nbtinsert.c 47.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
/*-------------------------------------------------------------------------
 *
 * nbtinsert.c
 *	  Item insertion in Lehman and Yao btrees for Postgres.
 *
 * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $PostgreSQL: pgsql/src/backend/access/nbtree/nbtinsert.c,v 1.132 2006/01/25 23:04:20 tgl Exp $
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include "access/heapam.h"
#include "access/nbtree.h"
#include "miscadmin.h"


typedef struct
{
	/* context data for _bt_checksplitloc */
	Size		newitemsz;		/* size of new item to be inserted */
	bool		is_leaf;		/* T if splitting a leaf page */
	bool		is_rightmost;	/* T if splitting a rightmost page */

	bool		have_split;		/* found a valid split? */

	/* these fields valid only if have_split is true */
	bool		newitemonleft;	/* new item on left or right of best split */
	OffsetNumber firstright;	/* best split point */
	int			best_delta;		/* best size delta so far */
} FindSplitData;


static Buffer _bt_newroot(Relation rel, Buffer lbuf, Buffer rbuf);

static TransactionId _bt_check_unique(Relation rel, IndexTuple itup,
				 Relation heapRel, Buffer buf,
				 ScanKey itup_scankey);
static void _bt_insertonpg(Relation rel, Buffer buf,
			   BTStack stack,
			   int keysz, ScanKey scankey,
			   IndexTuple itup,
			   OffsetNumber afteritem,
			   bool split_only_page);
static Buffer _bt_split(Relation rel, Buffer buf, OffsetNumber firstright,
		  OffsetNumber newitemoff, Size newitemsz,
		  IndexTuple newitem, bool newitemonleft);
static OffsetNumber _bt_findsplitloc(Relation rel, Page page,
				 OffsetNumber newitemoff,
				 Size newitemsz,
				 bool *newitemonleft);
static void _bt_checksplitloc(FindSplitData *state, OffsetNumber firstright,
				  int leftfree, int rightfree,
				  bool newitemonleft, Size firstrightitemsz);
static void _bt_pgaddtup(Relation rel, Page page,
			 Size itemsize, IndexTuple itup,
			 OffsetNumber itup_off, const char *where);
static bool _bt_isequal(TupleDesc itupdesc, Page page, OffsetNumber offnum,
			int keysz, ScanKey scankey);


/*
 *	_bt_doinsert() -- Handle insertion of a single index tuple in the tree.
 *
 *		This routine is called by the public interface routines, btbuild
 *		and btinsert.  By here, itup is filled in, including the TID.
 */
void
_bt_doinsert(Relation rel, IndexTuple itup,
			 bool index_is_unique, Relation heapRel)
{
	int			natts = rel->rd_rel->relnatts;
	ScanKey		itup_scankey;
	BTStack		stack;
	Buffer		buf;

	/* we need an insertion scan key to do our search, so build one */
	itup_scankey = _bt_mkscankey(rel, itup);

top:
	/* find the first page containing this key */
	stack = _bt_search(rel, natts, itup_scankey, false, &buf, BT_WRITE);

	/* trade in our read lock for a write lock */
	LockBuffer(buf, BUFFER_LOCK_UNLOCK);
	LockBuffer(buf, BT_WRITE);

	/*
	 * If the page was split between the time that we surrendered our read
	 * lock and acquired our write lock, then this page may no longer be the
	 * right place for the key we want to insert.  In this case, we need to
	 * move right in the tree.	See Lehman and Yao for an excruciatingly
	 * precise description.
	 */
	buf = _bt_moveright(rel, buf, natts, itup_scankey, false, BT_WRITE);

	/*
	 * If we're not allowing duplicates, make sure the key isn't already in
	 * the index.
	 *
	 * NOTE: obviously, _bt_check_unique can only detect keys that are already
	 * in the index; so it cannot defend against concurrent insertions of the
	 * same key.  We protect against that by means of holding a write lock on
	 * the target page.  Any other would-be inserter of the same key must
	 * acquire a write lock on the same target page, so only one would-be
	 * inserter can be making the check at one time.  Furthermore, once we are
	 * past the check we hold write locks continuously until we have performed
	 * our insertion, so no later inserter can fail to see our insertion.
	 * (This requires some care in _bt_insertonpg.)
	 *
	 * If we must wait for another xact, we release the lock while waiting,
	 * and then must start over completely.
	 */
	if (index_is_unique)
	{
		TransactionId xwait;

		xwait = _bt_check_unique(rel, itup, heapRel, buf, itup_scankey);

		if (TransactionIdIsValid(xwait))
		{
			/* Have to wait for the other guy ... */
			_bt_relbuf(rel, buf);
			XactLockTableWait(xwait);
			/* start over... */
			_bt_freestack(stack);
			goto top;
		}
	}

	/* do the insertion */
	_bt_insertonpg(rel, buf, stack, natts, itup_scankey, itup, 0, false);

	/* be tidy */
	_bt_freestack(stack);
	_bt_freeskey(itup_scankey);
}

/*
 *	_bt_check_unique() -- Check for violation of unique index constraint
 *
 * Returns InvalidTransactionId if there is no conflict, else an xact ID
 * we must wait for to see if it commits a conflicting tuple.	If an actual
 * conflict is detected, no return --- just ereport().
 */
static TransactionId
_bt_check_unique(Relation rel, IndexTuple itup, Relation heapRel,
				 Buffer buf, ScanKey itup_scankey)
{
	TupleDesc	itupdesc = RelationGetDescr(rel);
	int			natts = rel->rd_rel->relnatts;
	OffsetNumber offset,
				maxoff;
	Page		page;
	BTPageOpaque opaque;
	Buffer		nbuf = InvalidBuffer;

	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	maxoff = PageGetMaxOffsetNumber(page);

	/*
	 * Find first item >= proposed new item.  Note we could also get a pointer
	 * to end-of-page here.
	 */
	offset = _bt_binsrch(rel, buf, natts, itup_scankey, false);

	/*
	 * Scan over all equal tuples, looking for live conflicts.
	 */
	for (;;)
	{
		HeapTupleData htup;
		Buffer		hbuffer;
		ItemId		curitemid;
		IndexTuple	curitup;
		BlockNumber nblkno;

		/*
		 * make sure the offset points to an actual item before trying to
		 * examine it...
		 */
		if (offset <= maxoff)
		{
			curitemid = PageGetItemId(page, offset);

			/*
			 * We can skip items that are marked killed.
			 *
			 * Formerly, we applied _bt_isequal() before checking the kill
			 * flag, so as to fall out of the item loop as soon as possible.
			 * However, in the presence of heavy update activity an index may
			 * contain many killed items with the same key; running
			 * _bt_isequal() on each killed item gets expensive. Furthermore
			 * it is likely that the non-killed version of each key appears
			 * first, so that we didn't actually get to exit any sooner
			 * anyway. So now we just advance over killed items as quickly as
			 * we can. We only apply _bt_isequal() when we get to a non-killed
			 * item or the end of the page.
			 */
			if (!ItemIdDeleted(curitemid))
			{
				/*
				 * _bt_compare returns 0 for (1,NULL) and (1,NULL) - this's
				 * how we handling NULLs - and so we must not use _bt_compare
				 * in real comparison, but only for ordering/finding items on
				 * pages. - vadim 03/24/97
				 */
				if (!_bt_isequal(itupdesc, page, offset, natts, itup_scankey))
					break;		/* we're past all the equal tuples */

				/* okay, we gotta fetch the heap tuple ... */
				curitup = (IndexTuple) PageGetItem(page, curitemid);
				htup.t_self = curitup->t_tid;
				if (heap_fetch(heapRel, SnapshotDirty, &htup, &hbuffer,
							   true, NULL))
				{
					/* it is a duplicate */
					TransactionId xwait =
					(TransactionIdIsValid(SnapshotDirty->xmin)) ?
					SnapshotDirty->xmin : SnapshotDirty->xmax;

					ReleaseBuffer(hbuffer);

					/*
					 * If this tuple is being updated by other transaction
					 * then we have to wait for its commit/abort.
					 */
					if (TransactionIdIsValid(xwait))
					{
						if (nbuf != InvalidBuffer)
							_bt_relbuf(rel, nbuf);
						/* Tell _bt_doinsert to wait... */
						return xwait;
					}

					/*
					 * Otherwise we have a definite conflict.
					 */
					ereport(ERROR,
							(errcode(ERRCODE_UNIQUE_VIOLATION),
					errmsg("duplicate key violates unique constraint \"%s\"",
						   RelationGetRelationName(rel))));
				}
				else if (htup.t_data != NULL)
				{
					/*
					 * Hmm, if we can't see the tuple, maybe it can be marked
					 * killed.	This logic should match index_getnext and
					 * btgettuple.
					 */
					LockBuffer(hbuffer, BUFFER_LOCK_SHARE);
					if (HeapTupleSatisfiesVacuum(htup.t_data, RecentGlobalXmin,
												 hbuffer) == HEAPTUPLE_DEAD)
					{
						curitemid->lp_flags |= LP_DELETE;
						if (nbuf != InvalidBuffer)
							SetBufferCommitInfoNeedsSave(nbuf);
						else
							SetBufferCommitInfoNeedsSave(buf);
					}
					LockBuffer(hbuffer, BUFFER_LOCK_UNLOCK);
				}
				ReleaseBuffer(hbuffer);
			}
		}

		/*
		 * Advance to next tuple to continue checking.
		 */
		if (offset < maxoff)
			offset = OffsetNumberNext(offset);
		else
		{
			/* If scankey == hikey we gotta check the next page too */
			if (P_RIGHTMOST(opaque))
				break;
			if (!_bt_isequal(itupdesc, page, P_HIKEY,
							 natts, itup_scankey))
				break;
			/* Advance to next non-dead page --- there must be one */
			for (;;)
			{
				nblkno = opaque->btpo_next;
				nbuf = _bt_relandgetbuf(rel, nbuf, nblkno, BT_READ);
				page = BufferGetPage(nbuf);
				opaque = (BTPageOpaque) PageGetSpecialPointer(page);
				if (!P_IGNORE(opaque))
					break;
				if (P_RIGHTMOST(opaque))
					elog(ERROR, "fell off the end of \"%s\"",
						 RelationGetRelationName(rel));
			}
			maxoff = PageGetMaxOffsetNumber(page);
			offset = P_FIRSTDATAKEY(opaque);
		}
	}

	if (nbuf != InvalidBuffer)
		_bt_relbuf(rel, nbuf);

	return InvalidTransactionId;
}

/*----------
 *	_bt_insertonpg() -- Insert a tuple on a particular page in the index.
 *
 *		This recursive procedure does the following things:
 *
 *			+  finds the right place to insert the tuple.
 *			+  if necessary, splits the target page (making sure that the
 *			   split is equitable as far as post-insert free space goes).
 *			+  inserts the tuple.
 *			+  if the page was split, pops the parent stack, and finds the
 *			   right place to insert the new child pointer (by walking
 *			   right using information stored in the parent stack).
 *			+  invokes itself with the appropriate tuple for the right
 *			   child page on the parent.
 *			+  updates the metapage if a true root or fast root is split.
 *
 *		On entry, we must have the right buffer on which to do the
 *		insertion, and the buffer must be pinned and locked.  On return,
 *		we will have dropped both the pin and the write lock on the buffer.
 *
 *		If 'afteritem' is >0 then the new tuple must be inserted after the
 *		existing item of that number, noplace else.  If 'afteritem' is 0
 *		then the procedure finds the exact spot to insert it by searching.
 *		(keysz and scankey parameters are used ONLY if afteritem == 0.
 *		The scankey must be an insertion-type scankey.)
 *
 *		NOTE: if the new key is equal to one or more existing keys, we can
 *		legitimately place it anywhere in the series of equal keys --- in fact,
 *		if the new key is equal to the page's "high key" we can place it on
 *		the next page.	If it is equal to the high key, and there's not room
 *		to insert the new tuple on the current page without splitting, then
 *		we can move right hoping to find more free space and avoid a split.
 *		(We should not move right indefinitely, however, since that leads to
 *		O(N^2) insertion behavior in the presence of many equal keys.)
 *		Once we have chosen the page to put the key on, we'll insert it before
 *		any existing equal keys because of the way _bt_binsrch() works.
 *
 *		The locking interactions in this code are critical.  You should
 *		grok Lehman and Yao's paper before making any changes.  In addition,
 *		you need to understand how we disambiguate duplicate keys in this
 *		implementation, in order to be able to find our location using
 *		L&Y "move right" operations.  Since we may insert duplicate user
 *		keys, and since these dups may propagate up the tree, we use the
 *		'afteritem' parameter to position ourselves correctly for the
 *		insertion on internal pages.
 *----------
 */
static void
_bt_insertonpg(Relation rel,
			   Buffer buf,
			   BTStack stack,
			   int keysz,
			   ScanKey scankey,
			   IndexTuple itup,
			   OffsetNumber afteritem,
			   bool split_only_page)
{
	Page		page;
	BTPageOpaque lpageop;
	OffsetNumber newitemoff;
	OffsetNumber firstright = InvalidOffsetNumber;
	Size		itemsz;

	page = BufferGetPage(buf);
	lpageop = (BTPageOpaque) PageGetSpecialPointer(page);

	itemsz = IndexTupleDSize(*itup);
	itemsz = MAXALIGN(itemsz);	/* be safe, PageAddItem will do this but we
								 * need to be consistent */

	/*
	 * Check whether the item can fit on a btree page at all. (Eventually, we
	 * ought to try to apply TOAST methods if not.) We actually need to be
	 * able to fit three items on every page, so restrict any one item to 1/3
	 * the per-page available space. Note that at this point, itemsz doesn't
	 * include the ItemId.
	 */
	if (itemsz > BTMaxItemSize(page))
		ereport(ERROR,
				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
				 errmsg("index row size %lu exceeds btree maximum, %lu",
						(unsigned long) itemsz,
						(unsigned long) BTMaxItemSize(page)),
		errhint("Values larger than 1/3 of a buffer page cannot be indexed.\n"
				"Consider a function index of an MD5 hash of the value, "
				"or use full text indexing.")));

	/*
	 * Determine exactly where new item will go.
	 */
	if (afteritem > 0)
		newitemoff = afteritem + 1;
	else
	{
		/*----------
		 * If we will need to split the page to put the item here,
		 * check whether we can put the tuple somewhere to the right,
		 * instead.  Keep scanning right until we
		 *		(a) find a page with enough free space,
		 *		(b) reach the last page where the tuple can legally go, or
		 *		(c) get tired of searching.
		 * (c) is not flippant; it is important because if there are many
		 * pages' worth of equal keys, it's better to split one of the early
		 * pages than to scan all the way to the end of the run of equal keys
		 * on every insert.  We implement "get tired" as a random choice,
		 * since stopping after scanning a fixed number of pages wouldn't work
		 * well (we'd never reach the right-hand side of previously split
		 * pages).	Currently the probability of moving right is set at 0.99,
		 * which may seem too high to change the behavior much, but it does an
		 * excellent job of preventing O(N^2) behavior with many equal keys.
		 *----------
		 */
		bool		movedright = false;

		while (PageGetFreeSpace(page) < itemsz &&
			   !P_RIGHTMOST(lpageop) &&
			   _bt_compare(rel, keysz, scankey, page, P_HIKEY) == 0 &&
			   random() > (MAX_RANDOM_VALUE / 100))
		{
			/*
			 * step right to next non-dead page
			 *
			 * must write-lock that page before releasing write lock on
			 * current page; else someone else's _bt_check_unique scan could
			 * fail to see our insertion.  write locks on intermediate dead
			 * pages won't do because we don't know when they will get
			 * de-linked from the tree.
			 */
			Buffer		rbuf = InvalidBuffer;

			for (;;)
			{
				BlockNumber rblkno = lpageop->btpo_next;

				rbuf = _bt_relandgetbuf(rel, rbuf, rblkno, BT_WRITE);
				page = BufferGetPage(rbuf);
				lpageop = (BTPageOpaque) PageGetSpecialPointer(page);
				if (!P_IGNORE(lpageop))
					break;
				if (P_RIGHTMOST(lpageop))
					elog(ERROR, "fell off the end of \"%s\"",
						 RelationGetRelationName(rel));
			}
			_bt_relbuf(rel, buf);
			buf = rbuf;
			movedright = true;
		}

		/*
		 * Now we are on the right page, so find the insert position. If we
		 * moved right at all, we know we should insert at the start of the
		 * page, else must find the position by searching.
		 */
		if (movedright)
			newitemoff = P_FIRSTDATAKEY(lpageop);
		else
			newitemoff = _bt_binsrch(rel, buf, keysz, scankey, false);
	}

	/*
	 * Do we need to split the page to fit the item on it?
	 *
	 * Note: PageGetFreeSpace() subtracts sizeof(ItemIdData) from its result,
	 * so this comparison is correct even though we appear to be accounting
	 * only for the item and not for its line pointer.
	 */
	if (PageGetFreeSpace(page) < itemsz)
	{
		bool		is_root = P_ISROOT(lpageop);
		bool		is_only = P_LEFTMOST(lpageop) && P_RIGHTMOST(lpageop);
		bool		newitemonleft;
		Buffer		rbuf;

		/* Choose the split point */
		firstright = _bt_findsplitloc(rel, page,
									  newitemoff, itemsz,
									  &newitemonleft);

		/* split the buffer into left and right halves */
		rbuf = _bt_split(rel, buf, firstright,
						 newitemoff, itemsz, itup, newitemonleft);

		/*----------
		 * By here,
		 *
		 *		+  our target page has been split;
		 *		+  the original tuple has been inserted;
		 *		+  we have write locks on both the old (left half)
		 *		   and new (right half) buffers, after the split; and
		 *		+  we know the key we want to insert into the parent
		 *		   (it's the "high key" on the left child page).
		 *
		 * We're ready to do the parent insertion.  We need to hold onto the
		 * locks for the child pages until we locate the parent, but we can
		 * release them before doing the actual insertion (see Lehman and Yao
		 * for the reasoning).
		 *----------
		 */
		_bt_insert_parent(rel, buf, rbuf, stack, is_root, is_only);
	}
	else
	{
		Buffer		metabuf = InvalidBuffer;
		Page		metapg = NULL;
		BTMetaPageData *metad = NULL;
		OffsetNumber itup_off;
		BlockNumber itup_blkno;

		itup_off = newitemoff;
		itup_blkno = BufferGetBlockNumber(buf);

		/*
		 * If we are doing this insert because we split a page that was the
		 * only one on its tree level, but was not the root, it may have been
		 * the "fast root".  We need to ensure that the fast root link points
		 * at or above the current page.  We can safely acquire a lock on the
		 * metapage here --- see comments for _bt_newroot().
		 */
		if (split_only_page)
		{
			metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_WRITE);
			metapg = BufferGetPage(metabuf);
			metad = BTPageGetMeta(metapg);

			if (metad->btm_fastlevel >= lpageop->btpo.level)
			{
				/* no update wanted */
				_bt_relbuf(rel, metabuf);
				metabuf = InvalidBuffer;
			}
		}

		/* Do the update.  No ereport(ERROR) until changes are logged */
		START_CRIT_SECTION();

		_bt_pgaddtup(rel, page, itemsz, itup, newitemoff, "page");

		if (BufferIsValid(metabuf))
		{
			metad->btm_fastroot = itup_blkno;
			metad->btm_fastlevel = lpageop->btpo.level;
		}

		/* XLOG stuff */
		if (!rel->rd_istemp)
		{
			xl_btree_insert xlrec;
			xl_btree_metadata xlmeta;
			uint8		xlinfo;
			XLogRecPtr	recptr;
			XLogRecData rdata[3];
			XLogRecData *nextrdata;
			IndexTupleData trunctuple;

			xlrec.target.node = rel->rd_node;
			ItemPointerSet(&(xlrec.target.tid), itup_blkno, itup_off);

			rdata[0].data = (char *) &xlrec;
			rdata[0].len = SizeOfBtreeInsert;
			rdata[0].buffer = InvalidBuffer;
			rdata[0].next = nextrdata = &(rdata[1]);

			if (BufferIsValid(metabuf))
			{
				xlmeta.root = metad->btm_root;
				xlmeta.level = metad->btm_level;
				xlmeta.fastroot = metad->btm_fastroot;
				xlmeta.fastlevel = metad->btm_fastlevel;

				nextrdata->data = (char *) &xlmeta;
				nextrdata->len = sizeof(xl_btree_metadata);
				nextrdata->buffer = InvalidBuffer;
				nextrdata->next = nextrdata + 1;
				nextrdata++;
				xlinfo = XLOG_BTREE_INSERT_META;
			}
			else if (P_ISLEAF(lpageop))
				xlinfo = XLOG_BTREE_INSERT_LEAF;
			else
				xlinfo = XLOG_BTREE_INSERT_UPPER;

			/* Read comments in _bt_pgaddtup */
			if (!P_ISLEAF(lpageop) && newitemoff == P_FIRSTDATAKEY(lpageop))
			{
				trunctuple = *itup;
				trunctuple.t_info = sizeof(IndexTupleData);
				nextrdata->data = (char *) &trunctuple;
				nextrdata->len = sizeof(IndexTupleData);
			}
			else
			{
				nextrdata->data = (char *) itup;
				nextrdata->len = IndexTupleDSize(*itup);
			}
			nextrdata->buffer = buf;
			nextrdata->buffer_std = true;
			nextrdata->next = NULL;

			recptr = XLogInsert(RM_BTREE_ID, xlinfo, rdata);

			if (BufferIsValid(metabuf))
			{
				PageSetLSN(metapg, recptr);
				PageSetTLI(metapg, ThisTimeLineID);
			}

			PageSetLSN(page, recptr);
			PageSetTLI(page, ThisTimeLineID);
		}

		END_CRIT_SECTION();

		/* Write out the updated page and release pin/lock */
		if (BufferIsValid(metabuf))
			_bt_wrtbuf(rel, metabuf);

		_bt_wrtbuf(rel, buf);
	}
}

/*
 *	_bt_split() -- split a page in the btree.
 *
 *		On entry, buf is the page to split, and is write-locked and pinned.
 *		firstright is the item index of the first item to be moved to the
 *		new right page.  newitemoff etc. tell us about the new item that
 *		must be inserted along with the data from the old page.
 *
 *		Returns the new right sibling of buf, pinned and write-locked.
 *		The pin and lock on buf are maintained.
 */
static Buffer
_bt_split(Relation rel, Buffer buf, OffsetNumber firstright,
		  OffsetNumber newitemoff, Size newitemsz, IndexTuple newitem,
		  bool newitemonleft)
{
	Buffer		rbuf;
	Page		origpage;
	Page		leftpage,
				rightpage;
	BTPageOpaque ropaque,
				lopaque,
				oopaque;
	Buffer		sbuf = InvalidBuffer;
	Page		spage = NULL;
	BTPageOpaque sopaque = NULL;
	OffsetNumber itup_off = 0;
	BlockNumber itup_blkno = 0;
	Size		itemsz;
	ItemId		itemid;
	IndexTuple	item;
	OffsetNumber leftoff,
				rightoff;
	OffsetNumber maxoff;
	OffsetNumber i;

	rbuf = _bt_getbuf(rel, P_NEW, BT_WRITE);
	origpage = BufferGetPage(buf);
	leftpage = PageGetTempPage(origpage, sizeof(BTPageOpaqueData));
	rightpage = BufferGetPage(rbuf);

	_bt_pageinit(leftpage, BufferGetPageSize(buf));
	/* rightpage was already initialized by _bt_getbuf */

	/* init btree private data */
	oopaque = (BTPageOpaque) PageGetSpecialPointer(origpage);
	lopaque = (BTPageOpaque) PageGetSpecialPointer(leftpage);
	ropaque = (BTPageOpaque) PageGetSpecialPointer(rightpage);

	/* if we're splitting this page, it won't be the root when we're done */
	lopaque->btpo_flags = oopaque->btpo_flags;
	lopaque->btpo_flags &= ~BTP_ROOT;
	ropaque->btpo_flags = lopaque->btpo_flags;
	lopaque->btpo_prev = oopaque->btpo_prev;
	lopaque->btpo_next = BufferGetBlockNumber(rbuf);
	ropaque->btpo_prev = BufferGetBlockNumber(buf);
	ropaque->btpo_next = oopaque->btpo_next;
	lopaque->btpo.level = ropaque->btpo.level = oopaque->btpo.level;

	/*
	 * If the page we're splitting is not the rightmost page at its level in
	 * the tree, then the first entry on the page is the high key for the
	 * page.  We need to copy that to the right half.  Otherwise (meaning the
	 * rightmost page case), all the items on the right half will be user
	 * data.
	 */
	rightoff = P_HIKEY;

	if (!P_RIGHTMOST(oopaque))
	{
		itemid = PageGetItemId(origpage, P_HIKEY);
		itemsz = ItemIdGetLength(itemid);
		item = (IndexTuple) PageGetItem(origpage, itemid);
		if (PageAddItem(rightpage, (Item) item, itemsz, rightoff,
						LP_USED) == InvalidOffsetNumber)
			elog(PANIC, "failed to add hikey to the right sibling");
		rightoff = OffsetNumberNext(rightoff);
	}

	/*
	 * The "high key" for the new left page will be the first key that's going
	 * to go into the new right page.  This might be either the existing data
	 * item at position firstright, or the incoming tuple.
	 */
	leftoff = P_HIKEY;
	if (!newitemonleft && newitemoff == firstright)
	{
		/* incoming tuple will become first on right page */
		itemsz = newitemsz;
		item = newitem;
	}
	else
	{
		/* existing item at firstright will become first on right page */
		itemid = PageGetItemId(origpage, firstright);
		itemsz = ItemIdGetLength(itemid);
		item = (IndexTuple) PageGetItem(origpage, itemid);
	}
	if (PageAddItem(leftpage, (Item) item, itemsz, leftoff,
					LP_USED) == InvalidOffsetNumber)
		elog(PANIC, "failed to add hikey to the left sibling");
	leftoff = OffsetNumberNext(leftoff);

	/*
	 * Now transfer all the data items to the appropriate page
	 */
	maxoff = PageGetMaxOffsetNumber(origpage);

	for (i = P_FIRSTDATAKEY(oopaque); i <= maxoff; i = OffsetNumberNext(i))
	{
		itemid = PageGetItemId(origpage, i);
		itemsz = ItemIdGetLength(itemid);
		item = (IndexTuple) PageGetItem(origpage, itemid);

		/* does new item belong before this one? */
		if (i == newitemoff)
		{
			if (newitemonleft)
			{
				_bt_pgaddtup(rel, leftpage, newitemsz, newitem, leftoff,
							 "left sibling");
				itup_off = leftoff;
				itup_blkno = BufferGetBlockNumber(buf);
				leftoff = OffsetNumberNext(leftoff);
			}
			else
			{
				_bt_pgaddtup(rel, rightpage, newitemsz, newitem, rightoff,
							 "right sibling");
				itup_off = rightoff;
				itup_blkno = BufferGetBlockNumber(rbuf);
				rightoff = OffsetNumberNext(rightoff);
			}
		}

		/* decide which page to put it on */
		if (i < firstright)
		{
			_bt_pgaddtup(rel, leftpage, itemsz, item, leftoff,
						 "left sibling");
			leftoff = OffsetNumberNext(leftoff);
		}
		else
		{
			_bt_pgaddtup(rel, rightpage, itemsz, item, rightoff,
						 "right sibling");
			rightoff = OffsetNumberNext(rightoff);
		}
	}

	/* cope with possibility that newitem goes at the end */
	if (i <= newitemoff)
	{
		if (newitemonleft)
		{
			_bt_pgaddtup(rel, leftpage, newitemsz, newitem, leftoff,
						 "left sibling");
			itup_off = leftoff;
			itup_blkno = BufferGetBlockNumber(buf);
			leftoff = OffsetNumberNext(leftoff);
		}
		else
		{
			_bt_pgaddtup(rel, rightpage, newitemsz, newitem, rightoff,
						 "right sibling");
			itup_off = rightoff;
			itup_blkno = BufferGetBlockNumber(rbuf);
			rightoff = OffsetNumberNext(rightoff);
		}
	}

	/*
	 * We have to grab the right sibling (if any) and fix the prev pointer
	 * there. We are guaranteed that this is deadlock-free since no other
	 * writer will be holding a lock on that page and trying to move left, and
	 * all readers release locks on a page before trying to fetch its
	 * neighbors.
	 */

	if (!P_RIGHTMOST(ropaque))
	{
		sbuf = _bt_getbuf(rel, ropaque->btpo_next, BT_WRITE);
		spage = BufferGetPage(sbuf);
		sopaque = (BTPageOpaque) PageGetSpecialPointer(spage);
		if (sopaque->btpo_prev != ropaque->btpo_prev)
			elog(PANIC, "right sibling's left-link doesn't match");
	}

	/*
	 * Right sibling is locked, new siblings are prepared, but original page
	 * is not updated yet. Log changes before continuing.
	 *
	 * NO EREPORT(ERROR) till right sibling is updated.
	 */
	START_CRIT_SECTION();

	if (!P_RIGHTMOST(ropaque))
		sopaque->btpo_prev = BufferGetBlockNumber(rbuf);

	/* XLOG stuff */
	if (!rel->rd_istemp)
	{
		xl_btree_split xlrec;
		uint8		xlinfo;
		XLogRecPtr	recptr;
		XLogRecData rdata[4];

		xlrec.target.node = rel->rd_node;
		ItemPointerSet(&(xlrec.target.tid), itup_blkno, itup_off);
		if (newitemonleft)
			xlrec.otherblk = BufferGetBlockNumber(rbuf);
		else
			xlrec.otherblk = BufferGetBlockNumber(buf);
		xlrec.leftblk = lopaque->btpo_prev;
		xlrec.rightblk = ropaque->btpo_next;
		xlrec.level = lopaque->btpo.level;

		/*
		 * Direct access to page is not good but faster - we should implement
		 * some new func in page API.  Note we only store the tuples
		 * themselves, knowing that the item pointers are in the same order
		 * and can be reconstructed by scanning the tuples.
		 */
		xlrec.leftlen = ((PageHeader) leftpage)->pd_special -
			((PageHeader) leftpage)->pd_upper;

		rdata[0].data = (char *) &xlrec;
		rdata[0].len = SizeOfBtreeSplit;
		rdata[0].buffer = InvalidBuffer;
		rdata[0].next = &(rdata[1]);

		rdata[1].data = (char *) leftpage + ((PageHeader) leftpage)->pd_upper;
		rdata[1].len = xlrec.leftlen;
		rdata[1].buffer = InvalidBuffer;
		rdata[1].next = &(rdata[2]);

		rdata[2].data = (char *) rightpage + ((PageHeader) rightpage)->pd_upper;
		rdata[2].len = ((PageHeader) rightpage)->pd_special -
			((PageHeader) rightpage)->pd_upper;
		rdata[2].buffer = InvalidBuffer;
		rdata[2].next = NULL;

		if (!P_RIGHTMOST(ropaque))
		{
			rdata[2].next = &(rdata[3]);
			rdata[3].data = NULL;
			rdata[3].len = 0;
			rdata[3].buffer = sbuf;
			rdata[3].buffer_std = true;
			rdata[3].next = NULL;
		}

		if (P_ISROOT(oopaque))
			xlinfo = newitemonleft ? XLOG_BTREE_SPLIT_L_ROOT : XLOG_BTREE_SPLIT_R_ROOT;
		else
			xlinfo = newitemonleft ? XLOG_BTREE_SPLIT_L : XLOG_BTREE_SPLIT_R;

		recptr = XLogInsert(RM_BTREE_ID, xlinfo, rdata);

		PageSetLSN(leftpage, recptr);
		PageSetTLI(leftpage, ThisTimeLineID);
		PageSetLSN(rightpage, recptr);
		PageSetTLI(rightpage, ThisTimeLineID);
		if (!P_RIGHTMOST(ropaque))
		{
			PageSetLSN(spage, recptr);
			PageSetTLI(spage, ThisTimeLineID);
		}
	}

	/*
	 * By here, the original data page has been split into two new halves, and
	 * these are correct.  The algorithm requires that the left page never
	 * move during a split, so we copy the new left page back on top of the
	 * original.  Note that this is not a waste of time, since we also require
	 * (in the page management code) that the center of a page always be
	 * clean, and the most efficient way to guarantee this is just to compact
	 * the data by reinserting it into a new left page.
	 */

	PageRestoreTempPage(leftpage, origpage);

	END_CRIT_SECTION();

	/* write and release the old right sibling */
	if (!P_RIGHTMOST(ropaque))
		_bt_wrtbuf(rel, sbuf);

	/* split's done */
	return rbuf;
}

/*
 *	_bt_findsplitloc() -- find an appropriate place to split a page.
 *
 * The idea here is to equalize the free space that will be on each split
 * page, *after accounting for the inserted tuple*.  (If we fail to account
 * for it, we might find ourselves with too little room on the page that
 * it needs to go into!)
 *
 * If the page is the rightmost page on its level, we instead try to arrange
 * for twice as much free space on the right as on the left.  In this way,
 * when we are inserting successively increasing keys (consider sequences,
 * timestamps, etc) we will end up with a tree whose pages are about 67% full,
 * instead of the 50% full result that we'd get without this special case.
 * (We could bias it even further to make the initially-loaded tree more full.
 * But since the steady-state load for a btree is about 70%, we'd likely just
 * be making more page-splitting work for ourselves later on, when we start
 * seeing updates to existing tuples.)
 *
 * We are passed the intended insert position of the new tuple, expressed as
 * the offsetnumber of the tuple it must go in front of.  (This could be
 * maxoff+1 if the tuple is to go at the end.)
 *
 * We return the index of the first existing tuple that should go on the
 * righthand page, plus a boolean indicating whether the new tuple goes on
 * the left or right page.	The bool is necessary to disambiguate the case
 * where firstright == newitemoff.
 */
static OffsetNumber
_bt_findsplitloc(Relation rel,
				 Page page,
				 OffsetNumber newitemoff,
				 Size newitemsz,
				 bool *newitemonleft)
{
	BTPageOpaque opaque;
	OffsetNumber offnum;
	OffsetNumber maxoff;
	ItemId		itemid;
	FindSplitData state;
	int			leftspace,
				rightspace,
				goodenough,
				dataitemtotal,
				dataitemstoleft;

	opaque = (BTPageOpaque) PageGetSpecialPointer(page);

	/* Passed-in newitemsz is MAXALIGNED but does not include line pointer */
	newitemsz += sizeof(ItemIdData);
	state.newitemsz = newitemsz;
	state.is_leaf = P_ISLEAF(opaque);
	state.is_rightmost = P_RIGHTMOST(opaque);
	state.have_split = false;

	/* Total free space available on a btree page, after fixed overhead */
	leftspace = rightspace =
		PageGetPageSize(page) - SizeOfPageHeaderData -
		MAXALIGN(sizeof(BTPageOpaqueData));

	/*
	 * Finding the best possible split would require checking all the possible
	 * split points, because of the high-key and left-key special cases.
	 * That's probably more work than it's worth; instead, stop as soon as we
	 * find a "good-enough" split, where good-enough is defined as an
	 * imbalance in free space of no more than pagesize/16 (arbitrary...) This
	 * should let us stop near the middle on most pages, instead of plowing to
	 * the end.
	 */
	goodenough = leftspace / 16;

	/* The right page will have the same high key as the old page */
	if (!P_RIGHTMOST(opaque))
	{
		itemid = PageGetItemId(page, P_HIKEY);
		rightspace -= (int) (MAXALIGN(ItemIdGetLength(itemid)) +
							 sizeof(ItemIdData));
	}

	/* Count up total space in data items without actually scanning 'em */
	dataitemtotal = rightspace - (int) PageGetFreeSpace(page);

	/*
	 * Scan through the data items and calculate space usage for a split at
	 * each possible position.
	 */
	dataitemstoleft = 0;
	maxoff = PageGetMaxOffsetNumber(page);

	for (offnum = P_FIRSTDATAKEY(opaque);
		 offnum <= maxoff;
		 offnum = OffsetNumberNext(offnum))
	{
		Size		itemsz;
		int			leftfree,
					rightfree;

		itemid = PageGetItemId(page, offnum);
		itemsz = MAXALIGN(ItemIdGetLength(itemid)) + sizeof(ItemIdData);

		/*
		 * We have to allow for the current item becoming the high key of the
		 * left page; therefore it counts against left space as well as right
		 * space.
		 */
		leftfree = leftspace - dataitemstoleft - (int) itemsz;
		rightfree = rightspace - (dataitemtotal - dataitemstoleft);

		/*
		 * Will the new item go to left or right of split?
		 */
		if (offnum > newitemoff)
			_bt_checksplitloc(&state, offnum, leftfree, rightfree,
							  true, itemsz);
		else if (offnum < newitemoff)
			_bt_checksplitloc(&state, offnum, leftfree, rightfree,
							  false, itemsz);
		else
		{
			/* need to try it both ways! */
			_bt_checksplitloc(&state, offnum, leftfree, rightfree,
							  true, itemsz);
			/* here we are contemplating newitem as first on right */
			_bt_checksplitloc(&state, offnum, leftfree, rightfree,
							  false, newitemsz);
		}

		/* Abort scan once we find a good-enough choice */
		if (state.have_split && state.best_delta <= goodenough)
			break;

		dataitemstoleft += itemsz;
	}

	/*
	 * I believe it is not possible to fail to find a feasible split, but just
	 * in case ...
	 */
	if (!state.have_split)
		elog(ERROR, "could not find a feasible split point for \"%s\"",
			 RelationGetRelationName(rel));

	*newitemonleft = state.newitemonleft;
	return state.firstright;
}

/*
 * Subroutine to analyze a particular possible split choice (ie, firstright
 * and newitemonleft settings), and record the best split so far in *state.
 */
static void
_bt_checksplitloc(FindSplitData *state, OffsetNumber firstright,
				  int leftfree, int rightfree,
				  bool newitemonleft, Size firstrightitemsz)
{
	/*
	 * Account for the new item on whichever side it is to be put.
	 */
	if (newitemonleft)
		leftfree -= (int) state->newitemsz;
	else
		rightfree -= (int) state->newitemsz;

	/*
	 * If we are not on the leaf level, we will be able to discard the key
	 * data from the first item that winds up on the right page.
	 */
	if (!state->is_leaf)
		rightfree += (int) firstrightitemsz -
			(int) (MAXALIGN(sizeof(IndexTupleData)) + sizeof(ItemIdData));

	/*
	 * If feasible split point, remember best delta.
	 */
	if (leftfree >= 0 && rightfree >= 0)
	{
		int			delta;

		if (state->is_rightmost)
		{
			/*
			 * On a rightmost page, try to equalize right free space with
			 * twice the left free space.  See comments for _bt_findsplitloc.
			 */
			delta = (2 * leftfree) - rightfree;
		}
		else
		{
			/* Otherwise, aim for equal free space on both sides */
			delta = leftfree - rightfree;
		}

		if (delta < 0)
			delta = -delta;
		if (!state->have_split || delta < state->best_delta)
		{
			state->have_split = true;
			state->newitemonleft = newitemonleft;
			state->firstright = firstright;
			state->best_delta = delta;
		}
	}
}

/*
 * _bt_insert_parent() -- Insert downlink into parent after a page split.
 *
 * On entry, buf and rbuf are the left and right split pages, which we
 * still hold write locks on per the L&Y algorithm.  We release the
 * write locks once we have write lock on the parent page.	(Any sooner,
 * and it'd be possible for some other process to try to split or delete
 * one of these pages, and get confused because it cannot find the downlink.)
 *
 * stack - stack showing how we got here.  May be NULL in cases that don't
 *			have to be efficient (concurrent ROOT split, WAL recovery)
 * is_root - we split the true root
 * is_only - we split a page alone on its level (might have been fast root)
 *
 * This is exported so it can be called by nbtxlog.c.
 */
void
_bt_insert_parent(Relation rel,
				  Buffer buf,
				  Buffer rbuf,
				  BTStack stack,
				  bool is_root,
				  bool is_only)
{
	/*
	 * Here we have to do something Lehman and Yao don't talk about: deal with
	 * a root split and construction of a new root.  If our stack is empty
	 * then we have just split a node on what had been the root level when we
	 * descended the tree.	If it was still the root then we perform a
	 * new-root construction.  If it *wasn't* the root anymore, search to find
	 * the next higher level that someone constructed meanwhile, and find the
	 * right place to insert as for the normal case.
	 *
	 * If we have to search for the parent level, we do so by re-descending
	 * from the root.  This is not super-efficient, but it's rare enough not
	 * to matter.  (This path is also taken when called from WAL recovery ---
	 * we have no stack in that case.)
	 */
	if (is_root)
	{
		Buffer		rootbuf;

		Assert(stack == NULL);
		Assert(is_only);
		/* create a new root node and update the metapage */
		rootbuf = _bt_newroot(rel, buf, rbuf);
		/* release the split buffers */
		_bt_wrtbuf(rel, rootbuf);
		_bt_wrtbuf(rel, rbuf);
		_bt_wrtbuf(rel, buf);
	}
	else
	{
		BlockNumber bknum = BufferGetBlockNumber(buf);
		BlockNumber rbknum = BufferGetBlockNumber(rbuf);
		Page		page = BufferGetPage(buf);
		IndexTuple	new_item;
		BTStackData fakestack;
		IndexTuple	ritem;
		Buffer		pbuf;

		if (stack == NULL)
		{
			BTPageOpaque lpageop;

			if (!InRecovery)
				elog(DEBUG2, "concurrent ROOT page split");
			lpageop = (BTPageOpaque) PageGetSpecialPointer(page);
			/* Find the leftmost page at the next level up */
			pbuf = _bt_get_endpoint(rel, lpageop->btpo.level + 1, false);
			/* Set up a phony stack entry pointing there */
			stack = &fakestack;
			stack->bts_blkno = BufferGetBlockNumber(pbuf);
			stack->bts_offset = InvalidOffsetNumber;
			/* bts_btentry will be initialized below */
			stack->bts_parent = NULL;
			_bt_relbuf(rel, pbuf);
		}

		/* get high key from left page == lowest key on new right page */
		ritem = (IndexTuple) PageGetItem(page,
										 PageGetItemId(page, P_HIKEY));

		/* form an index tuple that points at the new right page */
		new_item = CopyIndexTuple(ritem);
		ItemPointerSet(&(new_item->t_tid), rbknum, P_HIKEY);

		/*
		 * Find the parent buffer and get the parent page.
		 *
		 * Oops - if we were moved right then we need to change stack item! We
		 * want to find parent pointing to where we are, right ?	- vadim
		 * 05/27/97
		 */
		ItemPointerSet(&(stack->bts_btentry.t_tid), bknum, P_HIKEY);

		pbuf = _bt_getstackbuf(rel, stack, BT_WRITE);

		/* Now we can write and unlock the children */
		_bt_wrtbuf(rel, rbuf);
		_bt_wrtbuf(rel, buf);

		/* Check for error only after writing children */
		if (pbuf == InvalidBuffer)
			elog(ERROR, "failed to re-find parent key in \"%s\"",
				 RelationGetRelationName(rel));

		/* Recursively update the parent */
		_bt_insertonpg(rel, pbuf, stack->bts_parent,
					   0, NULL, new_item, stack->bts_offset,
					   is_only);

		/* be tidy */
		pfree(new_item);
	}
}

/*
 *	_bt_getstackbuf() -- Walk back up the tree one step, and find the item
 *						 we last looked at in the parent.
 *
 *		This is possible because we save the downlink from the parent item,
 *		which is enough to uniquely identify it.  Insertions into the parent
 *		level could cause the item to move right; deletions could cause it
 *		to move left, but not left of the page we previously found it in.
 *
 *		Adjusts bts_blkno & bts_offset if changed.
 *
 *		Returns InvalidBuffer if item not found (should not happen).
 */
Buffer
_bt_getstackbuf(Relation rel, BTStack stack, int access)
{
	BlockNumber blkno;
	OffsetNumber start;

	blkno = stack->bts_blkno;
	start = stack->bts_offset;

	for (;;)
	{
		Buffer		buf;
		Page		page;
		BTPageOpaque opaque;

		buf = _bt_getbuf(rel, blkno, access);
		page = BufferGetPage(buf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);

		if (!P_IGNORE(opaque))
		{
			OffsetNumber offnum,
						minoff,
						maxoff;
			ItemId		itemid;
			IndexTuple	item;

			minoff = P_FIRSTDATAKEY(opaque);
			maxoff = PageGetMaxOffsetNumber(page);

			/*
			 * start = InvalidOffsetNumber means "search the whole page". We
			 * need this test anyway due to possibility that page has a high
			 * key now when it didn't before.
			 */
			if (start < minoff)
				start = minoff;

			/*
			 * Need this check too, to guard against possibility that page
			 * split since we visited it originally.
			 */
			if (start > maxoff)
				start = OffsetNumberNext(maxoff);

			/*
			 * These loops will check every item on the page --- but in an
			 * order that's attuned to the probability of where it actually
			 * is.	Scan to the right first, then to the left.
			 */
			for (offnum = start;
				 offnum <= maxoff;
				 offnum = OffsetNumberNext(offnum))
			{
				itemid = PageGetItemId(page, offnum);
				item = (IndexTuple) PageGetItem(page, itemid);
				if (BTEntrySame(item, &stack->bts_btentry))
				{
					/* Return accurate pointer to where link is now */
					stack->bts_blkno = blkno;
					stack->bts_offset = offnum;
					return buf;
				}
			}

			for (offnum = OffsetNumberPrev(start);
				 offnum >= minoff;
				 offnum = OffsetNumberPrev(offnum))
			{
				itemid = PageGetItemId(page, offnum);
				item = (IndexTuple) PageGetItem(page, itemid);
				if (BTEntrySame(item, &stack->bts_btentry))
				{
					/* Return accurate pointer to where link is now */
					stack->bts_blkno = blkno;
					stack->bts_offset = offnum;
					return buf;
				}
			}
		}

		/*
		 * The item we're looking for moved right at least one page.
		 */
		if (P_RIGHTMOST(opaque))
		{
			_bt_relbuf(rel, buf);
			return InvalidBuffer;
		}
		blkno = opaque->btpo_next;
		start = InvalidOffsetNumber;
		_bt_relbuf(rel, buf);
	}
}

/*
 *	_bt_newroot() -- Create a new root page for the index.
 *
 *		We've just split the old root page and need to create a new one.
 *		In order to do this, we add a new root page to the file, then lock
 *		the metadata page and update it.  This is guaranteed to be deadlock-
 *		free, because all readers release their locks on the metadata page
 *		before trying to lock the root, and all writers lock the root before
 *		trying to lock the metadata page.  We have a write lock on the old
 *		root page, so we have not introduced any cycles into the waits-for
 *		graph.
 *
 *		On entry, lbuf (the old root) and rbuf (its new peer) are write-
 *		locked. On exit, a new root page exists with entries for the
 *		two new children, metapage is updated and unlocked/unpinned.
 *		The new root buffer is returned to caller which has to unlock/unpin
 *		lbuf, rbuf & rootbuf.
 */
static Buffer
_bt_newroot(Relation rel, Buffer lbuf, Buffer rbuf)
{
	Buffer		rootbuf;
	Page		lpage,
				rpage,
				rootpage;
	BlockNumber lbkno,
				rbkno;
	BlockNumber rootblknum;
	BTPageOpaque rootopaque;
	ItemId		itemid;
	IndexTuple	item;
	Size		itemsz;
	IndexTuple	new_item;
	Buffer		metabuf;
	Page		metapg;
	BTMetaPageData *metad;

	lbkno = BufferGetBlockNumber(lbuf);
	rbkno = BufferGetBlockNumber(rbuf);
	lpage = BufferGetPage(lbuf);
	rpage = BufferGetPage(rbuf);

	/* get a new root page */
	rootbuf = _bt_getbuf(rel, P_NEW, BT_WRITE);
	rootpage = BufferGetPage(rootbuf);
	rootblknum = BufferGetBlockNumber(rootbuf);

	/* acquire lock on the metapage */
	metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_WRITE);
	metapg = BufferGetPage(metabuf);
	metad = BTPageGetMeta(metapg);

	/* NO EREPORT(ERROR) from here till newroot op is logged */
	START_CRIT_SECTION();

	/* set btree special data */
	rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage);
	rootopaque->btpo_prev = rootopaque->btpo_next = P_NONE;
	rootopaque->btpo_flags = BTP_ROOT;
	rootopaque->btpo.level =
		((BTPageOpaque) PageGetSpecialPointer(lpage))->btpo.level + 1;

	/* update metapage data */
	metad->btm_root = rootblknum;
	metad->btm_level = rootopaque->btpo.level;
	metad->btm_fastroot = rootblknum;
	metad->btm_fastlevel = rootopaque->btpo.level;

	/*
	 * Create downlink item for left page (old root).  Since this will be the
	 * first item in a non-leaf page, it implicitly has minus-infinity key
	 * value, so we need not store any actual key in it.
	 */
	itemsz = sizeof(IndexTupleData);
	new_item = (IndexTuple) palloc(itemsz);
	new_item->t_info = itemsz;
	ItemPointerSet(&(new_item->t_tid), lbkno, P_HIKEY);

	/*
	 * Insert the left page pointer into the new root page.  The root page is
	 * the rightmost page on its level so there is no "high key" in it; the
	 * two items will go into positions P_HIKEY and P_FIRSTKEY.
	 */
	if (PageAddItem(rootpage, (Item) new_item, itemsz, P_HIKEY, LP_USED) == InvalidOffsetNumber)
		elog(PANIC, "failed to add leftkey to new root page");
	pfree(new_item);

	/*
	 * Create downlink item for right page.  The key for it is obtained from
	 * the "high key" position in the left page.
	 */
	itemid = PageGetItemId(lpage, P_HIKEY);
	itemsz = ItemIdGetLength(itemid);
	item = (IndexTuple) PageGetItem(lpage, itemid);
	new_item = CopyIndexTuple(item);
	ItemPointerSet(&(new_item->t_tid), rbkno, P_HIKEY);

	/*
	 * insert the right page pointer into the new root page.
	 */
	if (PageAddItem(rootpage, (Item) new_item, itemsz, P_FIRSTKEY, LP_USED) == InvalidOffsetNumber)
		elog(PANIC, "failed to add rightkey to new root page");
	pfree(new_item);

	/* XLOG stuff */
	if (!rel->rd_istemp)
	{
		xl_btree_newroot xlrec;
		XLogRecPtr	recptr;
		XLogRecData rdata[2];

		xlrec.node = rel->rd_node;
		xlrec.rootblk = rootblknum;
		xlrec.level = metad->btm_level;

		rdata[0].data = (char *) &xlrec;
		rdata[0].len = SizeOfBtreeNewroot;
		rdata[0].buffer = InvalidBuffer;
		rdata[0].next = &(rdata[1]);

		/*
		 * Direct access to page is not good but faster - we should implement
		 * some new func in page API.
		 */
		rdata[1].data = (char *) rootpage + ((PageHeader) rootpage)->pd_upper;
		rdata[1].len = ((PageHeader) rootpage)->pd_special -
			((PageHeader) rootpage)->pd_upper;
		rdata[1].buffer = InvalidBuffer;
		rdata[1].next = NULL;

		recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_NEWROOT, rdata);

		PageSetLSN(rootpage, recptr);
		PageSetTLI(rootpage, ThisTimeLineID);
		PageSetLSN(metapg, recptr);
		PageSetTLI(metapg, ThisTimeLineID);
		PageSetLSN(lpage, recptr);
		PageSetTLI(lpage, ThisTimeLineID);
		PageSetLSN(rpage, recptr);
		PageSetTLI(rpage, ThisTimeLineID);
	}

	END_CRIT_SECTION();

	/* write and let go of metapage buffer */
	_bt_wrtbuf(rel, metabuf);

	return rootbuf;
}

/*
 *	_bt_pgaddtup() -- add a tuple to a particular page in the index.
 *
 *		This routine adds the tuple to the page as requested.  It does
 *		not affect pin/lock status, but you'd better have a write lock
 *		and pin on the target buffer!  Don't forget to write and release
 *		the buffer afterwards, either.
 *
 *		The main difference between this routine and a bare PageAddItem call
 *		is that this code knows that the leftmost index tuple on a non-leaf
 *		btree page doesn't need to have a key.  Therefore, it strips such
 *		tuples down to just the tuple header.  CAUTION: this works ONLY if
 *		we insert the tuples in order, so that the given itup_off does
 *		represent the final position of the tuple!
 */
static void
_bt_pgaddtup(Relation rel,
			 Page page,
			 Size itemsize,
			 IndexTuple itup,
			 OffsetNumber itup_off,
			 const char *where)
{
	BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	IndexTupleData trunctuple;

	if (!P_ISLEAF(opaque) && itup_off == P_FIRSTDATAKEY(opaque))
	{
		trunctuple = *itup;
		trunctuple.t_info = sizeof(IndexTupleData);
		itup = &trunctuple;
		itemsize = sizeof(IndexTupleData);
	}

	if (PageAddItem(page, (Item) itup, itemsize, itup_off,
					LP_USED) == InvalidOffsetNumber)
		elog(PANIC, "failed to add item to the %s for \"%s\"",
			 where, RelationGetRelationName(rel));
}

/*
 * _bt_isequal - used in _bt_doinsert in check for duplicates.
 *
 * This is very similar to _bt_compare, except for NULL handling.
 * Rule is simple: NOT_NULL not equal NULL, NULL not equal NULL too.
 */
static bool
_bt_isequal(TupleDesc itupdesc, Page page, OffsetNumber offnum,
			int keysz, ScanKey scankey)
{
	IndexTuple	itup;
	int			i;

	/* Better be comparing to a leaf item */
	Assert(P_ISLEAF((BTPageOpaque) PageGetSpecialPointer(page)));

	itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));

	for (i = 1; i <= keysz; i++)
	{
		AttrNumber	attno;
		Datum		datum;
		bool		isNull;
		int32		result;

		attno = scankey->sk_attno;
		Assert(attno == i);
		datum = index_getattr(itup, attno, itupdesc, &isNull);

		/* NULLs are never equal to anything */
		if (isNull || (scankey->sk_flags & SK_ISNULL))
			return false;

		result = DatumGetInt32(FunctionCall2(&scankey->sk_func,
											 datum,
											 scankey->sk_argument));

		if (result != 0)
			return false;

		scankey++;
	}

	/* if we get here, the keys are equal */
	return true;
}