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The Problem

1. Isthe applicant a GOOD lending risk?
o Failure to detect this case implies a possibility of business loss and
losing a worthy client.
2. Istheapplicant a BAD lending risk?
o Failure to detect this case is EVEN WORSE, possibility of loan

defaulters!

Solution must not just be more ACCURATE in detecting the risk but also the
number of FALSE NEGATIVES (ok to lose “some” clients) and FALSE
POSITIVES (“highly risky” to encourage loan defaulters!).



The Dataset

e Number of instances: 1000

e Output Classes: yes, no
e Number of instance features: 20 specifying clients social, economic and
demographic characteristics.
e Feature domains:
o Nominal - e.g. purpose (car home, education, vacation, etc)
o Numeric-e.g. age
e No missing values
e Challenges: nominal features, class-imbalance (70:30), un-normalized
features values, feature importance.

e Let'slook at data distribution!



How does the data look like?
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Preprocessing

e Feature Importance: Among 20 features, 18 features with highest prediction importance

were selected using normalized averaging of:

o CFSSubsetEval Individual predictive ability of each feature along with the degree of
redundancy between them.
o InfoGainAttributeEval: Worth of an attribute by measuring the information gain with
respect to the class.
o CorrelationAttributeEval: Worth of an attribute by measuring the correlation
between it and the class.
o PCA: correlated feature set -> un-correlated feature set
e Allthese scores were considered with and without 10-fold cross validation.
e Nominal features were encoded using one-hot encoding.
e Instance classes were balanced using SMOTE.

e Thisresulted in dataset with 1300 instances with 55 attributes.
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Features

checking_status
duration
credit_history
savings_status
credit_amount
housing

purpose

age
other_payment_plans
property_magnitude
foreign_worker
employment
personal_status
installment_commitment
existing_credits
own_telephone
other_parties

job

num_dependents
residence_since

Feature Importance

0.0678894955
0.05611345879
0.04555264392
0.03071655716
0.02977114598
0.02294815839
0.02179542672
0.01959865513
0.01789730183
0.01602063542
0.01075026631
0.006828892416
0.005779955699
0.005258870454
0.004114325911
0.001039557586
0.0008887479633

0.1964240084
0.1900470307

Score

|
0.2505648657,

0.3



\ MLP Parameter Tuning
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\ Logistic Regression Parameter Tuning

Ridge Parameter Tuning
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Results Comparison

Transformed Dataset Original Dataset

Logistic(77.2308 %) Logistic(75.1 %)
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Failure Analysis : Good
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Failure Analysis : Bad->Good
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Failure Analysis : Bad
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Failure Analysis : Good->Bad
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Failure Observations

e Majority contribution by (70 %): checking_status, credit_history, saving_status and

duration.

e Feature value distribution against checking_status for “Good” and misclassifications of the
form “Bad->Good” matches well. Similarly for “Bad” and misclassifications of the form
“Good->Bad"”.

e This could have lead classifier to treat Bad as Good in case 1 and vice versain case 2.

e |Important observation is that feature value distributions against saving_status and
credit_history resembles across “Good”, “Bad”, “Bad->Good” and “Good->Bad”.

e Possible solution is to raise these two features to higher powers to enable higher order
dependency.

e These modifications are not resulting in any better performance. This implues there could

be a possibility of some errors.



