xfunc.c 40.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
/*-------------------------------------------------------------------------
 *
 * xfunc.c
 *	  Utility routines to handle expensive function optimization.
 *	  Includes xfunc_trypullup(), which attempts early pullup of predicates
 *	  to allow for maximal pruning.
 *
 * Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $Header: /cvsroot/pgsql/src/backend/optimizer/path/_deadcode/Attic/xfunc.c,v 1.10 1999/09/21 20:58:13 momjian Exp $
 *
 *-------------------------------------------------------------------------
 */
#include <math.h>

#ifdef HAVE_VALUES_H
#include <values.h>
#endif

#include "postgres.h"

#include "access/heapam.h"
#include "access/htup.h"
#include "catalog/pg_language.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "lib/lispsort.h"
#include "nodes/nodes.h"
#include "nodes/pg_list.h"
#include "nodes/primnodes.h"
#include "nodes/relation.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/internal.h"
#include "optimizer/keys.h"
#include "optimizer/pathnode.h"
#include "optimizer/tlist.h"
#include "storage/buf_internals.h"
#include "tcop/dest.h"
#include "utils/syscache.h"

#define ever ; 1 ;

/* local funcs */
static int xfunc_card_unreferenced(Query *queryInfo,
						Expr *clause, Relids referenced);

*/

/*
** xfunc_trypullup
**	  Preliminary pullup of predicates, to allow for maximal pruning.
** Given a relation, check each of its paths and see if you can
** pullup clauses from its inner and outer.
*/

void
xfunc_trypullup(RelOptInfo rel)
{
	LispValue	y;				/* list ptr */
	RestrictInfo maxcinfo;		/* The RestrictInfo to pull up, as
								 * calculated by xfunc_shouldpull() */
	JoinPath	curpath;		/* current path in list */
	int			progress;		/* has progress been made this time
								 * through? */
	int			clausetype;

	do
	{
		progress = false;		/* no progress yet in this iteration */
		foreach(y, get_pathlist(rel))
		{
			curpath = (JoinPath) lfirst(y);

			/*
			 * * for each operand, attempt to pullup predicates until
			 * first * failure.
			 */
			for (ever)
			{
				/* No, the following should NOT be '=='  !! */
				if (clausetype = xfunc_shouldpull((Path) get_innerjoinpath(curpath),
											  curpath, INNER, &maxcinfo))
				{

					xfunc_pullup((Path) get_innerjoinpath(curpath),
								 curpath, maxcinfo, INNER, clausetype);
					progress = true;
				}
				else
					break;
			}
			for (ever)
			{

				/* No, the following should NOT be '=='  !! */
				if (clausetype = xfunc_shouldpull((Path) get_outerjoinpath(curpath),
											  curpath, OUTER, &maxcinfo))
				{

					xfunc_pullup((Path) get_outerjoinpath(curpath),
								 curpath, maxcinfo, OUTER, clausetype);
					progress = true;
				}
				else
					break;
			}

			/*
			 * * make sure the unpruneable flag bubbles up, i.e. * if
			 * anywhere below us in the path pruneable is false, * then
			 * pruneable should be false here
			 */
			if (get_pruneable(get_parent(curpath)) &&
				(!get_pruneable(get_parent
								((Path) get_innerjoinpath(curpath))) ||
				 !get_pruneable(get_parent((Path)
										   get_outerjoinpath(curpath)))))
			{

				set_pruneable(get_parent(curpath), false);
				progress = true;
			}
		}
	} while (progress);
}

/*
 ** xfunc_shouldpull
 **    find clause with highest rank, and decide whether to pull it up
 ** from child to parent.  Currently we only pullup secondary join clauses
 ** that are in the pathrestrictinfo.  Secondary hash and sort clauses are
 ** left where they are.
 **    If we find an expensive function but decide *not* to pull it up,
 ** we'd better set the unpruneable flag.  -- JMH, 11/11/92
 **
 ** Returns:  0 if nothing left to pullup
 **			  XFUNC_LOCPRD if a local predicate is to be pulled up
 **			  XFUNC_JOINPRD if a secondary join predicate is to be pulled up
 */
int
xfunc_shouldpull(Query *queryInfo,
				 Path childpath,
				 JoinPath parentpath,
				 int whichchild,
				 RestrictInfo *maxcinfopt)		/* Out: pointer to clause
												 * to pullup */
{
	LispValue	clauselist,
				tmplist;		/* lists of clauses */
	RestrictInfo maxcinfo;		/* clause to pullup */
	LispValue	primjoinclause	/* primary join clause */
	= xfunc_primary_join(parentpath);
	Cost		tmprank,
				maxrank = (-1 * MAXFLOAT);		/* ranks of clauses */
	Cost		joinselec = 0;	/* selectivity of the join predicate */
	Cost		joincost = 0;	/* join cost + primjoinclause cost */
	int			retval = XFUNC_LOCPRD;

	clauselist = get_loc_restrictinfo(childpath);

	if (clauselist != LispNil)
	{
		/* find local predicate with maximum rank */
		for (tmplist = clauselist,
			 maxcinfo = (RestrictInfo) lfirst(tmplist),
			 maxrank = xfunc_rank(get_clause(maxcinfo));
			 tmplist != LispNil;
			 tmplist = lnext(tmplist))
		{

			if ((tmprank = xfunc_rank(get_clause((RestrictInfo) lfirst(tmplist))))
				> maxrank)
			{
				maxcinfo = (RestrictInfo) lfirst(tmplist);
				maxrank = tmprank;
			}
		}
	}

	/*
	 * * If child is a join path, and there are multiple join clauses, *
	 * see if any join clause has even higher rank than the highest *
	 * local predicate
	 */
	if (is_join(childpath) && xfunc_num_join_clauses((JoinPath) childpath) > 1)
		for (tmplist = get_pathrestrictinfo((JoinPath) childpath);
			 tmplist != LispNil;
			 tmplist = lnext(tmplist))
		{

			if (tmplist != LispNil &&
				(tmprank = xfunc_rank(get_clause((RestrictInfo) lfirst(tmplist))))
				> maxrank)
			{
				maxcinfo = (RestrictInfo) lfirst(tmplist);
				maxrank = tmprank;
				retval = XFUNC_JOINPRD;
			}
		}
	if (maxrank == (-1 * MAXFLOAT))		/* no expensive clauses */
		return 0;

	/*
	 * * Pullup over join if clause is higher rank than join, or if * join
	 * is nested loop and current path is inner child (note that *
	 * restrictions on the inner of a nested loop don't buy you anything
	 * -- * you still have to scan the entire inner relation each time). *
	 * Note that the cost of a secondary join clause is only what's *
	 * calculated by xfunc_expense(), since the actual joining * (i.e. the
	 * usual path_cost) is paid for by the primary join clause.
	 */
	if (primjoinclause != LispNil)
	{
		joinselec = compute_clause_selec(queryInfo, primjoinclause, LispNil);
		joincost = xfunc_join_expense(parentpath, whichchild);

		if (XfuncMode == XFUNC_PULLALL ||
			(XfuncMode != XFUNC_WAIT &&
			 ((joincost != 0 &&
			   (maxrank = xfunc_rank(get_clause(maxcinfo))) >
			   ((joinselec - 1.0) / joincost))
			  || (joincost == 0 && joinselec < 1)
			  || (!is_join(childpath)
				  && (whichchild == INNER)
				  && IsA(parentpath, NestPath)
				  &&!IsA(parentpath, HashPath)
				  &&!IsA(parentpath, MergePath)))))
		{

			*maxcinfopt = maxcinfo;
			return retval;

		}
		else if (maxrank != -(MAXFLOAT))
		{

			/*
			 * * we've left an expensive restriction below a join.  Since *
			 * we may pullup this restriction in predmig.c, we'd best *
			 * set the RelOptInfo of this join to be unpruneable
			 */
			set_pruneable(get_parent(parentpath), false);
			/* and fall through */
		}
	}
	return 0;
}


/*
 ** xfunc_pullup
 **    move clause from child pathnode to parent pathnode.	 This operation
 ** makes the child pathnode produce a larger relation than it used to.
 ** This means that we must construct a new RelOptInfo just for the childpath,
 ** although this RelOptInfo will not be added to the list of Rels to be joined up
 ** in the query; it's merely a parent for the new childpath.
 **    We also have to fix up the path costs of the child and parent.
 **
 ** Now returns a pointer to the new pulled-up RestrictInfo. -- JMH, 11/18/92
 */
RestrictInfo
xfunc_pullup(Query *queryInfo,
			 Path childpath,
			 JoinPath parentpath,
			 RestrictInfo cinfo,/* clause to pull up */
			 int whichchild,	/* whether child is INNER or OUTER of join */
			 int clausetype)	/* whether clause to pull is join or local */
{
	Path		newkid;
	RelOptInfo	newrel;
	Cost		pulled_selec;
	Cost		cost;
	RestrictInfo newinfo;

	/* remove clause from childpath */
	newkid = (Path) copyObject((Node) childpath);
	if (clausetype == XFUNC_LOCPRD)
	{
		set_locrestrictinfo(newkid,
							xfunc_LispRemove((LispValue) cinfo,
								   (List) get_loc_restrictinfo(newkid)));
	}
	else
	{
		set_pathrestrictinfo
			((JoinPath) newkid,
			 xfunc_LispRemove((LispValue) cinfo,
						(List) get_pathrestrictinfo((JoinPath) newkid)));
	}

	/*
	 * * give the new child path its own RelOptInfo node that reflects the *
	 * lack of the pulled-up predicate
	 */
	pulled_selec = compute_clause_selec(queryInfo,
										get_clause(cinfo), LispNil);
	xfunc_copyrel(get_parent(newkid), &newrel);
	set_parent(newkid, newrel);
	set_pathlist(newrel, lcons(newkid, NIL));
	set_unorderedpath(newrel, (PathPtr) newkid);
	set_cheapestpath(newrel, (PathPtr) newkid);
	set_size(newrel,
		(Count) ((Cost) get_size(get_parent(childpath)) / pulled_selec));

	/*
	 * * fix up path cost of newkid.  To do this we subtract away all the *
	 * xfunc_costs of childpath, then recompute the xfunc_costs of newkid
	 */
	cost = get_path_cost(newkid) - xfunc_get_path_cost(childpath);
	Assert(cost >= 0);
	set_path_cost(newkid, cost);
	cost = get_path_cost(newkid) + xfunc_get_path_cost(newkid);
	set_path_cost(newkid, cost);

	/*
	 * * We copy the cinfo, since it may appear in other plans, and we're
	 * going * to munge it.  -- JMH, 7/22/92
	 */
	newinfo = (RestrictInfo) copyObject((Node) cinfo);

	/*
	 * * Fix all vars in the clause * to point to the right varno and
	 * varattno in parentpath
	 */
	xfunc_fixvars(get_clause(newinfo), newrel, whichchild);

	/* add clause to parentpath, and fix up its cost. */
	set_locrestrictinfo(parentpath,
						lispCons((LispValue) newinfo,
						  (LispValue) get_loc_restrictinfo(parentpath)));
	/* put new childpath into the path tree */
	if (whichchild == INNER)
		set_innerjoinpath(parentpath, (pathPtr) newkid);
	else
		set_outerjoinpath(parentpath, (pathPtr) newkid);

	/*
	 * * recompute parentpath cost from scratch -- the cost * of the join
	 * method has changed
	 */
	cost = xfunc_total_path_cost(parentpath);
	set_path_cost(parentpath, cost);

	return newinfo;
}

/*
 ** calculate (selectivity-1)/cost.
 */
Cost
xfunc_rank(Query *queryInfo, LispValue clause)
{
	Cost		selec = compute_clause_selec(queryInfo, clause, LispNil);
	Cost		cost = xfunc_expense(queryInfo, clause);

	if (cost == 0)
		if (selec > 1)
			return MAXFLOAT;
		else
			return -(MAXFLOAT);
	return (selec - 1) / cost;
}

/*
 ** Find the "global" expense of a clause; i.e. the local expense divided
 ** by the cardinalities of all the base relations of the query that are *not*
 ** referenced in the clause.
 */
Cost
xfunc_expense(Query *queryInfo, clause)
LispValue	clause;
{
	Cost		cost = xfunc_local_expense(clause);

	if (cost)
	{
		Count		card = xfunc_card_unreferenced(queryInfo, clause, LispNil);

		if (card)
			cost /= card;
	}

	return cost;
}

/*
 ** xfunc_join_expense
 **    Find global expense of a join clause
 */
Cost
xfunc_join_expense(Query *queryInfo, JoinPath path, int whichchild)
{
	LispValue	primjoinclause = xfunc_primary_join(path);

	/*
	 * * the second argument to xfunc_card_unreferenced reflects all the *
	 * relations involved in the join clause, i.e. all the relids in the
	 * RelOptInfo * of the join clause
	 */
	Count		card = 0;
	Cost		cost = xfunc_expense_per_tuple(path, whichchild);

	card = xfunc_card_unreferenced(queryInfo,
								   primjoinclause,
								   get_relids(get_parent(path)));
	if (primjoinclause)
		cost += xfunc_local_expense(primjoinclause);

	if (card)
		cost /= card;

	return cost;
}

/*
 ** Recursively find the per-tuple expense of a clause.  See
 ** xfunc_func_expense for more discussion.
 */
Cost
xfunc_local_expense(LispValue clause)
{
	Cost		cost = 0;		/* running expense */
	LispValue	tmpclause;

	/* First handle the base case */
	if (IsA(clause, Const) ||IsA(clause, Var) ||IsA(clause, Param))
		return 0;
	/* now other stuff */
	else if (IsA(clause, Iter))
		/* Too low. Should multiply by the expected number of iterations. */
		return xfunc_local_expense(get_iterexpr((Iter) clause));
	else if (IsA(clause, ArrayRef))
		return xfunc_local_expense(get_refexpr((ArrayRef) clause));
	else if (fast_is_clause(clause))
		return (xfunc_func_expense((LispValue) get_op(clause),
								   (LispValue) get_opargs(clause)));
	else if (fast_is_funcclause(clause))
		return (xfunc_func_expense((LispValue) get_function(clause),
								   (LispValue) get_funcargs(clause)));
	else if (fast_not_clause(clause))
		return xfunc_local_expense(lsecond(clause));
	else if (fast_or_clause(clause) || fast_and_clause(clause))
	{
		/* find cost of evaluating each disjunct */
		for (tmpclause = lnext(clause); tmpclause != LispNil;
			 tmpclause = lnext(tmpclause))
			cost += xfunc_local_expense(lfirst(tmpclause));
		return cost;
	}
	else
	{
		elog(ERROR, "Clause node of undetermined type");
		return -1;
	}
}

/*
 ** xfunc_func_expense
 **    given a Func or Oper and its args, find its expense.
 ** Note: in Stonebraker's SIGMOD '91 paper, he uses a more complicated metric
 ** than the one here.	We can ignore the expected number of tuples for
 ** our calculations; we just need the per-tuple expense.  But he also
 ** proposes components to take into account the costs of accessing disk and
 ** archive.  We didn't adopt that scheme here; eventually the vacuum
 ** cleaner should be able to tell us what percentage of bytes to find on
 ** which storage level, and that should be multiplied in appropriately
 ** in the cost function below.  Right now we don't model the cost of
 ** accessing secondary or tertiary storage, since we don't have sufficient
 ** stats to do it right.
 */
Cost
xfunc_func_expense(LispValue node, LispValue args)
{
	HeapTuple	tupl;			/* the pg_proc tuple for each function */
	Form_pg_proc proc;			/* a data structure to hold the pg_proc
								 * tuple */
	int			width = 0;		/* byte width of the field referenced by
								 * each clause */
	RegProcedure funcid;		/* ID of function associate with node */
	Cost		cost = 0;		/* running expense */
	LispValue	tmpclause;
	LispValue	operand;		/* one operand of an operator */

	if (IsA(node, Oper))
	{
		/* don't trust the opid in the Oper node.  Use the opno. */
		if (!(funcid = get_opcode(get_opno((Oper) node))))
			elog(ERROR, "Oper's function is undefined");
	}
	else
		funcid = get_funcid((Func) node);

	/* look up tuple in cache */
	tupl = SearchSysCacheTuple(PROOID,
							   ObjectIdGetDatum(funcid),
							   0, 0, 0);
	if (!HeapTupleIsValid(tupl))
		elog(ERROR, "Cache lookup failed for procedure %u", funcid);
	proc = (Form_pg_proc) GETSTRUCT(tupl);

	/*
	 * * if it's a Postquel function, its cost is stored in the *
	 * associated plan.
	 */
	if (proc->prolang == SQLlanguageId)
	{
		LispValue	tmpplan;
		List		planlist;

		if (IsA(node, Oper) ||get_func_planlist((Func) node) == LispNil)
		{
			Oid		   *argOidVect;		/* vector of argtypes */
			char	   *pq_src; /* text of PQ function */
			int			nargs;	/* num args to PQ function */
			QueryTreeList *queryTree_list;		/* dummy variable */

			/*
			 * * plan the function, storing it in the Func node for later *
			 * use by the executor.
			 */
			pq_src = (char *) textout(&(proc->prosrc));
			nargs = proc->pronargs;
			if (nargs > 0)
				argOidVect = proc->proargtypes;
			planlist = (List) pg_parse_and_plan(pq_src, argOidVect, nargs,
										   &parseTree_list, None, FALSE);
			if (IsA(node, Func))
				set_func_planlist((Func) node, planlist);

		}
		else
		{						/* plan has been cached inside the Func
								 * node already */
			planlist = get_func_planlist((Func) node);
		}

		/*
		 * * Return the sum of the costs of the plans (the PQ function *
		 * may have many queries in its body).
		 */
		foreach(tmpplan, planlist)
			cost += get_cost((Plan) lfirst(tmpplan));
		return cost;
	}
	else
	{							/* it's a C function */

		/*
		 * *  find the cost of evaluating the function's arguments *  and
		 * the width of the operands
		 */
		for (tmpclause = args; tmpclause != LispNil;
			 tmpclause = lnext(tmpclause))
		{

			if ((operand = lfirst(tmpclause)) != LispNil)
			{
				cost += xfunc_local_expense(operand);
				width += xfunc_width(operand);
			}
		}

		/*
		 * * when stats become available, add in cost of accessing
		 * secondary * and tertiary storage here.
		 */
		return (cost +
				(Cost) proc->propercall_cpu +
		(Cost) proc->properbyte_cpu * (Cost) proc->probyte_pct / 100.00 *
				(Cost) width

		/*
		 * Pct_of_obj_in_mem DISK_COST * proc->probyte_pct/100.00 * width
		 * Pct_of_obj_on_disk + ARCH_COST * proc->probyte_pct/100.00 *
		 * width Pct_of_obj_on_arch
		 */
			);
	}
}

/*
 ** xfunc_width
 **    recursively find the width of a expression
 */

int
xfunc_width(LispValue clause)
{
	Relation	rd;				/* Relation Descriptor */
	HeapTuple	tupl;			/* structure to hold a cached tuple */
	Form_pg_type type;			/* structure to hold a type tuple */
	int			retval = 0;

	if (IsA(clause, Const))
	{
		/* base case: width is the width of this constant */
		retval = get_constlen((Const) clause);
		goto exit;
	}
	else if (IsA(clause, ArrayRef))
	{
		/* base case: width is width of the refelem within the array */
		retval = get_refelemlength((ArrayRef) clause);
		goto exit;
	}
	else if (IsA(clause, Var))
	{
		/* base case: width is width of this attribute */
		tupl = SearchSysCacheTuple(TYPOID,
							 ObjectIdGetDatum(get_vartype((Var) clause)),
								   0, 0, 0);
		if (!HeapTupleIsValid(tupl))
			elog(ERROR, "Cache lookup failed for type %u",
				 get_vartype((Var) clause));
		type = (Form_pg_type) GETSTRUCT(tupl);
		if (get_varattno((Var) clause) == 0)
		{
			/* clause is a tuple.  Get its width */
			rd = heap_open(type->typrelid);
			retval = xfunc_tuple_width(rd);
			heap_close(rd);
		}
		else
		{
			/* attribute is a base type */
			retval = type->typlen;
		}
		goto exit;
	}
	else if (IsA(clause, Param))
	{
		if (typeidTypeRelids(get_paramtype((Param) clause)))
		{
			/* Param node returns a tuple.	Find its width */
			rd = heap_open(typeidTypeRelids(get_paramtype((Param) clause)));
			retval = xfunc_tuple_width(rd);
			heap_close(rd);
		}
		else if (get_param_tlist((Param) clause) != LispNil)
		{
			/* Param node projects a complex type */
			Assert(length(get_param_tlist((Param) clause)) == 1);		/* sanity */
			retval = xfunc_width((LispValue)
					  get_expr(lfirst(get_param_tlist((Param) clause))));
		}
		else
		{
			/* Param node returns a base type */
			retval = typeLen(typeidType(get_paramtype((Param) clause)));
		}
		goto exit;
	}
	else if (IsA(clause, Iter))
	{

		/*
		 * * An Iter returns a setof things, so return the width of a
		 * single * thing. * Note:	THIS MAY NOT WORK RIGHT WHEN AGGS GET
		 * FIXED, * SINCE AGG FUNCTIONS CHEW ON THE WHOLE SETOF THINGS!!!! *
		 * This whole Iter business is bogus, anyway.
		 */
		retval = xfunc_width(get_iterexpr((Iter) clause));
		goto exit;
	}
	else if (fast_is_clause(clause))
	{

		/*
		 * * get function associated with this Oper, and treat this as * a
		 * Func
		 */
		tupl = SearchSysCacheTuple(OPROID,
					   ObjectIdGetDatum(get_opno((Oper) get_op(clause))),
								   0, 0, 0);
		if (!HeapTupleIsValid(tupl))
			elog(ERROR, "Cache lookup failed for procedure %u",
				 get_opno((Oper) get_op(clause)));
		return (xfunc_func_width
		((RegProcedure) (((Form_pg_operator) (GETSTRUCT(tupl)))->oprcode),
		 (LispValue) get_opargs(clause)));
	}
	else if (fast_is_funcclause(clause))
	{
		Func		func = (Func) get_function(clause);

		if (get_func_tlist(func) != LispNil)
		{

			/*
			 * this function has a projection on it.  Get the length of
			 * the projected attribute
			 */
			Assert(length(get_func_tlist(func)) == 1);	/* sanity */
			retval = xfunc_width((LispValue)
								 get_expr(lfirst(get_func_tlist(func))));
			goto exit;
		}
		else
		{
			return (xfunc_func_width((RegProcedure) get_funcid(func),
									 (LispValue) get_funcargs(clause)));
		}
	}
	else
	{
		elog(ERROR, "Clause node of undetermined type");
		return -1;
	}

exit:
	if (retval == -1)
		retval = VARLEN_DEFAULT;
	return retval;
}

/*
 ** xfunc_card_unreferenced:
 **   find all relations not referenced in clause, and multiply their
 ** cardinalities.	Ignore relation of cardinality 0.
 ** User may pass in referenced list, if they know it (useful
 ** for joins).
 */
static Count
xfunc_card_unreferenced(Query *queryInfo,
						LispValue clause, Relids referenced)
{
	Relids		unreferenced,
				allrelids = LispNil;
	LispValue	temp;

	/* find all relids of base relations referenced in query */
	foreach(temp, queryInfo->base_rel_list)
	{
		Assert(lnext(get_relids((RelOptInfo) lfirst(temp))) == LispNil);
		allrelids = lappend(allrelids,
						  lfirst(get_relids((RelOptInfo) lfirst(temp))));
	}

	/* find all relids referenced in query but not in clause */
	if (!referenced)
		referenced = xfunc_find_references(clause);
	unreferenced = set_difference(allrelids, referenced);

	return xfunc_card_product(unreferenced);
}

/*
 ** xfunc_card_product
 **   multiple together cardinalities of a list relations.
 */
Count
xfunc_card_product(Query *queryInfo, Relids relids)
{
	LispValue	cinfonode;
	LispValue	temp;
	RelOptInfo	currel;
	Cost		tuples;
	Count		retval = 0;

	foreach(temp, relids)
	{
		currel = get_rel(lfirst(temp));
		tuples = get_tuples(currel);

		if (tuples)
		{						/* not of cardinality 0 */
			/* factor in the selectivity of all zero-cost clauses */
			foreach(cinfonode, get_restrictinfo(currel))
			{
				if (!xfunc_expense(queryInfo, get_clause((RestrictInfo) lfirst(cinfonode))))
					tuples *= compute_clause_selec(queryInfo,
							get_clause((RestrictInfo) lfirst(cinfonode)),
												   LispNil);
			}

			if (retval == 0)
				retval = tuples;
			else
				retval *= tuples;
		}
	}
	if (retval == 0)
		retval = 1;				/* saves caller from dividing by zero */
	return retval;
}


/*
 ** xfunc_find_references:
 **   Traverse a clause and find all relids referenced in the clause.
 */
List
xfunc_find_references(LispValue clause)
{
	List		retval = (List) LispNil;
	LispValue	tmpclause;

	/* Base cases */
	if (IsA(clause, Var))
		return lispCons(lfirst(get_varid((Var) clause)), LispNil);
	else if (IsA(clause, Const) ||IsA(clause, Param))
		return (List) LispNil;

	/* recursion */
	else if (IsA(clause, Iter))

		/*
		 * Too low. Should multiply by the expected number of iterations.
		 * maybe
		 */
		return xfunc_find_references(get_iterexpr((Iter) clause));
	else if (IsA(clause, ArrayRef))
		return xfunc_find_references(get_refexpr((ArrayRef) clause));
	else if (fast_is_clause(clause))
	{
		/* string together result of all operands of Oper */
		for (tmpclause = (LispValue) get_opargs(clause); tmpclause != LispNil;
			 tmpclause = lnext(tmpclause))
			retval = nconc(retval, xfunc_find_references(lfirst(tmpclause)));
		return retval;
	}
	else if (fast_is_funcclause(clause))
	{
		/* string together result of all args of Func */
		for (tmpclause = (LispValue) get_funcargs(clause);
			 tmpclause != LispNil;
			 tmpclause = lnext(tmpclause))
			retval = nconc(retval, xfunc_find_references(lfirst(tmpclause)));
		return retval;
	}
	else if (fast_not_clause(clause))
		return xfunc_find_references(lsecond(clause));
	else if (fast_or_clause(clause) || fast_and_clause(clause))
	{
		/* string together result of all operands of OR */
		for (tmpclause = lnext(clause); tmpclause != LispNil;
			 tmpclause = lnext(tmpclause))
			retval = nconc(retval, xfunc_find_references(lfirst(tmpclause)));
		return retval;
	}
	else
	{
		elog(ERROR, "Clause node of undetermined type");
		return (List) LispNil;
	}
}

/*
 ** xfunc_primary_join:
 **   Find the primary join clause: for Hash and Merge Joins, this is the
 ** min rank Hash or Merge clause, while for Nested Loop it's the
 ** min rank pathclause
 */
LispValue
xfunc_primary_join(JoinPath pathnode)
{
	LispValue	joinclauselist = get_pathrestrictinfo(pathnode);
	RestrictInfo mincinfo;
	LispValue	tmplist;
	LispValue	minclause = LispNil;
	Cost		minrank,
				tmprank;

	if (IsA(pathnode, MergePath))
	{
		for (tmplist = get_path_mergeclauses((MergePath) pathnode),
			 minclause = lfirst(tmplist),
			 minrank = xfunc_rank(minclause);
			 tmplist != LispNil;
			 tmplist = lnext(tmplist))
			if ((tmprank = xfunc_rank(lfirst(tmplist)))
				< minrank)
			{
				minrank = tmprank;
				minclause = lfirst(tmplist);
			}
		return minclause;
	}
	else if (IsA(pathnode, HashPath))
	{
		for (tmplist = get_path_hashclauses((HashPath) pathnode),
			 minclause = lfirst(tmplist),
			 minrank = xfunc_rank(minclause);
			 tmplist != LispNil;
			 tmplist = lnext(tmplist))
			if ((tmprank = xfunc_rank(lfirst(tmplist)))
				< minrank)
			{
				minrank = tmprank;
				minclause = lfirst(tmplist);
			}
		return minclause;
	}

	/* if we drop through, it's nested loop join */
	if (joinclauselist == LispNil)
		return LispNil;

	for (tmplist = joinclauselist, mincinfo = (RestrictInfo) lfirst(joinclauselist),
		 minrank = xfunc_rank(get_clause((RestrictInfo) lfirst(tmplist)));
		 tmplist != LispNil;
		 tmplist = lnext(tmplist))
		if ((tmprank = xfunc_rank(get_clause((RestrictInfo) lfirst(tmplist))))
			< minrank)
		{
			minrank = tmprank;
			mincinfo = (RestrictInfo) lfirst(tmplist);
		}
	return (LispValue) get_clause(mincinfo);
}

/*
 ** xfunc_get_path_cost
 **   get the expensive function costs of the path
 */
Cost
xfunc_get_path_cost(Query *queryInfo, Path pathnode)
{
	Cost		cost = 0;
	LispValue	tmplist;
	Cost		selec = 1.0;

	/*
	 * * first add in the expensive local function costs. * We ensure that
	 * the clauses are sorted by rank, so that we * know (via
	 * selectivities) the number of tuples that will be checked * by each
	 * function.  If we're not doing any optimization of expensive *
	 * functions, we don't sort.
	 */
	if (XfuncMode != XFUNC_OFF)
		set_locrestrictinfo(pathnode, lisp_qsort(get_loc_restrictinfo(pathnode),
												 xfunc_cinfo_compare));
	for (tmplist = get_loc_restrictinfo(pathnode), selec = 1.0;
		 tmplist != LispNil;
		 tmplist = lnext(tmplist))
	{
		cost += (Cost) (xfunc_local_expense(get_clause((RestrictInfo) lfirst(tmplist)))
					  * (Cost) get_tuples(get_parent(pathnode)) * selec);
		selec *= compute_clause_selec(queryInfo,
							  get_clause((RestrictInfo) lfirst(tmplist)),
									  LispNil);
	}

	/*
	 * * Now add in any node-specific expensive function costs. * Again,
	 * we must ensure that the clauses are sorted by rank.
	 */
	if (IsA(pathnode, JoinPath))
	{
		if (XfuncMode != XFUNC_OFF)
			set_pathrestrictinfo((JoinPath) pathnode, lisp_qsort
							  (get_pathrestrictinfo((JoinPath) pathnode),
							   xfunc_cinfo_compare));
		for (tmplist = get_pathrestrictinfo((JoinPath) pathnode), selec = 1.0;
			 tmplist != LispNil;
			 tmplist = lnext(tmplist))
		{
			cost += (Cost) (xfunc_local_expense(get_clause((RestrictInfo) lfirst(tmplist)))
					  * (Cost) get_tuples(get_parent(pathnode)) * selec);
			selec *= compute_clause_selec(queryInfo,
							  get_clause((RestrictInfo) lfirst(tmplist)),
										  LispNil);
		}
	}
	if (IsA(pathnode, HashPath))
	{
		if (XfuncMode != XFUNC_OFF)
			set_path_hashclauses
				((HashPath) pathnode,
				 lisp_qsort(get_path_hashclauses((HashPath) pathnode),
							xfunc_clause_compare));
		for (tmplist = get_path_hashclauses((HashPath) pathnode), selec = 1.0;
			 tmplist != LispNil;
			 tmplist = lnext(tmplist))
		{
			cost += (Cost) (xfunc_local_expense(lfirst(tmplist))
					  * (Cost) get_tuples(get_parent(pathnode)) * selec);
			selec *= compute_clause_selec(queryInfo,
										  lfirst(tmplist), LispNil);
		}
	}
	if (IsA(pathnode, MergePath))
	{
		if (XfuncMode != XFUNC_OFF)
			set_path_mergeclauses
				((MergePath) pathnode,
				 lisp_qsort(get_path_mergeclauses((MergePath) pathnode),
							xfunc_clause_compare));
		for (tmplist = get_path_mergeclauses((MergePath) pathnode), selec = 1.0;
			 tmplist != LispNil;
			 tmplist = lnext(tmplist))
		{
			cost += (Cost) (xfunc_local_expense(lfirst(tmplist))
					  * (Cost) get_tuples(get_parent(pathnode)) * selec);
			selec *= compute_clause_selec(queryInfo,
										  lfirst(tmplist), LispNil);
		}
	}
	Assert(cost >= 0);
	return cost;
}

/*
 ** Recalculate the cost of a path node.  This includes the basic cost of the
 ** node, as well as the cost of its expensive functions.
 ** We need to do this to the parent after pulling a clause from a child into a
 ** parent.  Thus we should only be calling this function on JoinPaths.
 */
Cost
xfunc_total_path_cost(JoinPath pathnode)
{
	Cost		cost = xfunc_get_path_cost((Path) pathnode);

	Assert(IsA(pathnode, JoinPath));
	if (IsA(pathnode, MergePath))
	{
		MergePath	mrgnode = (MergePath) pathnode;

		cost += cost_mergejoin(get_path_cost((Path) get_outerjoinpath(mrgnode)),
						get_path_cost((Path) get_innerjoinpath(mrgnode)),
							   get_outersortkeys(mrgnode),
							   get_innersortkeys(mrgnode),
						   get_tuples(get_parent((Path) get_outerjoinpath
												 (mrgnode))),
						   get_tuples(get_parent((Path) get_innerjoinpath
												 (mrgnode))),
							get_width(get_parent((Path) get_outerjoinpath
												 (mrgnode))),
							get_width(get_parent((Path) get_innerjoinpath
												 (mrgnode))));
		Assert(cost >= 0);
		return cost;
	}
	else if (IsA(pathnode, HashPath))
	{
		HashPath hashnode = (HashPath) pathnode;

		cost += cost_hashjoin(get_path_cost((Path) get_outerjoinpath(hashnode)),
					   get_path_cost((Path) get_innerjoinpath(hashnode)),
							  get_outerhashkeys(hashnode),
							  get_innerhashkeys(hashnode),
						   get_tuples(get_parent((Path) get_outerjoinpath
												 (hashnode))),
						   get_tuples(get_parent((Path) get_innerjoinpath
												 (hashnode))),
							get_width(get_parent((Path) get_outerjoinpath
												 (hashnode))),
							get_width(get_parent((Path) get_innerjoinpath
												 (hashnode))));
		Assert(cost >= 0);
		return cost;
	}
	else
/* Nested Loop Join */
	{
		cost += cost_nestloop(get_path_cost((Path) get_outerjoinpath(pathnode)),
					   get_path_cost((Path) get_innerjoinpath(pathnode)),
						   get_tuples(get_parent((Path) get_outerjoinpath
												 (pathnode))),
						   get_tuples(get_parent((Path) get_innerjoinpath
												 (pathnode))),
							get_pages(get_parent((Path) get_outerjoinpath
												 (pathnode))),
							IsA(get_innerjoinpath(pathnode), IndexPath));
		Assert(cost >= 0);
		return cost;
	}
}


/*
 ** xfunc_expense_per_tuple
 **    return the expense of the join *per-tuple* of the input relation.
 ** The cost model here is that a join costs
 **		k*card(outer)*card(inner) + l*card(outer) + m*card(inner) + n
 **
 ** We treat the l and m terms by considering them to be like restrictions
 ** constrained to be right under the join.  Thus the cost per inner and
 ** cost per outer of the join is different, reflecting these virtual nodes.
 **
 ** The cost per tuple of outer is k + l/referenced(inner).  Cost per tuple
 ** of inner is k + m/referenced(outer).
 ** The constants k, l, m and n depend on the join method.	Measures here are
 ** based on the costs in costsize.c, with fudging for HashJoin and Sorts to
 ** make it fit our model (the 'q' in HashJoin results in a
 ** card(outer)/card(inner) term, and sorting results in a log term.

 */
Cost
xfunc_expense_per_tuple(JoinPath joinnode, int whichchild)
{
	RelOptInfo	outerrel = get_parent((Path) get_outerjoinpath(joinnode));
	RelOptInfo	innerrel = get_parent((Path) get_innerjoinpath(joinnode));
	Count		outerwidth = get_width(outerrel);
	Count		outers_per_page = ceil(BLCKSZ / (outerwidth + MinTupleSize));

	if (IsA(joinnode, HashPath))
	{
		if (whichchild == INNER)
			return (1 + _CPU_PAGE_WEIGHT_) * outers_per_page / NBuffers;
		else
			return (((1 + _CPU_PAGE_WEIGHT_) * outers_per_page / NBuffers)
					+ _CPU_PAGE_WEIGHT_
					/ xfunc_card_product(get_relids(innerrel)));
	}
	else if (IsA(joinnode, MergePath))
	{
		/* assumes sort exists, and costs one (I/O + CPU) per tuple */
		if (whichchild == INNER)
			return ((2 * _CPU_PAGE_WEIGHT_ + 1)
					/ xfunc_card_product(get_relids(outerrel)));
		else
			return ((2 * _CPU_PAGE_WEIGHT_ + 1)
					/ xfunc_card_product(get_relids(innerrel)));
	}
	else
/* nestloop */
	{
		Assert(IsA(joinnode, JoinPath));
		return _CPU_PAGE_WEIGHT_;
	}
}

/*
 ** xfunc_fixvars
 ** After pulling up a clause, we must walk its expression tree, fixing Var
 ** nodes to point to the correct varno (either INNER or OUTER, depending
 ** on which child the clause was pulled from), and the right varattno in the
 ** target list of the child's former relation.  If the target list of the
 ** child RelOptInfo does not contain the attribute we need, we add it.
 */
void
xfunc_fixvars(LispValue clause, /* clause being pulled up */
			  RelOptInfo rel,	/* rel it's being pulled from */
			  int varno)		/* whether rel is INNER or OUTER of join */
{
	LispValue	tmpclause;		/* temporary variable */
	TargetEntry *tle;			/* tlist member corresponding to var */


	if (IsA(clause, Const) ||IsA(clause, Param))
		return;
	else if (IsA(clause, Var))
	{
		/* here's the meat */
		tle = tlistentry_member((Var) clause, get_targetlist(rel));
		if (tle == LispNil)
		{

			/*
			 * * The attribute we need is not in the target list, * so we
			 * have to add it. *
			 *
			 */
			add_var_to_tlist(rel, (Var) clause);
			tle = tlistentry_member((Var) clause, get_targetlist(rel));
		}
		set_varno(((Var) clause), varno);
		set_varattno(((Var) clause), get_resno(get_resdom(get_entry(tle))));
	}
	else if (IsA(clause, Iter))
		xfunc_fixvars(get_iterexpr((Iter) clause), rel, varno);
	else if (fast_is_clause(clause))
	{
		xfunc_fixvars(lfirst(lnext(clause)), rel, varno);
		xfunc_fixvars(lfirst(lnext(lnext(clause))), rel, varno);
	}
	else if (fast_is_funcclause(clause))
		for (tmpclause = lnext(clause); tmpclause != LispNil;
			 tmpclause = lnext(tmpclause))
			xfunc_fixvars(lfirst(tmpclause), rel, varno);
	else if (fast_not_clause(clause))
		xfunc_fixvars(lsecond(clause), rel, varno);
	else if (fast_or_clause(clause) || fast_and_clause(clause))
		for (tmpclause = lnext(clause); tmpclause != LispNil;
			 tmpclause = lnext(tmpclause))
			xfunc_fixvars(lfirst(tmpclause), rel, varno);
	else
		elog(ERROR, "Clause node of undetermined type");
}


/*
 ** Comparison function for lisp_qsort() on a list of RestrictInfo's.
 ** arg1 and arg2 should really be of type (RestrictInfo *).
 */
int
xfunc_cinfo_compare(void *arg1, void *arg2)
{
	RestrictInfo info1 = *(RestrictInfo *) arg1;
	RestrictInfo info2 = *(RestrictInfo *) arg2;

	LispValue	clause1 = (LispValue) get_clause(info1),
				clause2 = (LispValue) get_clause(info2);

	return xfunc_clause_compare((void *) &clause1, (void *) &clause2);
}

/*
 ** xfunc_clause_compare: comparison function for lisp_qsort() that compares two
 ** clauses based on expense/(1 - selectivity)
 ** arg1 and arg2 are really pointers to clauses.
 */
int
xfunc_clause_compare(void *arg1, void *arg2)
{
	LispValue	clause1 = *(LispValue *) arg1;
	LispValue	clause2 = *(LispValue *) arg2;
	Cost		rank1,			/* total xfunc rank of clause1 */
				rank2;			/* total xfunc rank of clause2 */

	rank1 = xfunc_rank(clause1);
	rank2 = xfunc_rank(clause2);

	if (rank1 < rank2)
		return -1;
	else if (rank1 == rank2)
		return 0;
	else
		return 1;
}

/*
 ** xfunc_disjunct_sort
 **   given a list of clauses, for each clause sort the disjuncts by cost
 **   (this assumes the predicates have been converted to Conjunctive NF)
 **   Modifies the clause list!
 */
void
xfunc_disjunct_sort(LispValue clause_list)
{
	LispValue	temp;

	foreach(temp, clause_list)
		if (or_clause(lfirst(temp)))
		lnext(lfirst(temp)) = lisp_qsort(lnext(lfirst(temp)), xfunc_disjunct_compare);
}


/*
 ** xfunc_disjunct_compare: comparison function for qsort() that compares two
 ** disjuncts based on cost/selec.
 ** arg1 and arg2 are really pointers to disjuncts
 */
int
xfunc_disjunct_compare(Query *queryInfo, void *arg1, void *arg2)
{
	LispValue	disjunct1 = *(LispValue *) arg1;
	LispValue	disjunct2 = *(LispValue *) arg2;
	Cost		cost1,			/* total cost of disjunct1 */
				cost2,			/* total cost of disjunct2 */
				selec1,
				selec2;
	Cost		rank1,
				rank2;

	cost1 = xfunc_expense(queryInfo, disjunct1);
	cost2 = xfunc_expense(queryInfo, disjunct2);
	selec1 = compute_clause_selec(queryInfo,
								  disjunct1, LispNil);
	selec2 = compute_clause_selec(queryInfo,
								  disjunct2, LispNil);

	if (selec1 == 0)
		rank1 = MAXFLOAT;
	else if (cost1 == 0)
		rank1 = 0;
	else
		rank1 = cost1 / selec1;

	if (selec2 == 0)
		rank2 = MAXFLOAT;
	else if (cost2 == 0)
		rank2 = 0;
	else
		rank2 = cost2 / selec2;

	if (rank1 < rank2)
		return -1;
	else if (rank1 == rank2)
		return 0;
	else
		return 1;
}

/* ------------------------ UTILITY FUNCTIONS ------------------------------- */
/*
 ** xfunc_func_width
 **    Given a function OID and operands, find the width of the return value.
 */
int
xfunc_func_width(RegProcedure funcid, LispValue args)
{
	Relation	rd;				/* Relation Descriptor */
	HeapTuple	tupl;			/* structure to hold a cached tuple */
	Form_pg_proc proc;			/* structure to hold the pg_proc tuple */
	Form_pg_type type;			/* structure to hold the pg_type tuple */
	LispValue	tmpclause;
	int			retval;

	/* lookup function and find its return type */
	Assert(RegProcedureIsValid(funcid));
	tupl = SearchSysCacheTuple(PROOID,
							   ObjectIdGetDatum(funcid),
							   0, 0, 0);
	if (!HeapTupleIsValid(tupl))
		elog(ERROR, "Cache lookup failed for procedure %u", funcid);
	proc = (Form_pg_proc) GETSTRUCT(tupl);

	/* if function returns a tuple, get the width of that */
	if (typeidTypeRelids(proc->prorettype))
	{
		rd = heap_open(typeidTypeRelids(proc->prorettype));
		retval = xfunc_tuple_width(rd);
		heap_close(rd);
		goto exit;
	}
	else
/* function returns a base type */
	{
		tupl = SearchSysCacheTuple(TYPOID,
								   ObjectIdGetDatum(proc->prorettype),
								   0, 0, 0);
		if (!HeapTupleIsValid(tupl))
			elog(ERROR, "Cache lookup failed for type %u", proc->prorettype);
		type = (Form_pg_type) GETSTRUCT(tupl);
		/* if the type length is known, return that */
		if (type->typlen != -1)
		{
			retval = type->typlen;
			goto exit;
		}
		else
/* estimate the return size */
		{
			/* find width of the function's arguments */
			for (tmpclause = args; tmpclause != LispNil;
				 tmpclause = lnext(tmpclause))
				retval += xfunc_width(lfirst(tmpclause));
			/* multiply by outin_ratio */
			retval = (int) (proc->prooutin_ratio / 100.0 * retval);
			goto exit;
		}
	}
exit:
	return retval;
}

/*
 ** xfunc_tuple_width
 **		Return the sum of the lengths of all the attributes of a given relation
 */
int
xfunc_tuple_width(Relation rd)
{
	int			i;
	int			retval = 0;
	TupleDesc	tdesc = RelationGetDescr(rd);

	for (i = 0; i < tdesc->natts; i++)
	{
		if (tdesc->attrs[i]->attlen != -1)
			retval += tdesc->attrs[i]->attlen;
		else
			retval += VARLEN_DEFAULT;
	}

	return retval;
}

/*
 ** xfunc_num_join_clauses
 **   Find the number of join clauses associated with this join path
 */
int
xfunc_num_join_clauses(JoinPath path)
{
	int			num = length(get_pathrestrictinfo(path));

	if (IsA(path, MergePath))
		return num + length(get_path_mergeclauses((MergePath) path));
	else if (IsA(path, HashPath))
		return num + length(get_path_hashclauses((HashPath) path));
	else
		return num;
}

/*
 ** xfunc_LispRemove
 **   Just like LispRemove, but it whines if the item to be removed ain't there
 */
LispValue
xfunc_LispRemove(LispValue foo, List bar)
{
	LispValue	temp = LispNil;
	LispValue	result = LispNil;
	int			sanity = false;

	for (temp = bar; !null(temp); temp = lnext(temp))
		if (!equal((Node) (foo), (Node) (lfirst(temp))))
			result = lappend(result, lfirst(temp));
		else
			sanity = true;		/* found a matching item to remove! */

	if (!sanity)
		elog(ERROR, "xfunc_LispRemove: didn't find a match!");

	return result;
}

#define Node_Copy(a, b, c, d) \
do { \
	if (NodeCopy((Node)((a)->d), (Node*)&((b)->d), c) != true) \
	{ \
		return false; \
	} \
} while(0)

/*
 ** xfunc_copyrel
 **   Just like _copyRel, but doesn't copy the paths
 */
bool
xfunc_copyrel(RelOptInfo from, RelOptInfo *to)
{
	RelOptInfo	newnode;

	Pointer		(*alloc) () = palloc;

	/* COPY_CHECKARGS() */
	if (to == NULL)
		return false;

	/* COPY_CHECKNULL() */
	if (from == NULL)
	{
		(*to) = NULL;
		return true;
	}

	/* COPY_NEW(c) */
	newnode = (RelOptInfo) (*alloc) (classSize(RelOptInfo));
	if (newnode == NULL)
		return false;

	/* ----------------
	 *	copy node superclass fields
	 * ----------------
	 */
	CopyNodeFields((Node) from, (Node) newnode, alloc);

	/* ----------------
	 *	copy remainder of node
	 * ----------------
	 */
	Node_Copy(from, newnode, alloc, relids);

	newnode->indexed = from->indexed;
	newnode->pages = from->pages;
	newnode->tuples = from->tuples;
	newnode->size = from->size;
	newnode->width = from->width;

	Node_Copy(from, newnode, alloc, targetlist);

	/*
	 * No!!!!	 Node_Copy(from, newnode, alloc, pathlist);
	 * Node_Copy(from, newnode, alloc, unorderedpath); Node_Copy(from,
	 * newnode, alloc, cheapestpath);
	 */
#if 0							/* can't use Node_copy now. 2/95 -ay */
	Node_Copy(from, newnode, alloc, classlist);
	Node_Copy(from, newnode, alloc, indexkeys);
	Node_Copy(from, newnode, alloc, ordering);
#endif
	Node_Copy(from, newnode, alloc, restrictinfo);
	Node_Copy(from, newnode, alloc, joininfo);
	Node_Copy(from, newnode, alloc, innerjoin);

	(*to) = newnode;
	return true;
}