1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
<!-- $PostgreSQL: pgsql/doc/src/sgml/sql.sgml,v 1.42 2006/09/16 00:30:15 momjian Exp $ -->
<chapter id="sql-intro">
<title>SQL</title>
<abstract>
<para>
This chapter introduces the mathematical concepts behind
relational databases. It is not required reading, so if you bog
down or want to get straight to some simple examples feel free to
jump ahead to the next chapter and come back when you have more
time and patience. This stuff is supposed to be fun!
</para>
<para>
This material originally appeared as a part of
Stefan Simkovics' Master's Thesis
(<xref linkend="SIM98" endterm="SIM98">).
</para>
</abstract>
<para>
<acronym>SQL</acronym> has become the most popular relational query
language.
The name <quote><acronym>SQL</acronym></quote> is an abbreviation for
<firstterm>Structured Query Language</firstterm>.
In 1974 Donald Chamberlin and others defined the
language SEQUEL (<firstterm>Structured English Query
Language</firstterm>) at IBM
Research. This language was first implemented in an IBM
prototype called SEQUEL-XRM in 1974-75. In 1976-77 a revised version
of SEQUEL called SEQUEL/2 was defined and the name was changed to
<acronym>SQL</acronym>
subsequently.
</para>
<para>
A new prototype called System R was developed by IBM in 1977. System R
implemented a large subset of SEQUEL/2 (now <acronym>SQL</acronym>)
and a number of
changes were made to <acronym>SQL</acronym> during the project.
System R was installed in
a number of user sites, both internal IBM sites and also some selected
customer sites. Thanks to the success and acceptance of System R at
those user sites IBM started to develop commercial products that
implemented the <acronym>SQL</acronym> language based on the System
R technology.
</para>
<para>
Over the next years IBM and also a number of other vendors announced
<acronym>SQL</acronym> products such as
<productname>SQL/DS</productname> (IBM),
<productname>DB2</productname> (IBM),
<productname>ORACLE</productname> (Oracle Corp.),
<productname>DG/SQL</productname> (Data General Corp.),
and <productname>SYBASE</productname> (Sybase Inc.).
</para>
<para>
<acronym>SQL</acronym> is also an official standard now. In 1982
the American National
Standards Institute (<acronym>ANSI</acronym>) chartered its
Database Committee X3H2 to
develop a proposal for a standard relational language. This proposal
was ratified in 1986 and consisted essentially of the IBM dialect of
<acronym>SQL</acronym>. In 1987 this <acronym>ANSI</acronym>
standard was also accepted as an international
standard by the International Organization for Standardization
(<acronym>ISO</acronym>).
This original standard version of <acronym>SQL</acronym> is often
referred to,
informally, as <quote><abbrev>SQL/86</abbrev></quote>. In 1989 the original
standard was extended
and this new standard is often, again informally, referred to as
<quote><abbrev>SQL/89</abbrev></quote>. Also in 1989, a related standard called
<firstterm>Database Language Embedded <acronym>SQL</acronym></firstterm>
(<acronym>ESQL</acronym>) was developed.
</para>
<para>
The <acronym>ISO</acronym> and <acronym>ANSI</acronym> committees
have been working for many years on the
definition of a greatly expanded version of the original standard,
referred to informally as <firstterm><acronym>SQL2</acronym></firstterm>
or <firstterm><acronym>SQL/92</acronym></firstterm>. This version became a
ratified standard - <quote>International Standard ISO/IEC 9075:1992,
Database Language <acronym>SQL</acronym></quote> - in late 1992.
<acronym>SQL/92</acronym> is the version
normally meant when people refer to <quote>the <acronym>SQL</acronym>
standard</quote>. A detailed
description of <acronym>SQL/92</acronym> is given in
<xref linkend="DATE97" endterm="DATE97">. At the time of
writing this document a new standard informally referred to
as <firstterm><acronym>SQL3</acronym></firstterm>
is under development. It is planned to make <acronym>SQL</acronym>
a Turing-complete
language, i.e. all computable queries (e.g. recursive queries) will be
possible. This has now been completed as SQL:2003.
</para>
<sect1 id="rel-model">
<title>The Relational Data Model</title>
<para>
As mentioned before, <acronym>SQL</acronym> is a relational
language. That means it is
based on the <firstterm>relational data model</firstterm>
first published by E.F. Codd in
1970. We will give a formal description of the relational model
later (in
<xref linkend="formal-notion" endterm="formal-notion">)
but first we want to have a look at it from a more intuitive
point of view.
</para>
<para>
A <firstterm>relational database</firstterm> is a database that is
perceived by its
users as a <firstterm>collection of tables</firstterm> (and
nothing else but tables).
A table consists of rows and columns where each row represents a
record and each column represents an attribute of the records
contained in the table.
<xref linkend="supplier-fig" endterm="supplier-fig">
shows an example of a database consisting of three tables:
<itemizedlist>
<listitem>
<para>
SUPPLIER is a table storing the number
(SNO), the name (SNAME) and the city (CITY) of a supplier.
</para>
</listitem>
<listitem>
<para>
PART is a table storing the number (PNO) the name (PNAME) and
the price (PRICE) of a part.
</para>
</listitem>
<listitem>
<para>
SELLS stores information about which part (PNO) is sold by which
supplier (SNO).
It serves in a sense to connect the other two tables together.
</para>
</listitem>
</itemizedlist>
<example>
<title id="supplier-fig">The Suppliers and Parts Database</title>
<programlisting>
SUPPLIER: SELLS:
SNO | SNAME | CITY SNO | PNO
----+---------+-------- -----+-----
1 | Smith | London 1 | 1
2 | Jones | Paris 1 | 2
3 | Adams | Vienna 2 | 4
4 | Blake | Rome 3 | 1
3 | 3
4 | 2
PART: 4 | 3
PNO | PNAME | PRICE 4 | 4
----+---------+---------
1 | Screw | 10
2 | Nut | 8
3 | Bolt | 15
4 | Cam | 25
</programlisting>
</example>
</para>
<para>
The tables PART and SUPPLIER may be regarded as
<firstterm>entities</firstterm> and
SELLS may be regarded as a <firstterm>relationship</firstterm>
between a particular
part and a particular supplier.
</para>
<para>
As we will see later, <acronym>SQL</acronym> operates on tables
like the ones just
defined but before that we will study the theory of the relational
model.
</para>
</sect1>
<sect1 id="relmodel-formal">
<title id="formal-notion">Relational Data Model Formalities</title>
<para>
The mathematical concept underlying the relational model is the
set-theoretic <firstterm>relation</firstterm> which is a subset of
the Cartesian
product of a list of domains. This set-theoretic relation gives
the model its name (do not confuse it with the relationship from the
<firstterm>Entity-Relationship model</firstterm>).
Formally a domain is simply a set of
values. For example the set of integers is a domain. Also the set of
character strings of length 20 and the real numbers are examples of
domains.
</para>
<para>
<!--
\begin{definition}
The <firstterm>Cartesian product</firstterm> of domains $D_{1},
D_{2},\ldots, D_{k}$ written
\mbox{$D_{1} \times D_{2} \times \ldots \times D_{k}$} is the set of
all $k$-tuples $(v_{1},v_{2},\ldots,v_{k})$ such that \mbox{$v_{1} \in
D_{1}, v_{2} \in D_{2}, \ldots, v_{k} \in D_{k}$}.
\end{definition}
-->
The <firstterm>Cartesian product</firstterm> of domains
<parameter>D<subscript>1</subscript></parameter>,
<parameter>D<subscript>2</subscript></parameter>,
...
<parameter>D<subscript>k</subscript></parameter>,
written
<parameter>D<subscript>1</subscript></parameter> ×
<parameter>D<subscript>2</subscript></parameter> ×
... ×
<parameter>D<subscript>k</subscript></parameter>
is the set of all k-tuples
<parameter>v<subscript>1</subscript></parameter>,
<parameter>v<subscript>2</subscript></parameter>,
...
<parameter>v<subscript>k</subscript></parameter>,
such that
<parameter>v<subscript>1</subscript></parameter> ∈
<parameter>D<subscript>1</subscript></parameter>,
<parameter>v<subscript>2</subscript></parameter> ∈
<parameter>D<subscript>2</subscript></parameter>,
...
<parameter>v<subscript>k</subscript></parameter> ∈
<parameter>D<subscript>k</subscript></parameter>.
</para>
<para>
For example, when we have
<!--
$k=2$, $D_{1}=\{0,1\}$ and
$D_{2}=\{a,b,c\}$, then $D_{1} \times D_{2}$ is
$\{(0,a),(0,b),(0,c),(1,a),(1,b),(1,c)\}$.
-->
<parameter>k</parameter>=2,
<parameter>D<subscript>1</subscript></parameter>=<literal>{0,1}</literal> and
<parameter>D<subscript>2</subscript></parameter>=<literal>{a,b,c}</literal> then
<parameter>D<subscript>1</subscript></parameter> ×
<parameter>D<subscript>2</subscript></parameter> is
<literal>{(0,a),(0,b),(0,c),(1,a),(1,b),(1,c)}</literal>.
</para>
<para>
<!--
\begin{definition}
A Relation is any subset of the Cartesian product of one or more
domains: $R \subseteq$ \mbox{$D_{1} \times D_{2} \times \ldots \times D_{k}$}
\end{definition}
-->
A Relation is any subset of the Cartesian product of one or more
domains: <parameter>R</parameter> ⊆
<parameter>D<subscript>1</subscript></parameter> ×
<parameter>D<subscript>2</subscript></parameter> ×
... ×
<parameter>D<subscript>k</subscript></parameter>.
</para>
<para>
For example <literal>{(0,a),(0,b),(1,a)}</literal> is a relation;
it is in fact a subset of
<parameter>D<subscript>1</subscript></parameter> ×
<parameter>D<subscript>2</subscript></parameter>
mentioned above.
</para>
<para>
The members of a relation are called tuples. Each relation of some
Cartesian product
<parameter>D<subscript>1</subscript></parameter> ×
<parameter>D<subscript>2</subscript></parameter> ×
... ×
<parameter>D<subscript>k</subscript></parameter>
is said to have arity <literal>k</literal> and is therefore a set
of <literal>k</literal>-tuples.
</para>
<para>
A relation can be viewed as a table (as we already did, remember
<xref linkend="supplier-fig" endterm="supplier-fig"> where
every tuple is represented by a row and every column corresponds to
one component of a tuple. Giving names (called attributes) to the
columns leads to the definition of a
<firstterm>relation scheme</firstterm>.
</para>
<para>
<!--
\begin{definition}
A {\it relation scheme} $R$ is a finite set of attributes
\mbox{$\{A_{1},A_{2},\ldots,A_{k}\}$}. There is a domain $D_{i}$ for
each attribute $A_{i}, 1 \le i \le k$ where the values of the
attributes are taken from. We often write a relation scheme as
\mbox{$R(A_{1},A_{2},\ldots,A_{k})$}.
\end{definition}
-->
A <firstterm>relation scheme</firstterm> <literal>R</literal> is a
finite set of attributes
<parameter>A<subscript>1</subscript></parameter>,
<parameter>A<subscript>2</subscript></parameter>,
...
<parameter>A<subscript>k</subscript></parameter>.
There is a domain
<parameter>D<subscript>i</subscript></parameter>,
for each attribute
<parameter>A<subscript>i</subscript></parameter>,
1 <= <literal>i</literal> <= <literal>k</literal>,
where the values of the attributes are taken from. We often write
a relation scheme as
<literal>R(<parameter>A<subscript>1</subscript></parameter>,
<parameter>A<subscript>2</subscript></parameter>,
...
<parameter>A<subscript>k</subscript></parameter>)</literal>.
<note>
<para>
A <firstterm>relation scheme</firstterm> is just a kind of template
whereas a <firstterm>relation</firstterm> is an instance of a
<firstterm>relation
scheme</firstterm>. The relation consists of tuples (and can
therefore be
viewed as a table); not so the relation scheme.
</para>
</note>
</para>
<sect2>
<title id="domains">Domains vs. Data Types</title>
<para>
We often talked about <firstterm>domains</firstterm>
in the last section. Recall that a
domain is, formally, just a set of values (e.g., the set of integers or
the real numbers). In terms of database systems we often talk of
<firstterm>data types</firstterm> instead of domains.
When we define a table we have to make
a decision about which attributes to include. Additionally we
have to decide which kind of data is going to be stored as
attribute values. For example the values of
<classname>SNAME</classname> from the table
<classname>SUPPLIER</classname> will be character strings,
whereas <classname>SNO</classname> will store
integers. We define this by assigning a data type to each
attribute. The type of <classname>SNAME</classname> will be
<type>VARCHAR(20)</type> (this is the <acronym>SQL</acronym> type
for character strings of length <= 20),
the type of <classname>SNO</classname> will be
<type>INTEGER</type>. With the assignment of a data type we also
have selected
a domain for an attribute. The domain of
<classname>SNAME</classname> is the set of all
character strings of length <= 20,
the domain of <classname>SNO</classname> is the set of
all integer numbers.
</para>
</sect2>
</sect1>
<sect1 id="relmodel-oper">
<title id="operations">Operations in the Relational Data Model</title>
<para>
In the previous section
(<xref linkend="formal-notion" endterm="formal-notion">)
we defined the mathematical notion of
the relational model. Now we know how the data can be stored using a
relational data model but we do not know what to do with all these
tables to retrieve something from the database yet. For example somebody
could ask for the names of all suppliers that sell the part
'Screw'. Therefore two rather different kinds of notations for
expressing operations on relations have been defined:
<itemizedlist>
<listitem>
<para>
The <firstterm>Relational Algebra</firstterm> which is an
algebraic notation,
where queries are expressed by applying specialized operators to the
relations.
</para>
</listitem>
<listitem>
<para>
The <firstterm>Relational Calculus</firstterm> which is a
logical notation,
where queries are expressed by formulating some logical restrictions
that the tuples in the answer must satisfy.
</para>
</listitem>
</itemizedlist>
</para>
<sect2>
<title id="rel-alg">Relational Algebra</title>
<para>
The <firstterm>Relational Algebra</firstterm> was introduced by
E. F. Codd in 1972. It consists of a set of operations on relations:
<itemizedlist>
<listitem>
<para>
SELECT (σ): extracts <firstterm>tuples</firstterm> from
a relation that
satisfy a given restriction. Let <parameter>R</parameter> be a
table that contains an attribute
<parameter>A</parameter>.
σ<subscript>A=a</subscript>(R) = {t ∈ R ∣ t(A) = a}
where <literal>t</literal> denotes a
tuple of <parameter>R</parameter> and <literal>t(A)</literal>
denotes the value of attribute <parameter>A</parameter> of
tuple <literal>t</literal>.
</para>
</listitem>
<listitem>
<para>
PROJECT (π): extracts specified
<firstterm>attributes</firstterm> (columns) from a
relation. Let <classname>R</classname> be a relation
that contains an attribute <classname>X</classname>.
π<subscript>X</subscript>(<classname>R</classname>) = {t(X) ∣ t ∈ <classname>R</classname>},
where <literal>t</literal>(<classname>X</classname>) denotes the value of
attribute <classname>X</classname> of tuple <literal>t</literal>.
</para>
</listitem>
<listitem>
<para>
PRODUCT (×): builds the Cartesian product of two
relations. Let <classname>R</classname> be a table with arity
<literal>k</literal><subscript>1</subscript> and let
<classname>S</classname> be a table with
arity <literal>k</literal><subscript>2</subscript>.
<classname>R</classname> × <classname>S</classname>
is the set of all
<literal>k</literal><subscript>1</subscript>
+ <literal>k</literal><subscript>2</subscript>-tuples
whose first <literal>k</literal><subscript>1</subscript>
components form a tuple in <classname>R</classname> and whose last
<literal>k</literal><subscript>2</subscript> components form a
tuple in <classname>S</classname>.
</para>
</listitem>
<listitem>
<para>
UNION (∪): builds the set-theoretic union of two
tables. Given the tables <classname>R</classname> and
<classname>S</classname> (both must have the same arity),
the union <classname>R</classname> ∪ <classname>S</classname>
is the set of tuples that are in <classname>R</classname>
or <classname>S</classname> or both.
</para>
</listitem>
<listitem>
<para>
INTERSECT (∩): builds the set-theoretic intersection of two
tables. Given the tables <classname>R</classname> and
<classname>S</classname>,
<classname>R</classname> ∩ <classname>S</classname> is the
set of tuples
that are in <classname>R</classname> and in
<classname>S</classname>.
We again require that <classname>R</classname> and
<classname>S</classname> have the
same arity.
</para>
</listitem>
<listitem>
<para>
DIFFERENCE (− or ∖): builds the set difference of
two tables. Let <classname>R</classname> and <classname>S</classname>
again be two tables with the same
arity. <classname>R</classname> - <classname>S</classname>
is the set of tuples in <classname>R</classname> but not in
<classname>S</classname>.
</para>
</listitem>
<listitem>
<para>
JOIN (∏): connects two tables by their common
attributes. Let <classname>R</classname> be a table with the
attributes <classname>A</classname>,<classname>B</classname>
and <classname>C</classname> and
let <classname>S</classname> be a table with the attributes
<classname>C</classname>,<classname>D</classname>
and <classname>E</classname>. There is one
attribute common to both relations,
the attribute <classname>C</classname>.
<!--
<classname>R</classname> ∏ <classname>S</classname> =
π<subscript><classname>R</classname>.<classname>A</classname>,<classname>R</classname>.<classname>B</classname>,<classname>R</classname>.<classname>C</classname>,<classname>S</classname>.<classname>D</classname>,<classname>S</classname>.<classname>E</classname></subscript>(σ<subscript><classname>R</classname>.<classname>C</classname>=<classname>S</classname>.<classname>C</classname></subscript>(<classname>R</classname> × <classname>S</classname>)).
-->
R ∏ S = π<subscript>R.A,R.B,R.C,S.D,S.E</subscript>(σ<subscript>R.C=S.C</subscript>(R × S)).
What are we doing here? We first calculate the Cartesian
product
<classname>R</classname> × <classname>S</classname>.
Then we select those tuples whose values for the common
attribute <classname>C</classname> are equal
(σ<subscript>R.C = S.C</subscript>).
Now we have a table
that contains the attribute <classname>C</classname>
two times and we correct this by
projecting out the duplicate column.
</para>
<example>
<title id="join-example">An Inner Join</title>
<para>
Let's have a look at the tables that are produced by evaluating the steps
necessary for a join.
Let the following two tables be given:
<programlisting>
R: S:
A | B | C C | D | E
---+---+--- ---+---+---
1 | 2 | 3 3 | a | b
4 | 5 | 6 6 | c | d
7 | 8 | 9
</programlisting>
</para>
</example>
<para>
First we calculate the Cartesian product
<classname>R</classname> × <classname>S</classname> and
get:
<programlisting>
R x S:
A | B | R.C | S.C | D | E
---+---+-----+-----+---+---
1 | 2 | 3 | 3 | a | b
1 | 2 | 3 | 6 | c | d
4 | 5 | 6 | 3 | a | b
4 | 5 | 6 | 6 | c | d
7 | 8 | 9 | 3 | a | b
7 | 8 | 9 | 6 | c | d
</programlisting>
</para>
<para>
After the selection
σ<subscript>R.C=S.C</subscript>(R × S)
we get:
<programlisting>
A | B | R.C | S.C | D | E
---+---+-----+-----+---+---
1 | 2 | 3 | 3 | a | b
4 | 5 | 6 | 6 | c | d
</programlisting>
</para>
<para>
To remove the duplicate column
<classname>S</classname>.<classname>C</classname>
we project it out by the following operation:
π<subscript>R.A,R.B,R.C,S.D,S.E</subscript>(σ<subscript>R.C=S.C</subscript>(R × S))
and get:
<programlisting>
A | B | C | D | E
---+---+---+---+---
1 | 2 | 3 | a | b
4 | 5 | 6 | c | d
</programlisting>
</para>
</listitem>
<listitem>
<para>
DIVIDE (÷): Let <classname>R</classname> be a table
with the attributes A, B, C, and D and let
<classname>S</classname> be a table with the attributes
C and D.
Then we define the division as:
<programlisting>
R ÷ S = {t ∣ ∀ t<subscript>s</subscript> ∈ S ∃ t<subscript>r</subscript> ∈ R
</programlisting>
such that
t<subscript>r</subscript>(A,B)=t∧t<subscript>r</subscript>(C,D)=t<subscript>s</subscript>}
where
t<subscript>r</subscript>(x,y)
denotes a
tuple of table <classname>R</classname> that consists only of
the components <literal>x</literal> and <literal>y</literal>.
Note that the tuple <literal>t</literal> only consists of the
components <classname>A</classname> and
<classname>B</classname> of relation <classname>R</classname>.
</para>
<para id="divide-example">
Given the following tables
<programlisting>
R: S:
A | B | C | D C | D
---+---+---+--- ---+---
a | b | c | d c | d
a | b | e | f e | f
b | c | e | f
e | d | c | d
e | d | e | f
a | b | d | e
</programlisting>
R ÷ S
is derived as
<programlisting>
A | B
---+---
a | b
e | d
</programlisting>
</para>
</listitem>
</itemizedlist>
</para>
<para>
For a more detailed description and definition of the relational
algebra refer to [<xref linkend="ULL88" endterm="ULL88">] or
[<xref linkend="DATE04" endterm="DATE04">].
</para>
<example>
<title id="suppl-rel-alg">A Query Using Relational Algebra</title>
<para>
Recall that we formulated all those relational operators to be able to
retrieve data from the database. Let's return to our example from
the previous
section (<xref linkend="operations" endterm="operations">)
where someone wanted to know the names of all
suppliers that sell the part <literal>Screw</literal>.
This question can be answered
using relational algebra by the following operation:
<programlisting>
π<subscript>SUPPLIER.SNAME</subscript>(σ<subscript>PART.PNAME='Screw'</subscript>(SUPPLIER ∏ SELLS ∏ PART))
</programlisting>
</para>
<para>
We call such an operation a query. If we evaluate the above query
against the our example tables
(<xref linkend="supplier-fig" endterm="supplier-fig">)
we will obtain the following result:
<programlisting>
SNAME
-------
Smith
Adams
</programlisting>
</para>
</example>
</sect2>
<sect2 id="rel-calc">
<title>Relational Calculus</title>
<para>
The relational calculus is based on the
<firstterm>first order logic</firstterm>. There are
two variants of the relational calculus:
<itemizedlist>
<listitem>
<para>
The <firstterm>Domain Relational Calculus</firstterm>
(<acronym>DRC</acronym>), where variables
stand for components (attributes) of the tuples.
</para>
</listitem>
<listitem>
<para>
The <firstterm>Tuple Relational Calculus</firstterm>
(<acronym>TRC</acronym>), where variables stand for tuples.
</para>
</listitem>
</itemizedlist>
</para>
<para>
We want to discuss the tuple relational calculus only because it is
the one underlying the most relational languages. For a detailed
discussion on <acronym>DRC</acronym> (and also
<acronym>TRC</acronym>) see
<xref linkend="DATE04" endterm="DATE04">
or
<xref linkend="ULL88" endterm="ULL88">.
</para>
</sect2>
<sect2>
<title>Tuple Relational Calculus</title>
<para>
The queries used in <acronym>TRC</acronym> are of the following
form:
<programlisting>
x(A) ∣ F(x)
</programlisting>
where <literal>x</literal> is a tuple variable
<classname>A</classname> is a set of attributes and <literal>F</literal> is a
formula. The resulting relation consists of all tuples
<literal>t(A)</literal> that satisfy <literal>F(t)</literal>.
</para>
<para>
If we want to answer the question from example
<xref linkend="suppl-rel-alg" endterm="suppl-rel-alg">
using <acronym>TRC</acronym> we formulate the following query:
<programlisting>
{x(SNAME) ∣ x ∈ SUPPLIER ∧
∃ y ∈ SELLS ∃ z ∈ PART (y(SNO)=x(SNO) ∧
z(PNO)=y(PNO) ∧
z(PNAME)='Screw')}
</programlisting>
</para>
<para>
Evaluating the query against the tables from
<xref linkend="supplier-fig" endterm="supplier-fig">
again leads to the same result
as in
<xref linkend="suppl-rel-alg" endterm="suppl-rel-alg">.
</para>
</sect2>
<sect2 id="alg-vs-calc">
<title>Relational Algebra vs. Relational Calculus</title>
<para>
The relational algebra and the relational calculus have the same
<firstterm>expressive power</firstterm>; i.e. all queries that
can be formulated using relational algebra can also be formulated
using the relational calculus and vice versa.
This was first proved by E. F. Codd in
1972. This proof is based on an algorithm (<quote>Codd's reduction
algorithm</quote>) by which an arbitrary expression of the relational
calculus can be reduced to a semantically equivalent expression of
relational algebra. For a more detailed discussion on that refer to
<xref linkend="DATE04" endterm="DATE04">
and
<xref linkend="ULL88" endterm="ULL88">.
</para>
<para>
It is sometimes said that languages based on the relational
calculus are <quote>higher level</quote> or <quote>more
declarative</quote> than languages based on relational algebra
because the algebra (partially) specifies the order of operations
while the calculus leaves it to a compiler or interpreter to
determine the most efficient order of evaluation.
</para>
</sect2>
</sect1>
<sect1 id="sql-language">
<title>The <acronym>SQL</acronym> Language</title>
<para>
As is the case with most modern relational languages,
<acronym>SQL</acronym> is based on the tuple
relational calculus. As a result every query that can be formulated
using the tuple relational calculus (or equivalently, relational
algebra) can also be formulated using
<acronym>SQL</acronym>. There are, however,
capabilities beyond the scope of relational algebra or calculus. Here
is a list of some additional features provided by
<acronym>SQL</acronym> that are not
part of relational algebra or calculus:
<itemizedlist>
<listitem>
<para>
Commands for insertion, deletion or modification of data.
</para>
</listitem>
<listitem>
<para>
Arithmetic capability: In <acronym>SQL</acronym> it is possible
to involve
arithmetic operations as well as comparisons, e.g.
<programlisting>
A < B + 3.
</programlisting>
Note
that + or other arithmetic operators appear neither in relational
algebra nor in relational calculus.
</para>
</listitem>
<listitem>
<para>
Assignment and Print Commands: It is possible to print a
relation constructed by a query and to assign a computed relation to a
relation name.
</para>
</listitem>
<listitem>
<para>
Aggregate Functions: Operations such as
<firstterm>average</firstterm>, <firstterm>sum</firstterm>,
<firstterm>max</firstterm>, etc. can be applied to columns of a
relation to
obtain a single quantity.
</para>
</listitem>
</itemizedlist>
</para>
<sect2 id="select">
<title id="select-title">Select</title>
<para>
The most often used command in <acronym>SQL</acronym> is the
<command>SELECT</command> statement,
used to retrieve data. The syntax is:
<synopsis>
SELECT [ ALL | DISTINCT [ ON ( <replaceable class="PARAMETER">expression</replaceable> [, ...] ) ] ]
* | <replaceable class="PARAMETER">expression</replaceable> [ AS <replaceable class="PARAMETER">output_name</replaceable> ] [, ...]
[ INTO [ TEMPORARY | TEMP ] [ TABLE ] <replaceable class="PARAMETER">new_table</replaceable> ]
[ FROM <replaceable class="PARAMETER">from_item</replaceable> [, ...] ]
[ WHERE <replaceable class="PARAMETER">condition</replaceable> ]
[ GROUP BY <replaceable class="PARAMETER">expression</replaceable> [, ...] ]
[ HAVING <replaceable class="PARAMETER">condition</replaceable> [, ...] ]
[ { UNION | INTERSECT | EXCEPT } [ ALL ] <replaceable class="PARAMETER">select</replaceable> ]
[ ORDER BY <replaceable class="PARAMETER">expression</replaceable> [ ASC | DESC | USING <replaceable class="PARAMETER">operator</replaceable> ] [, ...] ]
[ LIMIT { <replaceable class="PARAMETER">count</replaceable> | ALL } ]
[ OFFSET <replaceable class="PARAMETER">start</replaceable> ]
[ FOR { UPDATE | SHARE } [ OF <replaceable class="parameter">table_name</replaceable> [, ...] ] [ NOWAIT ] [...] ]
</synopsis>
</para>
<para>
Now we will illustrate the complex syntax of the
<command>SELECT</command> statement with various examples. The
tables used for the examples are defined in <xref
linkend="supplier-fig" endterm="supplier-fig">.
</para>
<sect3>
<title>Simple Selects</title>
<para>
Here are some simple examples using a <command>SELECT</command> statement:
<example>
<title id="simple-query">Simple Query with Qualification</title>
<para>
To retrieve all tuples from table PART where the attribute PRICE is
greater than 10 we formulate the following query:
<programlisting>
SELECT * FROM PART
WHERE PRICE > 10;
</programlisting>
and get the table:
<programlisting>
PNO | PNAME | PRICE
-----+---------+--------
3 | Bolt | 15
4 | Cam | 25
</programlisting>
</para>
<para>
Using <quote>*</quote> in the <command>SELECT</command> statement
will deliver all attributes from the table. If we want to retrieve
only the attributes PNAME and PRICE from table PART we use the
statement:
<programlisting>
SELECT PNAME, PRICE
FROM PART
WHERE PRICE > 10;
</programlisting>
In this case the result is:
<programlisting>
PNAME | PRICE
--------+--------
Bolt | 15
Cam | 25
</programlisting>
Note that the <acronym>SQL</acronym> <command>SELECT</command>
corresponds to the <quote>projection</quote> in relational algebra
not to the <quote>selection</quote> (see <xref linkend="rel-alg"
endterm="rel-alg"> for more details).
</para>
<para>
The qualifications in the WHERE clause can also be logically connected
using the keywords OR, AND, and NOT:
<programlisting>
SELECT PNAME, PRICE
FROM PART
WHERE PNAME = 'Bolt' AND
(PRICE = 0 OR PRICE <= 15);
</programlisting>
will lead to the result:
<programlisting>
PNAME | PRICE
--------+--------
Bolt | 15
</programlisting>
</para>
<para>
Arithmetic operations may be used in the target list and in the WHERE
clause. For example if we want to know how much it would cost if we
take two pieces of a part we could use the following query:
<programlisting>
SELECT PNAME, PRICE * 2 AS DOUBLE
FROM PART
WHERE PRICE * 2 < 50;
</programlisting>
and we get:
<programlisting>
PNAME | DOUBLE
--------+---------
Screw | 20
Nut | 16
Bolt | 30
</programlisting>
Note that the word DOUBLE after the keyword AS is the new title of the
second column. This technique can be used for every element of the
target list to assign a new title to the resulting
column. This new title
is often referred to as alias. The alias cannot be used throughout the
rest of the query.
</para>
</example>
</para>
</sect3>
<sect3>
<title>Joins</title>
<para id="simple-join">
The following example shows how <firstterm>joins</firstterm> are
realized in <acronym>SQL</acronym>.
</para>
<para>
To join the three tables SUPPLIER, PART and SELLS over their common
attributes we formulate the following statement:
<programlisting>
SELECT S.SNAME, P.PNAME
FROM SUPPLIER S, PART P, SELLS SE
WHERE S.SNO = SE.SNO AND
P.PNO = SE.PNO;
</programlisting>
and get the following table as a result:
<programlisting>
SNAME | PNAME
-------+-------
Smith | Screw
Smith | Nut
Jones | Cam
Adams | Screw
Adams | Bolt
Blake | Nut
Blake | Bolt
Blake | Cam
</programlisting>
</para>
<para>
In the FROM clause we introduced an alias name for every relation
because there are common named attributes (SNO and PNO) among the
relations. Now we can distinguish between the common named attributes
by simply prefixing the attribute name with the alias name followed by
a dot. The join is calculated in the same way as shown in
<xref linkend="join-example" endterm="join-example">.
First the Cartesian product
SUPPLIER × PART × SELLS
is derived. Now only those tuples satisfying the
conditions given in the WHERE clause are selected (i.e. the common
named attributes have to be equal). Finally we project out all
columns but S.SNAME and P.PNAME.
</para>
<para>
Another way to perform joins is to use the SQL JOIN syntax as follows:
<programlisting>
select sname, pname from supplier
JOIN sells USING (sno)
JOIN part USING (pno);
</programlisting>
giving again:
<programlisting>
sname | pname
-------+-------
Smith | Screw
Adams | Screw
Smith | Nut
Blake | Nut
Adams | Bolt
Blake | Bolt
Jones | Cam
Blake | Cam
(8 rows)
</programlisting>
</para>
<para>
A joined table, created using JOIN syntax, is a table reference list
item that occurs in a FROM clause and before any WHERE, GROUP BY,
or HAVING clause. Other table references, including table names or
other JOIN clauses, may be included in the FROM clause if separated
by commas. JOINed tables are logically like any other
table listed in the FROM clause.
</para>
<para>
SQL JOINs come in two main types, CROSS JOINs (unqualified joins)
and <firstterm>qualified JOINs</>. Qualified joins can be further
subdivided based on the way in which the <firstterm>join condition</>
is specified (ON, USING, or NATURAL) and the way in which it is
applied (INNER or OUTER join).
</para>
<variablelist>
<title>Join Types</title>
<varlistentry>
<term>CROSS JOIN</term>
<listitem>
<cmdsynopsis>
<arg choice="req"> <replaceable class="parameter">T1</replaceable> </arg>
<command> CROSS JOIN </command>
<arg choice="req"> <replaceable class="parameter">T2</replaceable> </arg>
</cmdsynopsis>
<para>
A cross join takes two tables T1 and T2 having N and M rows
respectively, and returns a joined table containing all
N*M possible joined rows. For each row R1 of T1, each row
R2 of T2 is joined with R1 to yield a joined table row JR
consisting of all fields in R1 and R2. A CROSS JOIN is
equivalent to an INNER JOIN ON TRUE.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Qualified JOINs</term>
<listitem>
<cmdsynopsis>
<arg choice="req"> <replaceable class="parameter">T1</replaceable> </arg>
<arg choice="opt"> NATURAL </arg>
<group choice="opt">
<arg choice="opt"> INNER </arg>
<arg>
<group choice="req">
<arg choice="plain"> LEFT </arg>
<arg choice="plain"> RIGHT </arg>
<arg choice="plain"> FULL </arg>
</group>
<arg choice="opt"> OUTER </arg>
</arg>
</group>
<command> JOIN </command>
<arg choice="req"> <replaceable class="parameter">T2</replaceable> </arg>
<group choice="req">
<arg> ON <replaceable>search condition</replaceable></arg>
<arg> USING ( <replaceable>join column list</replaceable> ) </arg>
</group>
</cmdsynopsis>
<para>
A qualified JOIN must specify its join condition
by providing one (and only one) of NATURAL, ON, or
USING. The ON clause
takes a <replaceable>search condition</replaceable>,
which is the same as in a WHERE clause. The USING
clause takes a comma-separated list of column names,
which the joined tables must have in common, and joins
the tables on equality of those columns. NATURAL is
shorthand for a USING clause that lists all the common
column names of the two tables. A side-effect of both
USING and NATURAL is that only one copy of each joined
column is emitted into the result table (compare the
relational-algebra definition of JOIN, shown earlier).
</para>
<!-- begin join semantics -->
<variablelist>
<varlistentry>
<term>
<cmdsynopsis>
<arg> INNER </arg>
<command> JOIN </command>
</cmdsynopsis>
</term>
<listitem>
<para>
For each row R1 of T1, the joined table has a row for each row
in T2 that satisfies the join condition with R1.
</para>
<tip>
<para>
The words INNER and OUTER are optional for all JOINs.
INNER is the default. LEFT, RIGHT, and FULL imply an
OUTER JOIN.
</para>
</tip>
</listitem>
</varlistentry>
<varlistentry>
<term>
<cmdsynopsis>
<arg choice="plain"> LEFT </arg>
<arg> OUTER </arg>
<command> JOIN </command>
</cmdsynopsis>
</term>
<listitem>
<para>
First, an INNER JOIN is performed.
Then, for each row in T1 that does not satisfy the join
condition with any row in T2, an additional joined row is
returned with null fields in the columns from T2.
</para>
<tip>
<para>
The joined table unconditionally has a row for each row in T1.
</para>
</tip>
</listitem>
</varlistentry>
<varlistentry>
<term>
<cmdsynopsis>
<arg choice="plain"> RIGHT </arg>
<arg> OUTER </arg>
<command> JOIN </command>
</cmdsynopsis>
</term>
<listitem>
<para>
First, an INNER JOIN is performed.
Then, for each row in T2 that does not satisfy the join
condition with any row in T1, an additional joined row is
returned with null fields in the columns from T1.
</para>
<tip>
<para>
The joined table unconditionally has a row for each row in T2.
</para>
</tip>
</listitem>
</varlistentry>
<varlistentry>
<term>
<cmdsynopsis>
<arg choice="plain"> FULL </arg>
<arg> OUTER </arg>
<command> JOIN </command>
</cmdsynopsis>
</term>
<listitem>
<para>
First, an INNER JOIN is performed.
Then, for each row in T1 that does not satisfy the join
condition with any row in T2, an additional joined row is
returned with null fields in the columns from T2.
Also, for each row in T2 that does not satisfy the join
condition with any row in T1, an additional joined row is
returned with null fields in the columns from T1.
</para>
<tip>
<para>
The joined table unconditionally has a row for every row of T1
and a row for every row of T2.
</para>
</tip>
</listitem>
</varlistentry>
</variablelist>
<!-- end join semantics -->
</listitem>
</varlistentry>
</variablelist>
<para>
JOINs of all types can be chained together or nested where either or both of
<replaceable class="parameter">T1</replaceable> and
<replaceable class="parameter">T2</replaceable> may be JOINed tables.
Parenthesis can be used around JOIN clauses to control the order
of JOINs which are otherwise processed left to right.
</para>
</sect3>
<sect3>
<title id="aggregates-tutorial">Aggregate Functions</title>
<para>
<acronym>SQL</acronym> provides aggregate functions such as AVG,
COUNT, SUM, MIN, and MAX. The argument(s) of an aggregate function
are evaluated at each row that satisfies the WHERE
clause, and the aggregate function is calculated over this set
of input values. Normally, an aggregate delivers a single
result for a whole <command>SELECT</command> statement. But if
grouping is specified in the query, then a separate calculation
is done over the rows of each group, and an aggregate result is
delivered per group (see next section).
<example>
<title id="aggregates-example">Aggregates</title>
<para>
If we want to know the average cost of all parts in table PART we use
the following query:
<programlisting>
SELECT AVG(PRICE) AS AVG_PRICE
FROM PART;
</programlisting>
</para>
<para>
The result is:
<programlisting>
AVG_PRICE
-----------
14.5
</programlisting>
</para>
<para>
If we want to know how many parts are defined in table PART we use
the statement:
<programlisting>
SELECT COUNT(PNO)
FROM PART;
</programlisting>
and get:
<programlisting>
COUNT
-------
4
</programlisting>
</para>
</example>
</para>
</sect3>
<sect3>
<title>Aggregation by Groups</title>
<para>
<acronym>SQL</acronym> allows one to partition the tuples of a table
into groups. Then the
aggregate functions described above can be applied to the groups —
i.e. the value of the aggregate function is no longer calculated over
all the values of the specified column but over all values of a
group. Thus the aggregate function is evaluated separately for every
group.
</para>
<para>
The partitioning of the tuples into groups is done by using the
keywords <command>GROUP BY</command> followed by a list of
attributes that define the
groups. If we have
<command>GROUP BY A<subscript>1</subscript>, ⃛, A<subscript>k</subscript></command>
we partition
the relation into groups, such that two tuples are in the same group
if and only if they agree on all the attributes
A<subscript>1</subscript>, ⃛, A<subscript>k</subscript>.
<example>
<title id="aggregates-groupby">Aggregates</title>
<para>
If we want to know how many parts are sold by every supplier we
formulate the query:
<programlisting>
SELECT S.SNO, S.SNAME, COUNT(SE.PNO)
FROM SUPPLIER S, SELLS SE
WHERE S.SNO = SE.SNO
GROUP BY S.SNO, S.SNAME;
</programlisting>
and get:
<programlisting>
SNO | SNAME | COUNT
-----+-------+-------
1 | Smith | 2
2 | Jones | 1
3 | Adams | 2
4 | Blake | 3
</programlisting>
</para>
<para>
Now let's have a look of what is happening here.
First the join of the
tables SUPPLIER and SELLS is derived:
<programlisting>
S.SNO | S.SNAME | SE.PNO
-------+---------+--------
1 | Smith | 1
1 | Smith | 2
2 | Jones | 4
3 | Adams | 1
3 | Adams | 3
4 | Blake | 2
4 | Blake | 3
4 | Blake | 4
</programlisting>
</para>
<para>
Next we partition the tuples into groups by putting all tuples
together that agree on both attributes S.SNO and S.SNAME:
<programlisting>
S.SNO | S.SNAME | SE.PNO
-------+---------+--------
1 | Smith | 1
| 2
--------------------------
2 | Jones | 4
--------------------------
3 | Adams | 1
| 3
--------------------------
4 | Blake | 2
| 3
| 4
</programlisting>
</para>
<para>
In our example we got four groups and now we can apply the aggregate
function COUNT to every group leading to the final result of the query
given above.
</para>
</example>
</para>
<para>
Note that for a query using GROUP BY and aggregate
functions to make sense, the target list can only refer directly to
the attributes being grouped by. Other attributes may only be used
inside the arguments of aggregate functions. Otherwise there would
not be a unique value to associate with the other attributes.
</para>
<para>
Also observe that it makes no sense to ask for an aggregate of
an aggregate, e.g., AVG(MAX(sno)), because a
<command>SELECT</command> only does one pass of grouping and
aggregation. You can get a result of this kind by using a
temporary table or a sub-SELECT in the FROM clause to do the
first level of aggregation.
</para>
</sect3>
<sect3>
<title>Having</title>
<para>
The HAVING clause works much like the WHERE clause and is used to
consider only those groups satisfying the qualification given in the
HAVING clause. Essentially, WHERE filters out unwanted input rows
before grouping and aggregation are done, whereas HAVING filters out
unwanted group rows post-GROUP. Therefore, WHERE cannot refer to the
results of aggregate functions. On the other hand, there's no point
in writing a HAVING condition that doesn't involve an aggregate
function! If your condition doesn't involve aggregates, you might
as well write it in WHERE, and thereby avoid the computation of
aggregates for groups that you're just going to throw away anyway.
<example>
<title id="having-example">Having</title>
<para>
If we want only those suppliers selling more than one part we use the
query:
<programlisting>
SELECT S.SNO, S.SNAME, COUNT(SE.PNO)
FROM SUPPLIER S, SELLS SE
WHERE S.SNO = SE.SNO
GROUP BY S.SNO, S.SNAME
HAVING COUNT(SE.PNO) > 1;
</programlisting>
and get:
<programlisting>
SNO | SNAME | COUNT
-----+-------+-------
1 | Smith | 2
3 | Adams | 2
4 | Blake | 3
</programlisting>
</para>
</example>
</para>
</sect3>
<sect3>
<title>Subqueries</title>
<para>
In the WHERE and HAVING clauses the use of subqueries (subselects) is
allowed in every place where a value is expected. In this case the
value must be derived by evaluating the subquery first. The usage of
subqueries extends the expressive power of
<acronym>SQL</acronym>.
<example>
<title id="subselect-example">Subselect</title>
<para>
If we want to know all parts having a greater price than the part
named 'Screw' we use the query:
<programlisting>
SELECT *
FROM PART
WHERE PRICE > (SELECT PRICE FROM PART
WHERE PNAME='Screw');
</programlisting>
</para>
<para>
The result is:
<programlisting>
PNO | PNAME | PRICE
-----+---------+--------
3 | Bolt | 15
4 | Cam | 25
</programlisting>
</para>
<para>
When we look at the above query we can see the keyword
<command>SELECT</command> two times. The first one at the
beginning of the query - we will refer to it as outer
<command>SELECT</command> - and the one in the WHERE clause which
begins a nested query - we will refer to it as inner
<command>SELECT</command>. For every tuple of the outer
<command>SELECT</command> the inner <command>SELECT</command> has
to be evaluated. After every evaluation we know the price of the
tuple named 'Screw' and we can check if the price of the actual
tuple is greater. (Actually, in this example the inner query need
only be evaluated once, since it does not depend on the state of
the outer query.)
</para>
<para>
If we want to know all suppliers that do not sell any part
(e.g. to be able to remove these suppliers from the database) we use:
<programlisting>
SELECT *
FROM SUPPLIER S
WHERE NOT EXISTS
(SELECT * FROM SELLS SE
WHERE SE.SNO = S.SNO);
</programlisting>
</para>
<para>
In our example the result will be empty because every supplier
sells at least one part. Note that we use S.SNO from the outer
<command>SELECT</command> within the WHERE clause of the inner
<command>SELECT</command>. Here the subquery must be evaluated
afresh for each tuple from the outer query, i.e. the value for
S.SNO is always taken from the current tuple of the outer
<command>SELECT</command>.
</para>
</example>
</para>
</sect3>
<sect3>
<title>Subqueries in FROM</title>
<para>
A somewhat different way of using subqueries is to put them in the
FROM clause. This is a useful feature because a subquery of this
kind can output multiple columns and rows, whereas a subquery used
in an expression must deliver just a single result. It also lets
us get more than one round of grouping/aggregation without resorting
to a temporary table.
<example>
<title id="subselect-in-from-example">Subselect in FROM</title>
<para>
If we want to know the highest average part price among all our
suppliers, we can't write MAX(AVG(PRICE)), but we can write:
<programlisting>
SELECT MAX(subtable.avgprice)
FROM (SELECT AVG(P.PRICE) AS avgprice
FROM SUPPLIER S, PART P, SELLS SE
WHERE S.SNO = SE.SNO AND
P.PNO = SE.PNO
GROUP BY S.SNO) subtable;
</programlisting>
The subquery returns one row per supplier (because of its GROUP BY)
and then we aggregate over those rows in the outer query.
</para>
</example>
</para>
</sect3>
<sect3>
<title>Union, Intersect, Except</title>
<para>
These operations calculate the union, intersection and set theoretic
difference of the tuples derived by two subqueries.
<example>
<title id="union-example">Union, Intersect, Except</title>
<para>
The following query is an example for UNION:
<programlisting>
SELECT S.SNO, S.SNAME, S.CITY
FROM SUPPLIER S
WHERE S.SNAME = 'Jones'
UNION
SELECT S.SNO, S.SNAME, S.CITY
FROM SUPPLIER S
WHERE S.SNAME = 'Adams';
</programlisting>
gives the result:
<programlisting>
SNO | SNAME | CITY
-----+-------+--------
2 | Jones | Paris
3 | Adams | Vienna
</programlisting>
</para>
<para>
Here is an example for INTERSECT:
<programlisting>
SELECT S.SNO, S.SNAME, S.CITY
FROM SUPPLIER S
WHERE S.SNO > 1
INTERSECT
SELECT S.SNO, S.SNAME, S.CITY
FROM SUPPLIER S
WHERE S.SNO < 3;
</programlisting>
gives the result:
<programlisting>
SNO | SNAME | CITY
-----+-------+--------
2 | Jones | Paris
</programlisting>
The only tuple returned by both parts of the query is the one having SNO=2.
</para>
<para>
Finally an example for EXCEPT:
<programlisting>
SELECT S.SNO, S.SNAME, S.CITY
FROM SUPPLIER S
WHERE S.SNO > 1
EXCEPT
SELECT S.SNO, S.SNAME, S.CITY
FROM SUPPLIER S
WHERE S.SNO > 3;
</programlisting>
gives the result:
<programlisting>
SNO | SNAME | CITY
-----+-------+--------
2 | Jones | Paris
3 | Adams | Vienna
</programlisting>
</para>
</example>
</para>
</sect3>
</sect2>
<sect2 id="datadef">
<title>Data Definition</title>
<para>
There is a set of commands used for data definition included in the
<acronym>SQL</acronym> language.
</para>
<sect3 id="create">
<title id="create-title">Create Table</title>
<para>
The most fundamental command for data definition is the
one that creates a new relation (a new table). The syntax of the
<command>CREATE TABLE</command> command is:
<synopsis>
CREATE TABLE <replaceable class="parameter">table_name</replaceable>
(<replaceable class="parameter">name_of_attr_1</replaceable> <replaceable class="parameter">type_of_attr_1</replaceable>
[, <replaceable class="parameter">name_of_attr_2</replaceable> <replaceable class="parameter">type_of_attr_2</replaceable>
[, ...]]);
</synopsis>
<example>
<title id="table-create">Table Creation</title>
<para>
To create the tables defined in
<xref linkend="supplier-fig" endterm="supplier-fig"> the
following <acronym>SQL</acronym> statements are used:
<programlisting>
CREATE TABLE SUPPLIER
(SNO INTEGER,
SNAME VARCHAR(20),
CITY VARCHAR(20));
</programlisting>
<programlisting>
CREATE TABLE PART
(PNO INTEGER,
PNAME VARCHAR(20),
PRICE DECIMAL(4 , 2));
</programlisting>
<programlisting>
CREATE TABLE SELLS
(SNO INTEGER,
PNO INTEGER);
</programlisting>
</para>
</example>
</para>
</sect3>
<sect3>
<title>Data Types in <acronym>SQL</acronym></title>
<para>
The following is a list of some data types that are supported by
<acronym>SQL</acronym>:
<itemizedlist>
<listitem>
<para>
INTEGER: signed fullword binary integer (31 bits precision).
</para>
</listitem>
<listitem>
<para>
SMALLINT: signed halfword binary integer (15 bits precision).
</para>
</listitem>
<listitem>
<para>
DECIMAL (<replaceable class="parameter">p</replaceable>[,<replaceable class="parameter">q</replaceable>]):
signed packed decimal number of up to
<replaceable class="parameter">p</replaceable>
digits, with
<replaceable class="parameter">q</replaceable>
digits to the right of the decimal point.
If <replaceable class="parameter">q</replaceable>
is omitted it is assumed to be 0.
</para>
</listitem>
<listitem>
<para>
FLOAT: signed doubleword floating point number.
</para>
</listitem>
<listitem>
<para>
VARCHAR(<replaceable class="parameter">n</replaceable>):
varying length character string of maximum length
<replaceable class="parameter">n</replaceable>.
</para>
</listitem>
<listitem>
<para>
CHAR(<replaceable class="parameter">n</replaceable>):
fixed length character string of length
<replaceable class="parameter">n</replaceable>.
</para>
</listitem>
</itemizedlist>
</para>
</sect3>
<sect3>
<title>Create Index</title>
<para>
Indexes are used to speed up access to a relation. If a relation <classname>R</classname>
has an index on attribute <classname>A</classname> then we can
retrieve all tuples <replaceable>t</replaceable>
having
<replaceable>t</replaceable>(<classname>A</classname>) = <replaceable>a</replaceable>
in time roughly proportional to the number of such
tuples <replaceable>t</replaceable>
rather than in time proportional to the size of <classname>R</classname>.
</para>
<para>
To create an index in <acronym>SQL</acronym>
the <command>CREATE INDEX</command> command is used. The syntax is:
<programlisting>
CREATE INDEX <replaceable class="parameter">index_name</replaceable>
ON <replaceable class="parameter">table_name</replaceable> ( <replaceable class="parameter">name_of_attribute</replaceable> );
</programlisting>
</para>
<para>
<example>
<title id="index-create">Create Index</title>
<para>
To create an index named I on attribute SNAME of relation SUPPLIER
we use the following statement:
<programlisting>
CREATE INDEX I ON SUPPLIER (SNAME);
</programlisting>
</para>
<para>
The created index is maintained automatically, i.e. whenever a new
tuple is inserted into the relation SUPPLIER the index I is
adapted. Note that the only changes a user can perceive when an
index is present are increased speed for <command>SELECT</command>
and decreases in speed of updates.
</para>
</example>
</para>
</sect3>
<sect3>
<title>Create View</title>
<para>
A view may be regarded as a <firstterm>virtual table</firstterm>,
i.e. a table that
does not <emphasis>physically</emphasis> exist in the database
but looks to the user
as if it does. By contrast, when we talk of a
<firstterm>base table</firstterm> there is
really a physically stored counterpart of each row of the table
somewhere in the physical storage.
</para>
<para>
Views do not have their own, physically separate, distinguishable
stored data. Instead, the system stores the definition of the
view (i.e. the rules about how to access physically stored base
tables in order to materialize the view) somewhere in the system
catalogs (see
<xref linkend="tutorial-catalogs-title" endterm="tutorial-catalogs-title">). For a
discussion on different techniques to implement views refer to
<!--
section
<xref linkend="view-impl" endterm="view-impl">.
-->
<citetitle>SIM98</citetitle>.
</para>
<para>
In <acronym>SQL</acronym> the <command>CREATE VIEW</command>
command is used to define a view. The syntax
is:
<programlisting>
CREATE VIEW <replaceable class="parameter">view_name</replaceable>
AS <replaceable class="parameter">select_stmt</replaceable>
</programlisting>
where <replaceable class="parameter">select_stmt</replaceable>
is a valid select statement as defined
in <xref linkend="select-title" endterm="select-title">.
Note that <replaceable class="parameter">select_stmt</replaceable> is
not executed when the view is created. It is just stored in the
<firstterm>system catalogs</firstterm>
and is executed whenever a query against the view is made.
</para>
<para>
Let the following view definition be given (we use
the tables from
<xref linkend="supplier-fig" endterm="supplier-fig"> again):
<programlisting>
CREATE VIEW London_Suppliers
AS SELECT S.SNAME, P.PNAME
FROM SUPPLIER S, PART P, SELLS SE
WHERE S.SNO = SE.SNO AND
P.PNO = SE.PNO AND
S.CITY = 'London';
</programlisting>
</para>
<para>
Now we can use this <firstterm>virtual relation</firstterm>
<classname>London_Suppliers</classname> as
if it were another base table:
<programlisting>
SELECT * FROM London_Suppliers
WHERE PNAME = 'Screw';
</programlisting>
which will return the following table:
<programlisting>
SNAME | PNAME
-------+-------
Smith | Screw
</programlisting>
</para>
<para>
To calculate this result the database system has to do a
<emphasis>hidden</emphasis>
access to the base tables SUPPLIER, SELLS and PART first. It
does so by executing the query given in the view definition against
those base tables. After that the additional qualifications
(given in the
query against the view) can be applied to obtain the resulting
table.
</para>
</sect3>
<sect3>
<title>Drop Table, Drop Index, Drop View</title>
<para>
To destroy a table (including all tuples stored in that table) the
<command>DROP TABLE</command> command is used:
<programlisting>
DROP TABLE <replaceable class="parameter">table_name</replaceable>;
</programlisting>
</para>
<para>
To destroy the SUPPLIER table use the following statement:
<programlisting>
DROP TABLE SUPPLIER;
</programlisting>
</para>
<para>
The <command>DROP INDEX</command> command is used to destroy an index:
<programlisting>
DROP INDEX <replaceable class="parameter">index_name</replaceable>;
</programlisting>
</para>
<para>
Finally to destroy a given view use the command <command>DROP
VIEW</command>:
<programlisting>
DROP VIEW <replaceable class="parameter">view_name</replaceable>;
</programlisting>
</para>
</sect3>
</sect2>
<sect2>
<title>Data Manipulation</title>
<sect3>
<title>Insert Into</title>
<para>
Once a table is created (see
<xref linkend="create-title" endterm="create-title">), it can be filled
with tuples using the command <command>INSERT INTO</command>.
The syntax is:
<programlisting>
INSERT INTO <replaceable class="parameter">table_name</replaceable> (<replaceable class="parameter">name_of_attr_1</replaceable>
[, <replaceable class="parameter">name_of_attr_2</replaceable> [,...]])
VALUES (<replaceable class="parameter">val_attr_1</replaceable> [, <replaceable class="parameter">val_attr_2</replaceable> [, ...]]);
</programlisting>
</para>
<para>
To insert the first tuple into the relation SUPPLIER (from
<xref linkend="supplier-fig" endterm="supplier-fig">) we use the
following statement:
<programlisting>
INSERT INTO SUPPLIER (SNO, SNAME, CITY)
VALUES (1, 'Smith', 'London');
</programlisting>
</para>
<para>
To insert the first tuple into the relation SELLS we use:
<programlisting>
INSERT INTO SELLS (SNO, PNO)
VALUES (1, 1);
</programlisting>
</para>
</sect3>
<sect3>
<title>Update</title>
<para>
To change one or more attribute values of tuples in a relation the
<command>UPDATE</command> command is used. The syntax is:
<programlisting>
UPDATE <replaceable class="parameter">table_name</replaceable>
SET <replaceable class="parameter">name_of_attr_1</replaceable> = <replaceable class="parameter">value_1</replaceable>
[, ... [, <replaceable class="parameter">name_of_attr_k</replaceable> = <replaceable class="parameter">value_k</replaceable>]]
WHERE <replaceable class="parameter">condition</replaceable>;
</programlisting>
</para>
<para>
To change the value of attribute PRICE of the part 'Screw' in the
relation PART we use:
<programlisting>
UPDATE PART
SET PRICE = 15
WHERE PNAME = 'Screw';
</programlisting>
</para>
<para>
The new value of attribute PRICE of the tuple whose name is 'Screw' is
now 15.
</para>
</sect3>
<sect3>
<title>Delete</title>
<para>
To delete a tuple from a particular table use the command DELETE
FROM. The syntax is:
<programlisting>
DELETE FROM <replaceable class="parameter">table_name</replaceable>
WHERE <replaceable class="parameter">condition</replaceable>;
</programlisting>
</para>
<para>
To delete the supplier called 'Smith' of the table SUPPLIER the
following statement is used:
<programlisting>
DELETE FROM SUPPLIER
WHERE SNAME = 'Smith';
</programlisting>
</para>
</sect3>
</sect2>
<sect2 id="tutorial-catalogs">
<title id="tutorial-catalogs-title">System Catalogs</title>
<para>
In every <acronym>SQL</acronym> database system
<firstterm>system catalogs</firstterm> are used to keep
track of which tables, views indexes etc. are defined in the
database. These system catalogs can be queried as if they were normal
relations. For example there is one catalog used for the definition of
views. This catalog stores the query from the view definition. Whenever
a query against a view is made, the system first gets the
<firstterm>view definition query</firstterm> out of the catalog
and materializes the view
before proceeding with the user query (see
<!--
section
<xref linkend="view-impl" endterm="view-impl">.
<citetitle>SIM98</citetitle>
-->
<xref linkend="SIM98" endterm="SIM98">
for a more detailed
description). For more information about system catalogs refer to
<xref linkend="DATE04" endterm="DATE04">.
</para>
</sect2>
<sect2>
<title>Embedded <acronym>SQL</acronym></title>
<para>
In this section we will sketch how <acronym>SQL</acronym> can be
embedded into a host language (e.g. <literal>C</literal>).
There are two main reasons why we want to use <acronym>SQL</acronym>
from a host language:
<itemizedlist>
<listitem>
<para>
There are queries that cannot be formulated using pure <acronym>SQL</acronym>
(i.e. recursive queries). To be able to perform such queries we need a
host language with a greater expressive power than
<acronym>SQL</acronym>.
</para>
</listitem>
<listitem>
<para>
We simply want to access a database from some application that
is written in the host language (e.g. a ticket reservation system
with a graphical user interface is written in C and the information
about which tickets are still left is stored in a database that can be
accessed using embedded <acronym>SQL</acronym>).
</para>
</listitem>
</itemizedlist>
</para>
<para>
A program using embedded <acronym>SQL</acronym>
in a host language consists of statements
of the host language and of
<firstterm>embedded <acronym>SQL</acronym></firstterm>
(<acronym>ESQL</acronym>) statements. Every <acronym>ESQL</acronym>
statement begins with the keywords <command>EXEC SQL</command>.
The <acronym>ESQL</acronym> statements are
transformed to statements of the host language
by a <firstterm>precompiler</firstterm>
(which usually inserts
calls to library routines that perform the various <acronym>SQL</acronym>
commands).
</para>
<para>
When we look at the examples throughout
<xref linkend="select-title" endterm="select-title"> we
realize that the result of the queries is very often a set of
tuples. Most host languages are not designed to operate on sets so we
need a mechanism to access every single tuple of the set of tuples
returned by a SELECT statement. This mechanism can be provided by
declaring a <firstterm>cursor</firstterm>.
After that we can use the <command>FETCH</command> command to
retrieve a tuple and set the cursor to the next tuple.
</para>
<para>
For a detailed discussion on embedded <acronym>SQL</acronym>
refer to
<xref linkend="DATE97" endterm="DATE97">,
<xref linkend="DATE04" endterm="DATE04">,
or
<xref linkend="ULL88" endterm="ULL88">.
</para>
</sect2>
</sect1>
</chapter>