datums returned by the sort
	 * are freshly palloc'd in the per-query context, so we must be careful
	 * to pfree them when they are no longer needed.
	 */

	while (tuplesort_getdatum(peraggstate->sortstate, true,
							  &newVal, &isNull))
	{
		/*
		 * DISTINCT always suppresses nulls, per SQL spec, regardless of
		 * the transition function's strictness.
		 */
		if (isNull)
			continue;
		/*
		 * Clear and select the current working context for evaluation of
		 * the equality function and transition function.
		 */
		MemoryContextReset(aggstate->agg_cxt[aggstate->which_cxt]);
		oldContext =
			MemoryContextSwitchTo(aggstate->agg_cxt[aggstate->which_cxt]);

		if (haveOldVal &&
			DatumGetBool(FunctionCall2(&peraggstate->equalfn,
									   oldVal, newVal)))
		{
			/* equal to prior, so forget this one */
			if (!peraggstate->inputtypeByVal)
				pfree(DatumGetPointer(newVal));
			/*
			 * note we do NOT flip contexts in this case, so no need to
			 * copy prior transValue to other context.
			 */
		}
		else
		{
			advance_transition_function(peraggstate, newVal, false);
			/*
			 * Make the other context current so that this transition
			 * result is preserved.
			 */
			aggstate->which_cxt = 1 - aggstate->which_cxt;
			/* forget the old value, if any */
			if (haveOldVal && !peraggstate->inputtypeByVal)
				pfree(DatumGetPointer(oldVal));
			oldVal = newVal;
			haveOldVal = true;
		}

		MemoryContextSwitchTo(oldContext);
	}

	if (haveOldVal && !peraggstate->inputtypeByVal)
		pfree(DatumGetPointer(oldVal));

	tuplesort_end(peraggstate->sortstate);
	peraggstate->sortstate = NULL;
}

/*
 * Compute the final value of one aggregate.
 *
 * When called, CurrentMemoryContext should be the context where we want
 * final values delivered (ie, the per-output-tuple expression context).
 */
static void
finalize_aggregate(AggStatePerAgg peraggstate,
				   Datum *resultVal, bool *resultIsNull)
{
	/*
	 * Apply the agg's finalfn if one is provided, else return transValue.
	 */
	if (OidIsValid(peraggstate->finalfn_oid))
	{
		FunctionCallInfoData	fcinfo;

		MemSet(&fcinfo, 0, sizeof(fcinfo));
		fcinfo.flinfo = &peraggstate->finalfn;
		fcinfo.nargs = 1;
		fcinfo.arg[0] = peraggstate->transValue;
		fcinfo.argnull[0] = peraggstate->transValueIsNull;
		if (fcinfo.flinfo->fn_strict && peraggstate->transValueIsNull)
		{
			/* don't call a strict function with NULL inputs */
			*resultVal = (Datum) 0;
			*resultIsNull = true;
		}
		else
		{
			*resultVal = FunctionCallInvoke(&fcinfo);
			*resultIsNull = fcinfo.isnull;
		}
	}
	else
	{
		*resultVal = peraggstate->transValue;
		*resultIsNull = peraggstate->transValueIsNull;
	}

	/*
	 * If result is pass-by-ref, make sure it is in the right context.
	 */
	if (!peraggstate->resulttypeByVal && ! *resultIsNull &&
		! MemoryContextContains(CurrentMemoryContext,
								DatumGetPointer(*resultVal)))
		*resultVal = datumCopy(*resultVal,
							   peraggstate->resulttypeByVal,
							   peraggstate->resulttypeLen);
}


/* ---------------------------------------
 *
 * ExecAgg -
 *
 *	  ExecAgg receives tuples from its outer subplan and aggregates over
 *	  the appropriate attribute for each aggregate function use (Aggref
 *	  node) appearing in the targetlist or qual of the node.  The number
 *	  of tuples to aggregate over depends on whether a GROUP BY clause is
 *	  present.	We can produce an aggregate result row per group, or just
 *	  one for the whole query.	The value of each aggregate is stored in
 *	  the expression context to be used when ExecProject evaluates the
 *	  result tuple.
 *
 *	  If the outer subplan is a Group node, ExecAgg returns as many tuples
 *	  as there are groups.
 *
 * ------------------------------------------
 */
TupleTableSlot *
ExecAgg(Agg *node)
{
	AggState   *aggstate;
	EState	   *estate;
	Plan	   *outerPlan;
	ExprContext *econtext;
	ProjectionInfo *projInfo;
	Datum	   *aggvalues;
	bool	   *aggnulls;
	AggStatePerAgg peragg;
	MemoryContext oldContext;
	TupleTableSlot *resultSlot;
	HeapTuple	inputTuple;
	int			aggno;
	bool		isNull;

	/* ---------------------
	 *	get state info from node
	 * ---------------------
	 */
	aggstate = node->aggstate;
	estate = node->plan.state;
	outerPlan = outerPlan(node);
	econtext = aggstate->csstate.cstate.cs_ExprContext;
	aggvalues = econtext->ecxt_aggvalues;
	aggnulls = econtext->ecxt_aggnulls;
	projInfo = aggstate->csstate.cstate.cs_ProjInfo;
	peragg = aggstate->peragg;

	/*
	 * We loop retrieving groups until we find one matching node->plan.qual
	 */
	do
	{
		if (aggstate->agg_done)
			return NULL;

		/*
		 * Clear the per-output-tuple context for each group
		 */
		MemoryContextReset(aggstate->tup_cxt);

		/*
		 * Initialize working state for a new input tuple group
		 */
		for (aggno = 0; aggno < aggstate->numaggs; aggno++)
		{
			AggStatePerAgg peraggstate = &peragg[aggno];

			initialize_aggregate(peraggstate);
		}

		inputTuple = NULL;		/* no saved input tuple yet */

		/* ----------------
		 *	 for each tuple from the outer plan, update all the aggregates
		 * ----------------
		 */
		for (;;)
		{
			TupleTableSlot *outerslot;

			outerslot = ExecProcNode(outerPlan, (Plan *) node);
			if (TupIsNull(outerslot))
				break;
			econtext->ecxt_scantuple = outerslot;

			/*
			 * Clear and select the current working context for evaluation
			 * of the input expressions and transition functions at this
			 * input tuple.
			 */
			econtext->ecxt_per_tuple_memory =
				aggstate->agg_cxt[aggstate->which_cxt];
			ResetExprContext(econtext);
			oldContext =
				MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);

			for (aggno = 0; aggno < aggstate->numaggs; aggno++)
			{
				AggStatePerAgg peraggstate = &peragg[aggno];
				Aggref	   *aggref = peraggstate->aggref;
				Datum		newVal;

				newVal = ExecEvalExpr(aggref->target, econtext,
									  &isNull, NULL);

				if (aggref->aggdistinct)
				{
					/* in DISTINCT mode, we may ignore nulls */
					if (isNull)
						continue;
					/* putdatum has to be called in per-query context */
					MemoryContextSwitchTo(oldContext);
					tuplesort_putdatum(peraggstate->sortstate,
									   newVal, isNull);
					MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
				}
				else
				{
					advance_transition_function(peraggstate,
												newVal, isNull);
				}
			}

			/*
			 * Make the other context current so that these transition
			 * results are preserved.
			 */
			aggstate->which_cxt = 1 - aggstate->which_cxt;

			MemoryContextSwitchTo(oldContext);

			/*
			 * Keep a copy of the first input tuple for the projection.
			 * (We only need one since only the GROUP BY columns in it can
			 * be referenced, and these will be the same for all tuples
			 * aggregated over.)
			 */
			if (!inputTuple)
				inputTuple = heap_copytuple(outerslot->val);
		}

		/*
		 * Done scanning input tuple group. Finalize each aggregate
		 * calculation, and stash results in the per-output-tuple context.
		 *
		 * This is a bit tricky when there are both DISTINCT and plain
		 * aggregates: we must first finalize all the plain aggs and then all
		 * the DISTINCT ones.  This is needed because the last transition
		 * values for the plain aggs are stored in the not-current working
		 * context, and we have to evaluate those aggs (and stash the results
		 * in the output tup_cxt!) before we start flipping contexts again
		 * in process_sorted_aggregate.
		 */
		oldContext = MemoryContextSwitchTo(aggstate->tup_cxt);
		for (aggno = 0; aggno < aggstate->numaggs; aggno++)
		{
			AggStatePerAgg peraggstate = &peragg[aggno];

			if (! peraggstate->aggref->aggdistinct)
				finalize_aggregate(peraggstate,
								   &aggvalues[aggno], &aggnulls[aggno]);
		}
		MemoryContextSwitchTo(oldContext);
		for (aggno = 0; aggno < aggstate->numaggs; aggno++)
		{
			AggStatePerAgg peraggstate = &peragg[aggno];

			if (peraggstate->aggref->aggdistinct)
			{
				process_sorted_aggregate(aggstate, peraggstate);
				oldContext = MemoryContextSwitchTo(aggstate->tup_cxt);
				finalize_aggregate(peraggstate,
								   &aggvalues[aggno], &aggnulls[aggno]);
				MemoryContextSwitchTo(oldContext);
			}
		}

		/*
		 * If the outerPlan is a Group node, we will reach here after each
		 * group.  We are not done unless the Group node is done (a little
		 * ugliness here while we reach into the Group's state to find
		 * out). Furthermore, when grouping we return nothing at all
		 * unless we had some input tuple(s).  By the nature of Group,
		 * there are no empty groups, so if we get here with no input the
		 * whole scan is empty.
		 *
		 * If the outerPlan isn't a Group, we are done when we get here, and
		 * we will emit a (single) tuple even if there were no input
		 * tuples.
		 */
		if (IsA(outerPlan, Group))
		{
			/* aggregation over groups */
			aggstate->agg_done = ((Group *) outerPlan)->grpstate->grp_done;
			/* check for no groups */
			if (inputTuple == NULL)
				return NULL;
		}
		else
		{
			aggstate->agg_done = true;

			/*
			 * If inputtuple==NULL (ie, the outerPlan didn't return
			 * anything), create a dummy all-nulls input tuple for use by
			 * ExecProject. 99.44% of the time this is a waste of cycles,
			 * because ordinarily the projected output tuple's targetlist
			 * cannot contain any direct (non-aggregated) references to
			 * input columns, so the dummy tuple will not be referenced.
			 * However there are special cases where this isn't so --- in
			 * particular an UPDATE involving an aggregate will have a
			 * targetlist reference to ctid.  We need to return a null for
			 * ctid in that situation, not coredump.
			 *
			 * The values returned for the aggregates will be the initial
			 * values of the transition functions.
			 */
			if (inputTuple == NULL)
			{
				TupleDesc	tupType;
				Datum	   *tupValue;
				char	   *null_array;
				AttrNumber	attnum;

				tupType = aggstate->csstate.css_ScanTupleSlot->ttc_tupleDescriptor;
				tupValue = projInfo->pi_tupValue;
				/* watch out for null input tuples, though... */
				if (tupType && tupValue)
				{
					null_array = (char *) palloc(sizeof(char) * tupType->natts);
					for (attnum = 0; attnum < tupType->natts; attnum++)
						null_array[attnum] = 'n';
					inputTuple = heap_formtuple(tupType, tupValue, null_array);
					pfree(null_array);
				}
			}
		}

		/*
		 * Store the representative input tuple in the tuple table slot
		 * reserved for it.  The tuple will be deleted when it is cleared
		 * from the slot.
		 */
		ExecStoreTuple(inputTuple,
					   aggstate->csstate.css_ScanTupleSlot,
					   InvalidBuffer,
					   true);
		econtext->ecxt_scantuple = aggstate->csstate.css_ScanTupleSlot;

		/*
		 * Do projection and qual check in the per-output-tuple context.
		 */
		econtext->ecxt_per_tuple_memory = aggstate->tup_cxt;

		/*
		 * Form a projection tuple using the aggregate results and the
		 * representative input tuple.	Store it in the result tuple slot.
		 * Note we do not support aggregates returning sets ...
		 */
		resultSlot = ExecProject(projInfo, NULL);

		/*
		 * If the completed tuple does not match the qualifications, it is
		 * ignored and we loop back to try to process another group.
		 * Otherwise, return the tuple.
		 */
	}
	while (!ExecQual(node->plan.qual, econtext, false));

	return resultSlot;
}

/* -----------------
 * ExecInitAgg
 *
 *	Creates the run-time information for the agg node produced by the
 *	planner and initializes its outer subtree
 * -----------------
 */
bool
ExecInitAgg(Agg *node, EState *estate, Plan *parent)
{
	AggState   *aggstate;
	AggStatePerAgg peragg;
	Plan	   *outerPlan;
	ExprContext *econtext;
	int			numaggs,
				aggno;
	List	   *alist;

	/*
	 * assign the node's execution state
	 */
	node->plan.state = estate;

	/*
	 * create state structure
	 */
	aggstate = makeNode(AggState);
	node->aggstate = aggstate;
	aggstate->agg_done = false;

	/*
	 * find aggregates in targetlist and quals
	 *
	 * Note: pull_agg_clauses also checks that no aggs contain other agg
	 * calls in their arguments.  This would make no sense under SQL
	 * semantics anyway (and it's forbidden by the spec).  Because that is
	 * true, we don't need to worry about evaluating the aggs in any
	 * particular order.
	 */
	aggstate->aggs = nconc(pull_agg_clause((Node *) node->plan.targetlist),
						   pull_agg_clause((Node *) node->plan.qual));
	aggstate->numaggs = numaggs = length(aggstate->aggs);
	if (numaggs <= 0)
	{

		/*
		 * This used to be treated as an error, but we can't do that
		 * anymore because constant-expression simplification could
		 * optimize away all of the Aggrefs in the targetlist and qual.
		 * So, just make a debug note, and force numaggs positive so that
		 * palloc()s below don't choke.
		 */
		elog(DEBUG, "ExecInitAgg: could not find any aggregate functions");
		numaggs = 1;
	}

	/*
	 * Create expression context
	 */
	ExecAssignExprContext(estate, &aggstate->csstate.cstate);

	/*
	 * We actually need three separate expression memory contexts: one
	 * for calculating per-output-tuple values (ie, the finished aggregate
	 * results), and two that we ping-pong between for per-input-tuple
	 * evaluation of input expressions and transition functions.  The
	 * context made by ExecAssignExprContext() is used as the output context.
	 */
	aggstate->tup_cxt =
		aggstate->csstate.cstate.cs_ExprContext->ecxt_per_tuple_memory;
	aggstate->agg_cxt[0] = 
		AllocSetContextCreate(CurrentMemoryContext,
							  "AggExprContext1",
							  ALLOCSET_DEFAULT_MINSIZE,
							  ALLOCSET_DEFAULT_INITSIZE,
							  ALLOCSET_DEFAULT_MAXSIZE);
	aggstate->agg_cxt[1] = 
		AllocSetContextCreate(CurrentMemoryContext,
							  "AggExprContext2",
							  ALLOCSET_DEFAULT_MINSIZE,
							  ALLOCSET_DEFAULT_INITSIZE,
							  ALLOCSET_DEFAULT_MAXSIZE);
	aggstate->which_cxt = 0;

#define AGG_NSLOTS 2

	/*
	 * tuple table initialization
	 */
	ExecInitScanTupleSlot(estate, &aggstate->csstate);
	ExecInitResultTupleSlot(estate, &aggstate->csstate.cstate);

	/*
	 * Set up aggregate-result storage in the expr context, and also
	 * allocate my private per-agg working storage
	 */
	econtext = aggstate->csstate.cstate.cs_ExprContext;
	econtext->ecxt_aggvalues = (Datum *) palloc(sizeof(Datum) * numaggs);
	MemSet(econtext->ecxt_aggvalues, 0, sizeof(Datum) * numaggs);
	econtext->ecxt_aggnulls = (bool *) palloc(sizeof(bool) * numaggs);
	MemSet(econtext->ecxt_aggnulls, 0, sizeof(bool) * numaggs);

	peragg = (AggStatePerAgg) palloc(sizeof(AggStatePerAggData) * numaggs);
	MemSet(peragg, 0, sizeof(AggStatePerAggData) * numaggs);
	aggstate->peragg = peragg;

	/*
	 * initialize child nodes
	 */
	outerPlan = outerPlan(node);
	ExecInitNode(outerPlan, estate, (Plan *) node);

	/* ----------------
	 *	initialize source tuple type.
	 * ----------------
	 */
	ExecAssignScanTypeFromOuterPlan((Plan *) node, &aggstate->csstate);

	/*
	 * Initialize result tuple type and projection info.
	 */
	ExecAssignResultTypeFromTL((Plan *) node, &aggstate->csstate.cstate);
	ExecAssignProjectionInfo((Plan *) node, &aggstate->csstate.cstate);

	/*
	 * Perform lookups of aggregate function info, and initialize the
	 * unchanging fields of the per-agg data
	 */
	aggno = -1;
	foreach(alist, aggstate->aggs)
	{
		Aggref	   *aggref = (Aggref *) lfirst(alist);
		AggStatePerAgg peraggstate = &peragg[++aggno];
		char	   *aggname = aggref->aggname;
		HeapTuple	aggTuple;
		Form_pg_aggregate aggform;
		Oid			transfn_oid,
					finalfn_oid;

		/* Mark Aggref node with its associated index in the result array */
		aggref->aggno = aggno;

		/* Fill in the peraggstate data */
		peraggstate->aggref = aggref;

		aggTuple = SearchSysCache(AGGNAME,
								  PointerGetDatum(aggname),
								  ObjectIdGetDatum(aggref->basetype),
								  0, 0);
		if (!HeapTupleIsValid(aggTuple))
			elog(ERROR, "ExecAgg: cache lookup failed for aggregate %s(%s)",
				 aggname,
				 aggref->basetype ?
				 typeidTypeName(aggref->basetype) : (char *) "");
		aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple);

		get_typlenbyval(aggform->aggfinaltype,
						&peraggstate->resulttypeLen,
						&peraggstate->resulttypeByVal);
		get_typlenbyval(aggform->aggtranstype,
						&peraggstate->transtypeLen,
						&peraggstate->transtypeByVal);

		peraggstate->initValue =
			AggNameGetInitVal(aggname,
							  aggform->aggbasetype,
							  &peraggstate->initValueIsNull);

		peraggstate->transfn_oid = transfn_oid = aggform->aggtransfn;
		peraggstate->finalfn_oid = finalfn_oid = aggform->aggfinalfn;

		fmgr_info(transfn_oid, &peraggstate->transfn);
		if (OidIsValid(finalfn_oid))
			fmgr_info(finalfn_oid, &peraggstate->finalfn);

		/*
		 * If the transfn is strict and the initval is NULL, make sure
		 * input type and transtype are the same (or at least binary-
		 * compatible), so that it's OK to use the first input value
		 * as the initial transValue.  This should have been checked at
		 * agg definition time, but just in case...
		 */
		if (peraggstate->transfn.fn_strict && peraggstate->initValueIsNull)
		{
			/*
			 * Note: use the type from the input expression here,
			 * not aggform->aggbasetype, because the latter might be 0.
			 * (Consider COUNT(*).)
			 */
			Oid			inputType = exprType(aggref->target);

			if (inputType != aggform->aggtranstype &&
				! IS_BINARY_COMPATIBLE(inputType, aggform->aggtranstype))
				elog(ERROR, "Aggregate %s needs to have compatible input type and transition type",
					 aggname);
		}

		if (aggref->aggdistinct)
		{
			/*
			 * Note: use the type from the input expression here,
			 * not aggform->aggbasetype, because the latter might be 0.
			 * (Consider COUNT(*).)
			 */
			Oid			inputType = exprType(aggref->target);
			Operator	eq_operator;
			Form_pg_operator pgopform;

			peraggstate->inputType = inputType;
			get_typlenbyval(inputType,
							&peraggstate->inputtypeLen,
							&peraggstate->inputtypeByVal);

			eq_operator = oper("=", inputType, inputType, true);
			if (!HeapTupleIsValid(eq_operator))
				elog(ERROR, "Unable to identify an equality operator for type '%s'",
					 typeidTypeName(inputType));
			pgopform = (Form_pg_operator) GETSTRUCT(eq_operator);
			fmgr_info(pgopform->oprcode, &(peraggstate->equalfn));
			ReleaseSysCache(eq_operator);
			peraggstate->sortOperator = any_ordering_op(inputType);
			peraggstate->sortstate = NULL;
		}

		ReleaseSysCache(aggTuple);
	}

	return TRUE;
}

int
ExecCountSlotsAgg(Agg *node)
{
	return ExecCountSlotsNode(outerPlan(node)) +
	ExecCountSlotsNode(innerPlan(node)) +
	AGG_NSLOTS;
}

void
ExecEndAgg(Agg *node)
{
	AggState   *aggstate = node->aggstate;
	Plan	   *outerPlan;

	ExecFreeProjectionInfo(&aggstate->csstate.cstate);
	/*
	 * Make sure ExecFreeExprContext() frees the right expr context...
	 */
	aggstate->csstate.cstate.cs_ExprContext->ecxt_per_tuple_memory =
		aggstate->tup_cxt;
	ExecFreeExprContext(&aggstate->csstate.cstate);
	/*
	 * ... and I free the others.
	 */
	MemoryContextDelete(aggstate->agg_cxt[0]);
	MemoryContextDelete(aggstate->agg_cxt[1]);

	outerPlan = outerPlan(node);
	ExecEndNode(outerPlan, (Plan *) node);

	/* clean up tuple table */
	ExecClearTuple(aggstate->csstate.css_ScanTupleSlot);
}

void
ExecReScanAgg(Agg *node, ExprContext *exprCtxt, Plan *parent)
{
	AggState   *aggstate = node->aggstate;
	ExprContext *econtext = aggstate->csstate.cstate.cs_ExprContext;

	aggstate->agg_done = false;
	MemSet(econtext->ecxt_aggvalues, 0, sizeof(Datum) * aggstate->numaggs);
	MemSet(econtext->ecxt_aggnulls, 0, sizeof(bool) * aggstate->numaggs);

	/*
	 * if chgParam of subnode is not null then plan will be re-scanned by
	 * first ExecProcNode.
	 */
	if (((Plan *) node)->lefttree->chgParam == NULL)
		ExecReScan(((Plan *) node)->lefttree, exprCtxt, (Plan *) node);
}