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Abstract

Virtualized environments nowadays employ a hypervisor cache at each node to improve per-
formance on the storage I/O path as well as alleviate some load on the underlying storage.
This further bene�ts the environments having networked storage where the VM disk data is
not necessarily available locally.

That being said, the cache itself is local to the node as it caters to the requests coming from
the VMs on that particular node. From a performance point-of-view, the cached data in this
hypervisor cache is as important as the backing data. A cold hypervisor cache would not
result in drastic reduction in performance as compared to performance with no hypervisor
cache present. But, there will be no improvement in the overall I/O performance, and the
cache will fail to ful�l its purpose.

This study aims at identifying the scenarios which will render the hypervisor cache cold and
coming up with methods which can aid in e�ectively "warming up" the otherwise cold cache.
We consider the Nutanix HCI as the base model for our experiments.
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1. Introduction

In virtualized environments, where multiple VMs are running on a physical server employing
a hypervisor, storage I/O often becomes the performance bottleneck. This is partly due to
the nature of the underlying storage devices, which have access latency of a few milliseconds
(as compared to the DRAM with latency of a few nanoseconds). A cluster of such physical
servers usually have arrays of storage devices accessible through network interfaces. Two
major storage setups used in such environments are: centralized storage, wherein a common
pool of storage devices is shared among the nodes in the cluster using a network �lesystem
such as NFS and iSCSI, and distributed storage, wherein each node in the cluster consists of
local storage which runs a distributed �lesystem such as GlusterFS and HDFS. We will focus
on virtualized environments with distributed storage for this study.

Figure 1.1: Common storage setups (distributed and centralized) in virtualized environments

Many such environments make use of a combination of HDDs and SSDs to divide the data
logically into tiers, with SSDs keeping the hot data. While SSDs do provide an improvement
in access latency (reduced to the order of a few microseconds), they are expensive and are
limited in size as compared to HDDs. Moreover, in the networked storage setups mentioned
above, the network latency can still dominate the total storage I/O latency. As a result, having
such storage setup adds network access latency to the existing latency incurred by the storage
devices.

When a VM performs a disk I/O operation, the hypervisor (node) intercepts the corresponding
request and delegates it to the underlying storage mechanism. This process is usually called
storage virtualization. Due to the distributed nature of storage, there is a chance that the
data requested is not actually present in the local storage. The situation is exacerbated by the
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fact that the distributed �leystems use internal metadata structures to keep track of the actual
data, and we need to access the metadata �rst in order to get to the data. Presence of metadata
information on the local storage is as important as the presence of requested data.

Figure 1.2: Virtualized environments with hypervisor cache

If a certain block of data or metadata required by a VM is missing in the node’s local storage,
it is fetched from another node’s local storage over the network. An I/O operation, which
would incur only one disk access if only local storage was in play, now incurs an additional
network access and disk access due to the networked storage.

2



1.1 Hypervisor Caching

Whenever there is a need to fetch certain data from someplace, and this fetching is a costly
operation, we think of caches. Hypervisor, being the manager of all system resources, is
the natural choice for most virtualization-oriented I/O performance improvements and opti-
mizations. A great deal of research is done in the past for making use of a cache inside the
hypervisor layer of a node. This cache is intended to work as a client-side cache for keeping
storage I/O data and metadata fetched over the network.

We de�ne a few characteristics of our view of the cache below.

• Hypervisor-managed
The hypervisor intercepts storage I/O requests from the VMs, and performs lookup in
the cache. If the required data is found, it is returned. If the lookup results in a cache
miss, it invokes certain primitives to fetch the data from underlying storage system.
The VMs have no control over the operation of this cache, and it remains transparent
to them.

• Uni�ed
Unlike a page cache employed by modern kernels which is used for caching only the
data read from the disk, the cache also stores the metadata managed by the underlying
distributed �lesystem. We refer to individual entities in the cache (disk blocks as well
as �lesystem metadata) as objects. The cache stores heterogeneous objects, and objects
of the same type may vary in size.

• Inclusive
The cache is used to store disk blocks and metadata blocks read from the underlying
storage system. Upon lookup for a certain block, the hypervisor will return its data
to the requesting VM. The VM may have its own operating system bu�er/page cache
which stores this data in memory. Thus, the same data block may be cached inside the
VM cache as well in the hypervisor cache.

• Shared
All VMs running on a node will share this cache with equal priority, and there is no
logical partitioning for each VM. This also means that there is contention among the
VMs performing storage I/O operations when the cache is accessed.

• Volatile
The cache is maintained in-memory, where its total size depends on the available main
memory. If a node were to restart or fail, the cache contents are lost.

• Local
The cache is local to a particular node, and is not accessible directly from other nodes.
The contents of this cache will di�er from node to node in the cluster. This is unlike the
underlying storage which is shared among all the nodes in the cluster.

• Static-sized
The cache is �xed in size and does not grow or shrink based on the changes in main
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memory available. While caches with dynamic sizing are often used in practice, we
assume its size to be �xed throughout this study.

Any cache used in compute systems (not just the hypervisor cache) is a driving force in the
improved performance and smooth running of the infrastructure is often compared to an
engine in a machine and analogies are set up between the their states, most notably them
being cold and warm. A main memory cache is said to be cold when it is empty (or is non-
empty and has irrelevant pages), and warm when it is �lled with pages relevant to running
processes. The transition from a cold cache to a warm cache results in improved performance
of the system due to increased cache hits (and reduced penalties due to misses). We apply the
same analogy to our hypervisor cache as well.

Cold cache

Cold cache refers to the state of hypervisor cache in which either the cache is empty or it
contains stale objects i.e. those objects which were cached in previous runs and are not needed
to serve the upcoming I/O requests. We can also have a partially cold cache which means that
the objects required by a particular VM or a set of VMs are not cached. When the cache is �rst
initialized by the hypervisor, it will essentially be empty and initial few lookup operations will
result in cold misses.
Furthermore, if the cache is full with objects of a few already running VMs and a new VM
comes up on that node, the cache will be cold for that VM. So, when any VM or a group of
VMs start on a node, they will essentially experience a cold cache. The cache may also contain
some objects of a VM from its previous run, and the VM gets reset. In this case, even when the
cache contains its objects, those cached objects may not be needed now. Nevertheless, there
will be a drop in the hit ratio (at least in the initial time period of storage I/O tra�c) due to
very high cache misses.

Warm cache

Warm cache on the other hand means that some objects are present in the cache which are
relevant to one or more VMs running on the node. That is, there is a high chance that the
objects will be referenced in the near future. Even if the cache is not full, but is able to ac-
commodate all of these relevant objects, it is warm. A cache full with irrelevant objects in not
warm. Having relevant objects in the caches help in increasing the performance as a result of
an increase in the overall hit ratio.

Prewarming

We will reach a warm cache state (eventually, from an initial cold cache) as the incoming I/O
requests will result in misses and the cache will be populated lazily. However, the VMs will
su�er from an initial performance loss due to the cold state (and the associated miss penalties)
as it would take a certain amount of time for the hit ratio to stabilize.
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Prewarming refers to the process of proactively loading the cache with the relevant objects
of one or more VMs running on the node. This is similar to cache prefetching, but we use the
term prewarming instead to emphasize the cold and warm cache states.
It is a two-step process: �rst, we need to identify the set of objects to load, and then, we need
to actually fetch these objects into the cache. Note that the objects we prewarm the cache
with might be evicted from the cache eventually as the relevance of the objects to storage
I/O tra�c starts to fade. We are only interested in avoiding a performance loss due to a cold
cache, not in minimizing the evictions from the cache.
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1.2 Problem Description

As described above, the cache is local to a node as it caters to the requests coming from
the VMs on that particular node. From a performance point-of-view, the cached data in this
hypervisor cache is as important as the backing data on the distributed �lesystem. A cold
hypervisor cache would not result in drastic reduction in performance as compared to per-
formance with no hypervisor cache present. But, there will be no improvement in the overall
I/O performance, and the cache will fail to ful�l its purpose. Therefore, we can say that a cold
cache will result in reduced performance.

We �rst identify some considerable scenarios where the cache is rendered cold, resulting in
performance drop. Then we try to de�ne the problem scope and an approach to the solution.

One cold-cache scenario is when a node boots up, and then all the VMs on it boot up. The
hypervisor initializes the cache, and it is empty at the start. There are a lot of cache misses due
to required objects not being present in the cache. As the VMs perform storage I/O operations
starting with their bootup sequence, the cache starts getting �lled with objects and hit ratio
tends to increase due to possible locality in the data accessed by the VMs. A similar case is
when the node is already up, but all its VMs boot up. The cache will have some objects of
these VMs from their last run. But, those objects may be stale and they may not be needed at
boot time, or in the initial storage I/O operations. The cache state is equivalent to being cold
even when it is �lled with the VMs’ objects.

Figure 1.3: Cache hit ratio over time: when a node starts up (left) and when node failover
happens (right)

Another interesting scenario is when a node experiences a failure and the cache state is lost.
VMs in most virtualized setups are con�gure with High Availability (HA) i.e they are started
on another node from the same point of execution when the failure happened. The nodes
are con�gured to be a part of a failover cluster and guarantee a certain uptime for their guest
VMs. Solutions to HA, such as lock-stepping or asynchronous replication ensure that the VM
state is available at another node, but they don’t account for the hypervisor cache state for
the VM. When a set of VMs experience HA migration to another node, the hypervisor cache
at that node is cold for them. The hot objects in cache for the VMs are not available anymore
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and the cache at new node will result in misses and lookups in the underlying storage. At the
time instant when VMs start executing at the new node, the overall hit ratio of the cache will
take a drastic drop, and will slowly build up. It might take a considerable amount of time for
the cache to reach a stable hit ratio (close to the one just before failure).

A similar case happens when a certain VM is migrated to another node (but not its hypervisor
cache state), and the cache performance of the destination node is disturbed. There might be
some VMs already running on the destination node and due to the addition of a new VM (for
whom the cache is cold), the combined hit ratios of existing VMs, the hit ratio of migrated
VM, and in general, the overall hit ratio is poor for an initial time period.

Given a storage I/O cache inside the hypervisor, how to reduce the time it takes to
warm up the cache?
Simply put, how to achieve a high cache hit ratio quickly?

Ideally, we want to operate with a cache that is loaded with important objects at all times,
and thus we need to �nd a way to keep it warm at all times. Although the cache eventually
gets �lled with objects actively used by the VMs as they issue storage I/O requests, we aim at
keeping the cache warm even in the initial time period of the storage I/O tra�c.

There are multiple questions that need to be answered as part of answering the question
above.

• What are the performance implications of having a cold cache? How much degradation
in performance can be expected when the VM workloads experience a series of cold cache
misses?

• Will proactively prewarming the cache result in improved storage I/O performance? In
other words, will the prewarming help mitigate the performance degradation due to cache
being cold?

• How to determine the set of objects to be loaded into the cache so that it is e�ectively warm?
What should be the size of this prewarm set and which objects should be a part of it?

• What is the impact of prewarming on the performance of other VMs which are actively
using the cache? Is prewarming the cache for a VM worth a possible drop in hit ratio of
other VMs?

• How to quantify the various overheads arising from the prewarming process and with these
overheads being present, is it worthwhile to prewarm the cache?

• Can changing the behaviour and properties of cache itself help us in determining a better
prewarm set (and better performance in general)? The scope includes, but is not limited to,
replacement policies, logical partitioning policies and memory limits.

• For the VM workloads having speci�c disk block access patterns, can we recognize and
leverage these patterns to make informed decisions in constructing the prewarm set for
those VMs?
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1.3 Solution Approach

A VM running on a hypervisor node is a black-box, i.e. we have no way of peeking inside its
memory to get storage I/O-related information, such as the contents of the page cache. More-
over, we also have no information about how its disk blocks are laid out on the vdisk, and
which disk blocks are the most important to consider for caching. Some examples of impor-
tant disk blocks include �lesystem super blocks, bitmap blocks and inode blocks. Therefore,
we are restricted to using only non-intrusive approaches for mitigating the issues arising from
cold hypervisor caches.

The only part visible to the hypervisor is the block I/O access request that a VM issues to
its vDisk. These requests are processed by the cache and a lookup is performed. After the
required data is fetched into the cache, it is served from there. We can inspect the cache to see
what data is cached for a vDisk, since the cache is part of hypervisor. To �nd out important
blocks for a vDisk, we can continuously monitor the cache and keep track of the active objects.
But, as the cache is volatile, its state can be lost due to a failure and there is no way to recover
the same. Losing the warm cache state implies a heavy penalty in terms of increased storage
I/O completion time (experienced by the VMs) as well as increased contention for network
bandwidth (due to the storage being distributed). We use a series of steps to try to mitigate
these issues.

• The �rst step is to ensure that the cache state is persisted to a storage medium so that it
can be recovered even if a failure happens. We can save the contents of cache to the disk
periodically to ensure persistence. We will discuss the format for representing a persistent
cache state and techniques for saving and loading the state in the next chapter.

• The second step is to enable the cache to use these saved states and determine objects that
are important to a vDisk, so that we may reuse them and proactively fetch them into the
cache when it goes cold (i.e. prewarm it). There are various heuristics that we can use to
establish the importance of an object to a vdisk, and we will discuss some of them in the
next chapter.

• The third step is to use the important objects determined in the previous step and load them
into cache in a manner that gives a reasonable bene�t in performance, while minimizing
the interference caused due to the prewarming process on other objects in the cache. We
discuss the throttling of the prewarming process in the next chapter.

• Finally, we will perform some experiments speci�c to a scenario where the cache goes cold
and we try to prewarm it to see if the drop in hit ratio (if any) due to cache going cold can
be avoided.
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2. Background & Related Work

Hyperconverged Infrastructure

An infrastructure consists of various resources such as compute, storage and network with as-
sociated operations such as resource management, orchestration and automation. Converged
infrastructure refers to coupling all the resources of an infrastructure into a single unit, cre-
ating a common pool of virtualized resources. Hyperconverged infrastructure, an extension
to the converged one, involves performing data center operations (related to storage and net-
working) in the software layer, making it hardware-agnostic.

Figure 2.1: Overview of the Nutanix HCI

We use the Nutanix HCI as our base model of an infrastructure where we aim to improve the
storage I/O performance. Figure 2.1 shows a simpl�ed view of the Nutanix HCI. It consists of
clustered nodes connected through a backbone network. Each node consists of local storage,
a number of client VMs, and a special VM called Controller VM (CVM). Furthermore, each
node has a combination of HDDs and SSDs as part of its local storage for policy-based tiering
of data. Each VM has one or more virtual disks (or vdisks) attached to it, a resource provided
by the hypervisor via storage virtualization. The virtual disk data of these VMs are stored in
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the node’s local storage, and is optionally replicated to other nodes.

Distributed Storage Fabric

A distributed �lesystem, formerly known as Nutanix Distributed Filesystem (NDFS), is used to
access the underlying storage. NDFS is now integrated into Distributed Storage Fabric (DSF),
which provides features such as backup, compression, deduplication and disaster recovery.
DSF appears to a node as a centralized storage array, but all VM I/O operations are performed
using the local storage. Due to the distributed nature of storage, DSF maintains some meta-
data about where the data is actually stored in the cluster. Apache Cassandra is used to store
this metadata as key-value pair in a distributed fashion, where each node also acts as a node
in the Cassandra ring. Thus, the actual virtual disk data, as well the associated metadata are
distributed across the nodes in the cluster.

Controller VM

CVM is responsible for serving all I/O operations performed by the VMs running on that node.
The local storage of a node is directly attached to the CVM using PCI passthrough mecha-
nism. This makes CVM a privileged VM, having complete control over all storage resources
and it provides storage interface (via NFS, SMB, iSCSI etc.) to all other VMs. It also realizes
software-de�ned storage by providing features such as RAID, compression and deduplication.

Figure 2.2: Overview of the CVM cache

The CVM on each node consists of a local cache for storing blocks of the virtual disks it is
hosting. Apart from the caching the vdisk data, this cache is also utilized for storing the
metadata we mentioned earlier, making the cache uni�ed in nature. We refer to this local
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cache of the CVM as the hypervisor cache.

The CVM cache consists is completely in-memory and has two pools (single-touch and multi-
touch) as shown in Figure 2.2. The two triangles represent the pools, with smaller one being
the single-touch pool and the larger one being the multi-touch pool. Single-touch pool is in-
tended for storing objects that are fetched into the cache for one-time access. From this pool,
an object can either get evicted according to the replacement policy, or can get promoted to
the multi-touch pool on subsequent access. Multi-touch pool keeps the objects that are ac-
tively in use by the VMs. An object evicted from this pool gets evicted from the cache. An
object is promoted, on subsequent access, to the top of the memory pool. As indicated in the
�gure, LRU policy is used for replacement in both pools.

Metadata

Nutanix DSF makes use of Apache Cassandra ring to store the distributed �lesystem metadata
as key-value pairs. They have layers of metadata translation such that the value returned on
a key lookup at �rst layer is used as a key for the next layer. To get to the actual data, we
have to go through a series of lookups though the metadata layers. While the actual schema
of the key-value structures are complex, we use a rather simpli�ed version. Each layer of
the metadata can be visualized as a hashmap, having di�erent data structures for the key and
value parts.

Figure 2.3: Metadata translation in Nutanix HCI

We de�ne a few storage terms used in the Nutanix HCI:

• vDisk or vdisk is the storage medium from a VM’s perspective. Hypervisor provides the
VM with one or more vdisks, each of which has a unique identi�er within the cluster.

• Extent or vBlock is the building block of a vdisk. It is 1 MB in size and a vdisk is stored
as a set of extents scattered across the underlying storage. A vblock number addresses
1 MB chunk of the vdisk, and that number space is local to a particular vdisk.

• Extent Group or egroup consists of 4 extents and is 4 MB in size. Each egroup has
a unique identi�er within the cluster, and is stored as a �le on the underlying storage
media.

The �rst hashmap takes the cryptographic hash of a vdisk ID and a vblock number as the key
and stores an egroup ID as the value. The second hashmap is similar to the �rst one, but is
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used only if the requesting vdisk is a snapshot of another vdisk. The third hashmap takes an
egroup ID as the key and produces an o�set into the egroup �le where the requested data is
stored. The scope of this project involves prewarming the cache only with these metadata
objects and not the actual data blocks. To further simplify our study, we currently use only
the �rst and third metadata hashmaps in our metadata translation layer. We will use the
terms HM1 and HM3 to denote the �rst and third Hashmaps, respectively.

Figure 2.4: Cache Lookup Flow

Figure 2.4 shows how a block I/O request coming from a vdisk is served by the cache. The
requested block is �rst looked up in the data portion of the uni�ed cache, and is served directly
if found. We assume that the data is most likely not present in this portion, and that the
metadata cache lookups will happen. The path in bold represents the best case scenario where
the required metadata objects are found in the cache.
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3. Design & Implementation

Due to proprietary nature of Nutanix DSF software, we are currently not able to modify their
source code to add the prewarmimg functionality. We instead aim at mimicking the relevant
parts of their infrastructure in our own simulator and use it to �nd solutions to the problems
mentioned in the previous section. The scope of our work involves the following:

• Create a simulator which o�ers a reasonable model of the components of the Nutanix
DSF infrastructure relevant to this study

• Generate VM workloads which can be served by the hypervisor cache in the format an
actual hypervisor gets storage I/O requests from its VMs

• De�ne a persistent cache state, as well as various primitives in the cache which will
enable the prewarming, such as saving and loading the persistent state

• Come up with a set of relevant parameters and heuristics which can help us determine
a good prewarm set and explore the parameter space

• Run a set of experiments which can provide us with an empirical analysis of our pre-
warming strategies and help us determine the e�ectiveness as well as feasibility of pre-
warming
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3.1 Cache Design

3.1.1 Pools

We model our cache as having 2 pools in main memory. They are called single-touch and
multi-touch pool. Intuitively, the size of these pools increases as we go from single to multi-
touch. This is the same con�guration as the Nutanix DSF Uni�ed Cache. In our design of
the cache, there is a 20-80 split of the total cache between the single and multi-touch pools,
respectively. In the original Uni�ed Cache this split between pools is dynamic, but we �x it
statically before the simulation starts.

Single-touch pool stores the new objects that are fetched into the cache. These objects will be
eventually evicted from the cache by the replacement policy unless they are accessed again.
Upon a second access to an object in the single-touch pool, they are promoted to the multi-
touch pool. An object will remain in the multi-touch pool until it is evicted by the replacement
policy. Note that subsequent accesses to an object in the memory multi-touch pool will not
change its pool, but will only result in an update in its state for replacement policy. This is
the same as shown in Figure 2.2.

Note that while the cache is divided into multiple pools, there is no partitioning within the
cache for the various types of objects. We do not specify the share of cache either for HM1
and HM3 objects, or for the HM1 objects of various vDisks.

For the purpose of this study, our model of the cache contains only metadata objects (not
memory pages or the disk block data), and the objects are of two types (HM1 and HM3), de-
pending on the hashmap they belong to.

The cache records several metrics during simulation, especially the following numbers:

• hits in each pool for each type of hashmap object
• overall misses for each type of hashmap object
• evictions from each pool for each type of hashmap object
• objects of each hashmap in each pool

In addition to these, it records several numbers for each vDisk that the cache serves, such as:

• HM1 objects in each pool

• hits in each pool (only for HM1 objects)

• overall misses (only for HM1 objects)
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An example of these recorded metrics as they appear in the simulation output is given below:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| (objects) | HASHMAP 1 | HASHMAP 3 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| SINGLE POOL | 44396 | 44352 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| MULTI POOL | 177468 | 177427 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| (misses) | HASHMAP 1 | HASHMAP 3 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| TOTAL | 957363 | 915320 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| (hits) | HASHMAP 1 | HASHMAP 3 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| SINGLE POOL | 772255 | 735580 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| MULTI POOL | 3922446 | 4001164 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| (evictions) | HASHMAP 1 | HASHMAP 3 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| SINGLE POOL | 140712 | 135388 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| MULTI POOL | 815838 | 721722 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| (HM1 stats) | SINGLE | MULTI | TOTAL HITS | MISSES | HIT RATIO |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 520 | 192315 | 466161 | 658476 | 247484 | 0.731 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 521 | 42996 | 127116 | 170112 | 52856 | 0.765 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 539 | 11513 | 427094 | 438607 | 11776 | 0.976 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 540 | 223196 | 1318524 | 1541720 | 273130 | 0.854 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 554 | 80425 | 738829 | 819254 | 84693 | 0.908 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 570 | 221810 | 844722 | 1066532 | 287424 | 0.792 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| (ALL objs) | HASHMAP 1 | HASHMAP 3 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 520 | 41082 / 100616 | 41134 / 100616 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 521 | 7574 / 31629 | 7595 / 31629 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 539 | 10099 / 10319 | 10099 / 10319 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 540 | 78460 / 102394 | 78474 / 102394 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 554 | 16641 / 25617 | 16648 / 25617 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 570 | 68008 / 102354 | 68026 / 102354 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Total Hits : 9431445
Total Misses: 1872683
Hit Ratio : 0.834
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3.1.2 Replacement Policies

LRU and LFU policies have been implemented for cache replacement. ARC policy could not
be applied to this cache as we have two types of objects (with disproportional sizes) that can
be stored in the cache as opposed to �xed-size pages because ARC limits the cache by number
of pages, not the total available memory.

Since the cache is made up of 3 di�erent pools with di�erent actions for eviction and subse-
quent accesses, we use 3 separate instances of these policies, i.e., there is a separate LRU/LFU
list for each pool of the cache.

Figure 3.1: Implementation overview of LRU (left) and LFU (right)

• LRU was implemented using a double-linked list of key-value pairs, with the most recent
entries added to the Rear and the least recent entries removed from the Front, similar to a
queue. The insertion and eviction procedures take O(1) time, but certain operations such
as deletion take O(n) where n is the total number of pairs in the cache. Binary Heaps can
also be used to implement LRU, but all the operations will take O(log2 n) time. Deletion
operation is used when we move a pair from single-touch to memory multi-touch pool, or
from SSD multi-touch to memory multi-touch pool. We use a di�erent approach to �nding
the position of a pair in the LRU list which makes the deletion happen in O(1), speci�ed in
the next section. Since the position of an object in the LRU list indicates its recency, we do
not attach a timestamp counter to each object.

• LFUwas implemented using a combination of two linked lists, �rst of which is single-linked
and the other double-linked. The �rst linked list acts as the frequency list, where each
node serves as the Head to a double-linked list of pairs having the same frequency. This
�rst-level Frequency list contains nodes in ascending order of frequency. The second-level
double-linked list stores the pairs in LRU manner. Using this two-dimensional linked-list
setup makes insertion, eviction and deletion operations takeO(1) time, as opposed to using
Binary Heaps which requires O(log2 n) time.

Since the comparison of replacement policies is not the current goal of this study, and since
the Nutanix Uni�ed Cache uses LRU, we have not used LFU in the empirical analysis.
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3.2 Filesystem Metadata Layer

Nutanix HCI makes use of 3 hashmaps in its metadata layer. While they are implemented
using Apache Cassandra in the HCI, we make use of hashmaps (implemented using red-black
trees) to simulate the behaviour. We consider only the �rst and third hashmap for the metadata
lookups in this project.

(HM1) Description Type Notes
Key hash(vDisk ID,

vblock number)
40-character long string
of hexadecimals

SHA1 hash of two integers converted into
character string

Value egroup ID 32-bit integer integer conversion of 6 hexadecimal characters
taken from the hashed key

Table 3.1: Implementation details of a Hashmap 1 Key-Value pair

(HM3) Description Type Notes
Key egroup ID 32-bit integer –
Value list of extents and slices – uninitialized data; this value is ignored after lookup

Table 3.2: Implementation details of a Hashmap 3 Key-Value pair

Each hashmap object in our implementation consists of a root node and a read-write lock.
A node is made up of a key-value pair and red-black tree metadata (parent, left, right and
colour). We also embed certain cache metadata values within each node. The cache metadata
consists of a �ag indicating if the node is in the cache (and in which pool) or not, and it also
contains an embedded linked list for each of the cache replacement policies, LRU and LFU.

Figure 3.2: Structure of a node

The embedding of cache metadata and replacement policy metadata inside a node helps in
e�ciently inserting, deleting and evicting a node into/from the cache. Using this, we can
simply set a few �elds in each node to represent its availability in the cache, as well as its
position in the LRU/LFU list. If we don’t use this approach, we need to maintain another
hashmap for the objects in the cache, and each insertion/deletion/eviction operation will take
additional O(ln n) time. Moreover, embedding the information about LRU/LFU lists inside a
node makes the list independent of the type of node which is added to the list.
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Figure 3.3: Using separate hashmaps for the metadata and the cache

Figure 3.4: Reusing the metadata hashmap for cache lookup

Figures 3.3 and 3.4 highlight the di�erence made by embedding the cache metadata and re-
placement policy metadata inside the cache. We can reuse the same hashmaps (1 and 3) we
maintain for our key-value store and

3.3 Persistent Cache State

Since the cache is prone to volatility in the face of multiple failure scenarios, we need to per-
sist the cache state into the disk. We can save all the objects in the cache as well as its internal
metadata to the disk by serializing its data structures. The problem with this approach is that
we might be saving some data that is unimportant as we just need a way to know which ob-
jects were there in the cache last time the state was saved.

Another approach is to save only the data of objects currently in the cache by de�ning prim-
itives to serialize/deserialize these objects. There are two problems associated with this ap-
proach. First, we will have to save a large amount of data (in the order of GBs) to the disk,
resulting in storage I/O overhead. Second, the objects (especially the Hashmap 3 objects) we
saved last time to the disk may have their data modi�ed (by other nodes in the cluster) by the
time we read them back.

Yet another approach is to save only the information about which objects are in the cache,
and not their data, to the disk. Since the objects in the cache are key-value pairs queried from
metadata hashmaps, we can only maintain the key part in our cache state as the value can
always be queried again. For instance, we can simply write the following line to a �le on the
disk

37:345,5496,5876,450968
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which will mean that objects corresponding to the vblock numbers 345, 5496, 5876, 450968
of the vDisk 37 were in the cache at the time this state was captured. Moreover, we can have
a separate �le for each vDisk and one �le for all the Hashmap 3 objects.

We further simplify the representation by exploiting the nature of these keys. All keys of
hashmap 1 consist of a hash of the requesting vDisk and the vblock number. For this Hashmap,
we maintain some state per-vDisk. Since the vblock number range for each vDisk is �xed (as
its maximum size is �xed), we can keep information about all its vblocks being in the cache
or not by using a bitmap. When a vblock belonging to a certain vDisk is added to the cache,
we can turn the corresponding bit on. For example, if a vDisk is 10 GB in size, we know that
it consists of 10 K extents (vblocks). Then, we need 10 K bits (≈1.2 KB) to represent Hashmap
1 cached objects for that vDisk.
For hashmap 3 objects, we need to maintain only one bitmap as its key, the egroup ID, is global
to the �lesystem. Moreover, as the key for Hashmap 3 is a �xed-width unsigned integer (32-
bit length assumed in this study), we will need 232 bits (≈512 MB) to represent the cache
membership of its objects.

The bitmap representation takes some additional space in memory as part of cache-internal
metadata. But, it saves a lot of space when saved to the disk, as compared to saving the
complete object data. We have two choices for implementing the bitmap for persistent cache
state:

• Bit Array
An array of integers can be used to represent the space of all the valid bits which correspond
to an object. We use an array of 64-bit unsigned integers, thereby grouping 64 objects into
a single variable. To set/unset a bit, we need to �rst �nd the integer in the array which
represents that bit, and then get to that bit. To get to an integer in the array, we can divide
an object number by 64, and similarly to get to the speci�c bit, we can perform a modulo 64
operation. Bit set/unset operation itself will be a combination of bitwise shift and bitwise
and/or/not operations. Setting/unsetting a particular bit is anO(1) operation. Although this
representation saves space by using only 1 bit for an objects, space may still be wasted if the
bit array is large and only a few bits are set. This representation is costly if large contiguous
ranges of bits are never accessed.
Bit Array for vDisk X (HM1 objects for vblocks 1 & 2 are cached)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

vblock 0 vblock 1 vblock 2 vblock 3 ... vblock n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0 1 1 0 ... 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Bit Array for vDisk Y (HM1 objects for vblocks 0 & 1 are cached)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

vblock 0 vblock 1 vblock 2 vblock 3 ... vblock m
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 1 0 0 ... 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Bit Array for HM3 (objects for egroup ID 1 & 3 are cached)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

egroup 0 egroup 1 egroup 2 egroup 3 ... egroup k
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0 1 0 1 ... 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

• Bit Set
A hashmap can be used to represent the bits, where the key is an integer and its value is
a set of bits (which in turn is also an integer). We use 64-bit integers for the key as well
the value. The key is a multiple of 64 and a key x represents all bits from x to 2 ∗ x − 1,
i.e. 64 bits (which is its value). Moreover, the hashmap will have an entry for a particular
key only if at least one bit in its 64-bit space is set. Setting/unsetting a particular bit is an
O(log2 n) operation. When the �rst bit is set in a 64-bit chunk, a new entry will be added
to the hashmap. Similarly, when the last set bit is unset, the corresponding entry will be
deleted. This representation saves space on disk as compared to the bit array representation
as information is maintained only for used bit spaces.
Bit Set for vDisk X (HM1 objects for vblocks 192 & 3467 are cached)
3: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
54: 00000000 00000000 00000000 00000000 00000000 00000000 00001000 00000000

Bit Set for vDisk Y (HM1 objects for vblocks 763245 & 763246 are cached)
11925: 00000000 00000000 01100000 00000000 00000000 00000000 00000000 00000000

Bit Set for HM3 (HM3 objects 23948 & 45678762 are cached)
374: 00000000 00000000 00000100 00000000 00000000 00000000 00010000 00000000
713730: 00000000 00000000 00000100 00000000 00000000 00000000 00000000 00000000

Note that when we are saving a bit set to the disk, we don’t need to write the complete 64-
character binary string and can simply use its corresponding 64-bit unsigned integer value.
The �les the on disk having information about the bit sets mentioned in the example above
can be simpli�ed as below:
Bit Set for vDisk X
3,1
54,2048

Bit Set for vDisk Y
11925,105553116266496

Bit Set for HM3
374,4398046515200
713730,4398046511104

For empirical analysis performed in this study, we use only the Bit Array representation.

3.3.1 Cache Snapshots

Since the contents the cache will be updated very frequently, we need to capture the state of
our cache at various time intervals and generate a series of snapshots.
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We periodically dump the bitmaps maintained by the cache for each vDisk’s hashmap 1 objects
and for the hashmap 3 objects to the underlying storage in separate �les. We call these �les
cache snapshots and in this manner, the cache is persisted. The dump �le names follow the
following format:

{Base Name}.{Node/Cache ID}.{Epoch Number}.{Bitmap Type}

where:

• Base Name denotes the absolute path to the dump �le for each vDisk

• Node/Cache ID is an identi�er for the cache generating the dumps, useful only in the
scenario where we simulate two instances of the cache in parallel

• Epoch Number speci�es the epoch at which this dump was made. Currently, we are
taking the time period of 30 seconds as one epoch.

• Bitmap Type is either .csv (for Bit Set) or .bin (for Bit Array)

We de�ne the term snapshot rate as the number of requests after which a snapshot of the
cache is made. So, a snapshot rate of 1 K will mean that we snapshot the cache after every
1000 requests. We currently do not make the snapshots at �xed time intervals as the simula-
tion does not take into account the time taken to serve a request. We instead record the total
number of block I/O requests seen by the cache and make the snapshot if a certain number of
requests were issued since last snapshot was taken.

Figure 3.5: Snapshot rate tradeo�s

Figure 3.5 compares the tradeo�s associated with using very high and very low snapshot rates.
We ideally want a snapshot rate which is not very extreme and avoid the respective draw-
backs. Since we are saving these snapshot �les to the underlying storage, and the distributed
�lesystem supports replication (with a certain Replication Factor), the snapshot �les saved on
the node that experiences a failure will still be available on the distributed �lesystem.
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3.4 Heuristic-based Snapshot Analysis

As part of our approach to prewarm the cache, we need to determine the set of objects to
prewarm the cache with, and in order to do so, we need to analyze a series of cache snapshots
taken in the past. Ideally, we want those objects in the prewarm set which are important and
will be relevant after they are fetched into the cache, in the sense that loading them into the
cache should result in a high hit rate and prevent cache pollution. But at the same time, we
need to restrict the size of this set as loading the objects into the cache will require a series
of lookups in the metadata layer (distributed key-value store), which will incur additional
overhead of network transfers.

As mentioned earlier, we represent each object as a bit in a bitmap, and the collection of
bitmaps of all vDisks’ HM1 objects and of HM3 objects at a particular time makes up a snap-
shot. If a bit at a certain position is set in a snapshot, we say that the corresponding object
was present in the cache at the time we captured this snapshot.

Determining the cache prewarm set can be reduced to the problem of �nding most important
and relevant objects optionally constrained by the total size of the prewarm set.
HM1 (VDISK 0) HM1 (VDISK 1) HM3
−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−

1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1 0 Snapshot 1
0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 Snapshot 2
1 1 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 Snapshot 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 Snapshot n
−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−

1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 Prewarm set
−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−

To �nd a solution to this problem with the given constraint, we use a few heuristics, explained
below, which can e�ectively help us in establishing the importance and/or relevance of an
object.

1. k-Frequent (Frequency without memory constraints)
Gives highest priority to the objects which appear in most snapshots. We measure the
frequency of a cached object by percentage of snapshots it is present in. In our case, we can
count the number of snapshots in which a particular bit was set to determine its frequency.

1 0 0 0 0 1 1 0 0 1 Snapshot 1
0 0 0 1 1 0 1 1 0 0 Snapshot 2
1 1 0 0 0 0 1 0 1 1 Snapshot 3
0 0 0 1 1 1 0 1 1 1 Snapshot 4
1 0 1 0 1 1 0 1 1 0 Snapshot 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 1 1 2 3 3 3 3 3 3 Frequency count
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 0 0 1 1 1 1 1 1 1 Objects occurring in at least 50% snapshots
−−−−−−−−−−−−−−−−−−−−−−−−−−−− (Prewarm set)

2. k-Recent (Recency without memory constraints)
Gives highest priority to the objects which appear in the most/least recent snapshots. To
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take recency into account we add all the objects in the last few (or �rst few) snapshots to our
prewarm set. Whether to take the most recent or least recent snapshots into consideration
depends on when we are prewarming the cache. We will make use of both most and least
recent snapshots in our analysis for di�erent scenarios.

1 0 0 0 0 1 1 0 0 1 Snapshot 1
0 0 0 1 1 0 1 1 0 0 Snapshot 2
1 1 0 0 0 0 1 0 1 1 Snapshot 3
0 0 0 1 1 1 0 1 1 1 Snapshot 4
1 0 1 0 1 1 0 1 1 0 Snapshot 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 0 1 1 1 1 0 1 1 1 Objects in the last 2 snapshots
−−−−−−−−−−−−−−−−−−−−−−−−−−−− (Prewarm set)

3. k-Frerecent (Frequency & Recency without memory constraints)
Priority of an object is determined by how frequently it has occurred in the snapshots as
well as how recent was its last occurrence in the snapshots. Another way to see this is
that taking both of these factors into account helps us distinguish between objects with
the same recency or the same frequency value. One method of applying this heuristic is to
perform a weighted sum of all bits in all the snapshots. Then we can sort the bits according
to their summed weight and consider all the objects having highest ’n’ values or top ’x%’
objects by values; we use percentage instead of an absolute number to select objects. There
are many ways to de�ne a weight for objects in a particular snapshot. For instance, a weight
of 1 for all snapshots will result in the same heuristic as k-Frequent. We use two methods
for determining the weight, both of which are functions of the snapshot number. One of
them is the identity function: f (x) = x, and the other is the square function: f (x) = x ∗ x.
x here is the snapshot number, where a value of 1 means the �rst snapshot and it keeps
increasing by 1 for each subsequent snapshot. In the example below, we use the square
function.
Another way to do this is to keep adding the objects into the prewarm set till the memory
constraint is satis�ed.

1 0 0 0 0 1 1 0 0 1 Snapshot 1 (weight: 1)
0 0 0 1 1 0 1 1 0 0 Snapshot 2 (weight: 4)
1 1 0 0 0 0 1 0 1 1 Snapshot 3 (weight: 9)
0 0 0 1 1 1 0 1 1 1 Snapshot 4 (weight: 16)
1 0 1 0 1 1 0 1 1 0 Snapshot 5 (weight: 25)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

35 9 25 20 45 42 14 45 50 26 Weighted Sum
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 0 0 0 1 1 0 1 1 0 Objects having a score of 30 or more
−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (Prewarm set)

4. Constrained-k-Frequent (Frequency with memory constraints)
This is similar to k-Frequent, but with an upper limit on the prewarm set size. We do not
specify the frequency value explicitly as a parameter and keep on adding the most frequent
objects until the memory limit is exceeded. In practice, we always have a constraint on
the total memory available for prewarming and explicitly specifying a frequency value or
percentage might result in the prewarm set being either over�lled or not being fully �lled
up to potential.
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1 0 0 0 0 1 1 0 0 1 Snapshot 1
0 0 0 1 1 0 1 1 0 0 Snapshot 2
1 1 0 0 0 0 1 0 1 1 Snapshot 3
0 0 0 1 1 1 0 1 1 1 Snapshot 4
1 0 1 0 1 1 0 1 1 0 Snapshot 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 1 1 2 3 3 3 3 3 3 Frequency score
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 3 3 3 3 3 3 2 1 1 Frqequency values
0 4 5 6 7 8 9 3 1 2 Objects sorted by frequency
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 1 1 1 1 0 0 0 0 0 Memory constraint ~size of 5 objects
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 0 0 0 1 1 1 1 0 0 Prewarm set
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5. Constrained-k-Recent (Recency with memory constraints)
This is similar to k-Recent, but with an upper limit on the prewarm set size. We do not
specify the recency value explicitly as a parameter and keep on adding all the objects in
most recent snapshots until the memory limit is exceeded. As was the case with an explicit
frequency value, explicitly specifying a recency value might result in the prewarm set being
either over�lled or not being fully �lled up to potential.

1 0 0 0 0 1 1 0 0 1 Snapshot 1
0 0 0 1 1 0 1 1 0 0 Snapshot 2
1 1 0 0 0 0 1 0 1 1 Snapshot 3
0 0 0 1 1 1 0 1 1 1 Snapshot 4
1 0 1 0 1 1 0 1 1 0 Snapshot 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 3 5 4 5 5 3 5 5 4 Recency score
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 5 5 5 5 5 4 4 3 3 Recency values
0 2 4 5 7 8 3 9 1 6 Objects sorted by recency
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 1 1 1 1 0 0 0 0 0 Memory constraint ~size of 5 objects
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 0 1 0 1 1 0 1 0 0 Prewarm set
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6. Constrained-k-Frerecent (Frequency & Recency with memory constraints)
In k-Frerecent, we de�ned a way to assign weights to objects in a snapshot and perform
a weighted sum to establish importance, but we needed to manually specify the threshold
(top x% objects). Here, we do not specify a threshold for the weighted sum of objects and
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keep adding them to the prewarm set (in decreasing order of their sum values) until the
upper limit on prewarm set is exceeded.

1 0 0 0 0 1 1 0 0 1 Snapshot 1 (weight: 1)
0 0 0 1 1 0 1 1 0 0 Snapshot 2 (weight: 4)
1 1 0 0 0 0 1 0 1 1 Snapshot 3 (weight: 9)
0 0 0 1 1 1 0 1 1 1 Snapshot 4 (weight: 16)
1 0 1 0 1 1 0 1 1 0 Snapshot 5 (weight: 25)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

35 9 25 20 45 42 14 45 50 26 Weighted Sum
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

50 45 45 42 35 26 25 20 14 9 Score values
8 4 7 5 0 9 2 3 6 1 Objects sorted by score
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 1 1 1 1 0 0 0 0 0 Memory constraint ~size of 5 objects
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 0 0 0 1 1 0 1 1 0 Prewarm set
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3.4.1 Working Set Size Estimation

In the context of this study, we de�ne the Working Set Size (WSS) of a vDisk as the total size
of its objects (HM1 & HM3) that are in present in the cache (over a period of time). For HM3
objects, we currently charge the size to all the vDisks that have their vBlocks in that HM3
object. The WSS of each vDisk gives a relative idea about the amount of cache a particular
vDisk uses in its normal run. A vDisk may have a large number of objects resident in the
cache, but not all of them may be actively used and will eventually be evicted. Working set
essentially includes all the temporally relevant objects and enables us to determine the share
of cache each vDisk needs individually.

Figure 3.6: Using a moving window for estimating the WSS

In our empirical analysis, we estimate the WSS for each vDisk. This helps us in getting an
estimate about each vDisk’s memory needs.
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3.4.2 Prewarm Set Partitioning

Since we have two types of metadata objects and a number of vDisks, we need to logically
partition the set to decide the share for each type of object. This is necessary in order to ensure
that one type of object (or a vDisk object) does not �ll up the whole set and to accommodate
a diverse set of objects.

We consider two types of partitioning for the prewarm set:

• Partition between all HM1 and HM3 objects
We need to determine the share of the prewarm set for each type of metadata object as both
HM1 and HM3 objects have di�erent costs and bene�ts. There are many policies to perform
this partition:

– No partitioning: Do not reserve space in the set for HM1 and HM3 objects
– Equal HM3: Split the prewarm set into two equal parts for HM1 and HM3 objects
– No HM3: Consider only HM1 objects for the prewarm set, and ignore all the cached

HM3 objects
– Closed HM3: Consider only those HM3 objects which can be resolved into by another

HM1 object in the cache; use the remaining space for HM1 objects.

• Partition among the HM1 objects for each vDisk
We need to further partition the space available for HM1 objects for each vDisk to ensure
that vDisks with a large number of objects in the cache do not cloud those with only a few
objects. Some policies that can be used to perform this partition are:

– No partitioning: Do not reserve space in the set for HM1 objects of vDisks
– Proportional Share: Split the prewarm set for vDisks in ratios calculated from the

number of their currently cached objects
– Proportional Share (WSS): Split the prewarm set for vDisks in ratios calculated from

their most recently determined working set sizes
– Fair Share (vDisk): Split the prewarm set for HM1 objects equally for all vDisks
– Fair Share (VM): Split the prewarm set for HM1 objects equally for all VMs (a VM can

have more than one vDisk)

Note that even if we partition the space for HM1 objects for each vDisk, it might be possible
that some vDisk does not have su�cient cached objects to �ll up its share. Hence, this
partitioning will be performed iteratively, redistributing remaining space in the prewarm
set among the vDisks that have more cached objects.

26



3.5 Cache Prewarming

After we analyze a set of snapshots taken in the past and determine the objects that will
become a part of the prewarm set, we set the bits corresponding to those objects in a new
(prewarm) bitmap. As before, there will one such bitmap for each vDisk’s HM1 objects and
one for HM3 objects. We can optionally save this prewarm bitmap to the disk to checkpoint
our analysis so that for next analysis, all the snapshots taken prior to this analysis will not be
needed again. With this bitmap ready, we know which objects to load into the cache as we
have the key part already in the bitmaps (the position of a bit in the bitmap tells us about the
vBlock/egroup ID depending on the object type). The next step is to actually fetch these ob-
jects from the metadata store and store them in the cache. We are not considering the various
costs associated with the metadata lookups over the network in the current study.

After we have queried the value associated with an object in the prewarm set, we need to
store the object in the cache. The cache itself can be in one of two states: cold (either empty
or has stale objects) or warm (having objects of some running VMs). Moreover, since we have
a cache with multiple pools, we have a choice in which pool(s) to use to load these objects.
We consider using both pools for prewarming, given that there is space for the incoming
prewarming object. We start loading objects in the multi-touch pool �rst. If it gets �lled up
(due to prewarming or due to normal vDisk I/O tra�c), the remaining objects are loaded in
the single-touch pool. When the single-touch pool gets full, we stop the prewarming and the
objects remaining in the prewarm set are discarded. Some objects in the prewarm set may
already be in the cache (due to normal I/O tra�c). These objects are skipped and the next one
in order is considered.

Note that we use multi-touch pool �rst to load the most important objects because unlike in
single-touch pool, an object which replaces another one in the multi-touch will be equally as
important. Another important point here is that the most important objects (loaded into the
multi-touch) will be the ones to get evicted unless they are accessed again within a short time
period.

3.6 Throttling Prewarming

Prewarming process involves the following steps:

1. Determine all the HM1/HM3 objects in the prewarm set we constructed using heuristic-
based snapshot analysis, and iterate over them in the order determined by the heuristic.

2. Lookup each of these objects in the cache. If an object is already present in the cache
(any of the pools), skip it.

3. If an object is not found in the cache, query the metadata store and load it into the cache.
Try loading into multi-touch pool �rst. If it gets full, try single-touch pool.
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4. Repeat these steps until either the cache gets full (both pools) or the prewarm set size
limit is exceeded.

Throughout this process, we perform several operations that will a�ect resources in a real
infrastructure. For looking up objects in the cache, we perform a main memory access. For
querying and fetching objects from metadata store, we perform a query over network and
this in turn will invoke more operations depending on how the metadata store is organized.
Fetching the object from metadata store into the cache will involve a network transfer and
another memory access. This operation of querying and fetching objects form the major part
of our cache miss penalty.

In the scenario where the cache is already serving some vDisks, there might be an increased
contention due to new objects being fetched to the cache. Since the prewarming process force-
fully loads these new objects, objects belonging to other vDisks may start getting evicted and
the associated VMs may start experiencing an increase in cache misses. Some of these misses
are inevitable, but the major issue arises when a large portion of these actively used objects
(of other vDisks) start getting evicted out of the cache. We have set an upper limit on the
total size of objects that are in the prewarm set in our empirical analysis. But if the complete
prewarm set is loaded into the cache instantly, the functioning cache state will get disturbed,
a�ecting the existing VMs.

We try reducing these impacts due to prewarming by imposing an upper limit on the total
size of objects that can be loaded into the cache withing a short time period. In our analysis,
we specify a prewarm rate in terms of the total size that can be loaded within one second.
This implies that if we have the prewarm set size as x MB and our prewarm rate as y MBps,
at most y MB worth of objects can be loaded within a second, and our prewarming process
will go one for at most

⌈
x/y
⌉

seconds. We use upper bounds ("at most") here as some objects
in the prewarm may already be loaded in the cache and they can be skipped over.

3.7 Simulation Environment

Our simulation environment consists of the hypervisor cache, metadata hashmaps and driver
functions for running various experiments. We can view this simulation as a system which
is fed a sequence of block I/O requests and under the presence of various tunable and �xed
parameters produces a set of metrics that enable us to get the answer for various questions
we are interested in. Figure 3.7 shows a basic model of our system.
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Figure 3.7: Basic overview of the simulation

The general sequence of steps taken in our experiments is as follows:

1. Read requests one by one from the block I/O trace file

1a. Split the request into two if it spans over two extents
1b. Perform lookup in the cache for HM1 key determined from the request

− If the HM1 object is not there in the metadata map, create and insert it
− If the HM1 object is not cached, fetch it into the cache

1c. Perform lookup in the cache for HM3 key corresponding to the value of
looked up HM1 object
− If the HM1 object is not there in the metadata map, create and insert it
− If the HM1 object is not cached, fetch it into the cache

1d. Record metrics such as hits, misses and number of cached objects for
lookups

1e. If the number of requests served (since last snapshot was taken)
exceed the snapshot rate:

Dump the bitmaps of all vDisks and HM3 objects to the disk

2. Analyze the snapshots taken so far

2a. Read the snapshots one−by−one starting from the last one
− Create a bitmap for each vDisk and for HM3 representing the prewarm set
− Perform analysis according to heuristic used
− Mark the objects to be included in the prewarm set

3. Reset the cache and load the objects from prewarm set into the cache

3a. Query those objects from metadata maps which are in the prewarm set
3b. Fetch them into the cache

4. Repeat the requests from the point of reset

4a. Perform the same lookup sequence again as before
4b. Record metrics such as hits, misses and number of cached objects for
lookups

Note that in the current simulation, we do not consider time for various events such as disk
access, network transfer and even for request arrivals and completions. The simulator acts as
a block I/O trace analyzer currently.
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4. Experiments & Results

Our aim at performing the experiment is to mimic speci�c scenarios which can render the
cache cold, and measure the bene�ts of prewarming. We particularly look at a scenario where
the cache experiences a failure. Each run of the experiment involves issuing block I/O requests
to the cache and measuring the hit ratio. Note that the outcome of these experiment runs
depend heavily on the nature of the block I/O requests the cache serves. We perform all our
experiments using 3 workload sets as described in the following section.

Each of our experiment uses the cache for a 4-hour long storage I/O tra�c, and the total
number of requests received in this time period depends on the nature of the workload.

4.1 VMWorkloads

VM workloads are the input to our hypervisor cache, and help us simulate actual workloads
running on a hypervisor. Each of these workloads is a series of pre-recorded block I/O re-
quests, and these requests are issued to the cache, sequentially.

We create a trace �le for each workload, which contains these block I/O requests. All the
block I/O trace �les used in the simulations have one I/O request in a line, where the lines
have the following format:

{Type},{vDisk ID},{Sector Number},{Size},{Timestamp}

where:

• Type is either R (read) or W (write). R and W may be su�xed with F (Force Unit
Access), A (readahead), S (sync) or M (metadata). We do not consider these su�xes to
di�erentiate the request type further.

• vDisk ID is a global identi�er for a virtual disk provisioned to a VM.

• Sector Number is the sector number (using 512 KB for the sector size) of the vDisk
which is to be accessed. The actual o�est is calculated by multiplying the sector number
with this sector size.

• Size is the amount of data (in bytes) that will be read or written to the vDisk.
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• Timestamp is the time (in seconds) of each request relative to the start time of our
tracing utility. The precision within a second is upto a microsecond.

The traces recorded from various workloads are merged into a single CSV �le. After merging,
the requests are sorted on the basis of their timestamp. The trace �le is read line-by-line by the
simulator, and after parsing each line, a request is issued to the cache. There may be requests
with I/O size over 1 MB (which is the extent size), and many requests span over more than
one extent. We parse these in the same manner and issue two or more requests (which are
extent-aligned) to the cache.

For instace, when the following request is read from the trace �le,

R,2,1292882848,1310720,005286153

we get the following information:

Type: Read
vDisk ID: 2
Sector Number: 1292882848
Byte Offset: 661956018176 (Sector Number * 512)
vBlock Number: 631290 (Byte Offset / 1MB)
vBlock Offset: 475136 (Byte Offset % 1MB)
Size: 1310720 Bytes

Since in this case, the request size exceeds 1 MB, we split it into two requests that are extent-
aligned as follows:

Request #1:
Type: Read
vDisk ID: 2
vBlock Number: 631290
vBlock Offset: 475136
Size: 573440 Bytes

Request #2:
Type: Read
vDisk ID: 2
vBlock Number: 631291
vBlock Offset: 0
Size: 737280 Bytes

Our experiment workload superset comprises of 2 types of workloads: real and synthetic.

• Real Workloads
These workloads correspond to storage I/O tra�c observed on a system/server used for
normal operations. We have two sets of such workloads. One of them was collected from
the FIU SyLab Resources [6] available on the web. The other was collected from applications
running on various VMs on the IITB CSE Department Infrastructure. These traces were
collected in a non-intrusive manner i.e. we have no runtime information about the resources
used by these systems, but only the storage I/O information as seen from their underlying
storage medium.
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• Synthetic Workloads
These workloads are generated with the help of an external tool and the I/O tra�c does not
correspond to actual real-life events. We have used two methods to generate such work-
loads: using storage benchmark tools inside a VM and using a custom workload generation
tool which generates arti�cial I/O requests. One set of workloads using a storage benchmark
program was collected from [4]. They have used the VMmark virtualization benchmark to
generate various types of application workloads. We also have created a workload genera-
tion tool to be able to include a more diverse set of workloads into our superset. Since we are
not using an actual system in a production environment here, we are able to control certain
aspects of the I/O tra�c that can be generated. For instance, we can set in advance what
the rate of issuing I/O requests should be, or how much of the total disk space available is
actually touched by the I/O requests.

The workloads comprise of trace �les which are pre-recorded series of storage block I/O re-
quests. For real workloads and for synthetic workloads running a benchmark, we need to be
able to capture the disk I/O and parse it in into the format described above. There are two
widely used techniques for capturing/tracing the I/O requests made by the applications/OS
to the underlying storage: NFS-based tracing and Block Layer I/O tracing. We now look at
Block Layer I/O tracing in detail and how we used the same to record storage I/O tra�c on
our servers.
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Block Layer I/O tracing

The blktrace utility is onle of the most commonly used tool to record block I/O activity on
Linux systems. We will take it as an example to explain the block layer I/O tracing. blktrace
is a block-level I/O tracing utility which extracts information about various events from the
kernel. The events are communicated by the kernel in debugfs �les (in /sys/kernel/debug)
through a series of bu�ers. We pass a Linux partition device �le (such as /dev/sda1) as an
input to it and it collects all the block I/O events associated with that device. As part of each
event it traces, it captures certain attributes such as the timestamp of the event, the Logical
Block Address (LBA) or the sector, the size of the request, and the type of request (Read/Write),
among other attributes. Another related utility, blkparse, is used to provide a verbose output
of the traces recorded by blktrace. We use blkparse to convert the traces into our required
CSV format.

Figure 4.1: Block Layer I/O Tracing using blktrace utility

blktrace can also trace various types of block layer events such as Inserted (request sent to I/O
scheduler and queued which will be later serviced by the driver), Issued (a queued request is
sent to the driver) and Complete (an issued request is serviced). We have �ltered these events
and recorded only the requests that are Issued. In virtualized setups, the VM-issued storage
I/O requests will eventually be serviced by the hypervisor, and in our case, the hypervisor
cache. So, we are concerned only with those requests that reach the driver and can be seen
by our cache.

For instance, we can use the following set of commands on VMs running a Linux kernel to
record block I/O traces. The �rst one runs for 12 hours and captures block I/O events (�letered
by Issued event). The second one parses the information captured by blktrace and produces
the block I/O requests in a human-readable CSV format. This set of commands can be on each
VM that we consider for workload generation.

blktrace −d /dev/sda1 −d /dev/sdb1 −w 43200 −a issue
blkparse sda1.blktrace.0 sdb1.blktrace.0 −q −f "%d,0,%S,%N,%T.%t\n"

An example of output from blkparse is given below. It was observed during the traces that
most events captured on any VM (while collecting workloads for our experiment) corre-
sponded to two types of processes, apart from the user-space applications. These two types
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of processes run as background tasks, one of which is the kworker threads and the other is
jbd2. An example of blkparse output is shown below.

8,32 0 16132 21528.832980937 253 D WS 1049159784 + 8 [kworker/0:1H]
8,32 4 7556 21538.815958634 578 D WS 1049159792 + 56 [jbd2/sdc−8]
8,32 4 7557 21538.817070529 378 D WS 1049159848 + 8 [kworker/4:1H]
8,32 0 16133 21543.935871627 9005 D W 476832560 + 8 [kworker/u16:1]
8,32 2 1334 21545.984095780 578 D WS 1049159856 + 144 [jbd2/sdc−8]

kworker is the name given to kernel worker threads which are responsible for doing all kernel-
level activities such as handling hardware interrupts and performing I/O operations. Journal-
ing Block Device (JBD) is a layer in the kernel which provides an interface to various jour-
naling �lesystems. ext4 uses a variant of JBD called jbd2.

4.1.1 CustomWorkload Generation Tool

To generate workloads with desirable properties, we have created a tool in Python which
generates a series of block I/O requests based on certain con�gurable parameters, and writes
them to a trace �le which we later feed as an input to the cache simulator. These requests do
not originate from an actual �lesystem/disk, but are randomly generated based on sampling
from probability distribution(s).
Since these traces are completely synthetic, their disk block access pattern may not correspond
to a real workload. We use them instead to �ne-tune certain parameters, such as IOPS and
total disk usage to better understand the e�ects of prewarming.

Con�gurable parameters

• name: name of the trace �le (access log)
• set: name of the set to which this workload belongs
• vDisk:

– id: vDisk ID (used by the cache internally)
– size: vDisk size

• randseed: seed value for python RNG
• duration: total I/O run time of the vDisk
• iops: duration (seconds) values are be sampled from one of the probability distribu-

tions mentioned below; each sampled value speci�es number of I/O operations issued
at each second

– normal(mean, stddev)
– uniform(min, max)
– poisson(mu)
– beta(a, b, shift, scale)

• sector: (parameters for deciding sector values)
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– size: sector size (512 B is the most commonly used size)
– cluster: it is a set of spatially close sectors; similar I/O requests are generated for

a cluster of sectors
∗ size: how many neighbours of this sector to access?

A value taken from Uniform(min, max), i.e. uniformly from the closed interval
[min, max] . It can also be called as the locality size.

∗ stride: how far is the next sector to be accessed from the current one?
A value taken from Uniform(min, max), i.e. uniformly from the closed interval
[min, max]

• hotspots: disjoint clusters in the vDisk where I/O is performed
The requests to a hotspot are assumed to be thread-agnostic. If a set of requests access a
particular hotspot, all those requests will complete the accesses and only then another
hotspot is chosen for the further requests. We use the format [% requests, % vDisk]

to specify individual hotspots. This format indicates that a certain percentage of all I/O
requests should happen to a certain portion of the vDisk.

• readp: percentage of I/O requests that should be reads
• iosizes: request size distribution, as a list of [percentage of requests , I/O size]

pairs. All sizes are in bytes and the percentages must add up to 100.

The following steps describe the process of workload generation by the tool.
1. Sample IOPS values for each second from the specified distribution

a. Total I/O requests will be the sum of these IOPS values

2. Determine hotspot ranges (start and end sectors) and their weights

3. Start with 0th second and compute timestamp for first request

4. Repeat until total I/O requests remaining becomes 0

a. if cluster size value becomes 0
i. select a new hotspot using (weighted) uniform distribution
ii. select a new sector within the hotspot range, uniformly
iii. select a new sector cluster size, uniformly

b. if iops for current second is complete
i. move on to next second of time, and reset the iops value
ii. calculate step value for timestamp

c. I/O request size is chosen using (weighted) uniform distribution

d. write an I/O request to the file as a line of CSVs

e. select a sector stride value, uniformly and increment the sector

f. increment timestamp value by step determined in (b)(ii)

g. decrement cluster size and total I/O requests

h. increment iops done for current second
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We specify these paramaters in a YAML �le which serves as the input to our tool. An example
con�guration with 5 hotspots is given below. Here IOPS values for each second (3600 for 1
hour duration) are sampled from a Normal distribution.

−−−

− name: 'syn501'
set: 'wload_6gb'
vDisk:

id: 501
size: 100gb

randseed: 1048576
duration: 1h
iops:

randvar: normal
mean: 100
stddev: 20

sector:
size: 512b
cluster:

size:
min: 1
max: 10

stride:
min: 1
max: 1000

hotspots:
− [10%, 1%]
− [10%, 1%]
− [30%, 10%]
− [40%, 20%]
− [10%, 1%]

readp: 50%
iosizes:

− [80%, 4096b]
− [10%, 8192b]
− [5%, 16384b]
− [5%, 131072b]

We have created multiple such con�gurations by changing iops, hotspots and sector cluster
parameter values. Only a few of them are included in the synthetic workloads we will use.

Please note that the hotspots are not strictly de�ned in terms of sector range. A set of re-
quests may eventually access a sector outside these hotspot ranges. But this happens with a
very low chance and does not a�ect the total disk space used.

Since a sector is 512B is size and one HM1 object can cover 1MB of disk data, 1 HM1 represents
~2000 sectors. A sector stride of 2000 will mean that every sector access will be mapped to a
di�erent HM1 object. If we have a locality size of 10 and cluster stride of 100, all the sectors
in this locality may map to the same HM1 objects. In the latter case, we will have 1 miss for
the HM1 object (and the corresponding HM3 object), but 9 consecutive hits, resulting in a hit
ratio of 0.9. To avoid this, we try to keep the locality size low and sector stride high.
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Figure 4.2: Disk block access pattern based on the con�guration given in example above

The �gure above shows the con�guration with 5 hotspots (marked by dotted horizontal red
lines). We have plotted the �rst 15 minutes of the disk block access pattern, but it remains the
same throughout. This is one of the drawbacks of using a synthetic workload. For most real
workloads, these hotspots change over time.

Figure 4.3: More examples of disk block access patterns of workloads generated using the tool
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4.1.2 Experiment Workload Sets

For the experiment, we need at least a couple of workloads to test the e�ectiveness of our
prewarming methods and also to test whether the same set of experiment settings can work
for all workloads or not. We currently use 3 workloads and perform the experiment for each
one of them, separately. These workloads comprise of various vDisks and they di�er in their
I/O characterisitcs. The requests from individual vDisks are seen by the cache in a time-
interleaved manner. In other words, the trace �le we feed as an input to the cache has the
requests of various vDisks sorted by their timestamps.

When characterizing the following workloads, we used a set of metrics to evaluate the nature
of each vDisk. One such metric is the IOPS value, which indicates the number of requests is-
sued to the cache within a second, averaged over the total duration of experiment run. Other
than their IOPS, we needed a sense of their block access pattern in terms of locality of refer-
ences and the disk coverage.

• Predetermined wss80
We need a rough approximation of the locality in access pattern of a vDisk. We esti-
mated this by letting vDisks run individually on the cache (only one pool) and observe
the average hit ratio they achieved. Initially, we set the cache to a very low size (1 MB).
We gradually increase this size and stop at the one where we can get 80% average hit
ratio. This roughly tells us the amount of cache a particular vDisk needs to maintain an
80% average hit ratio. We de�ne wss90 in the same manner, but consider only wss80 in
characterizing the vDisks.

• wss80-to-disk Ratio
For the synthetic workloads we generate using the custom tool mentioned in the pre-
vious section, we know exactly how much of the disk will be accessed. This combined
with the fact that 1 MB of objects in cache can represent 36 MB of disk block on disk
helps us come up with another metric. We have obtained this relation between size of
cache objects and disk size they represent from empirical analysis. We calculate how much
disk is represented by the wss80 and then compare this with 80% of the total disk space
used for a vDisk. This comparison made indicates if caching 80% of the disk gives us
80% average hit ratio or not. For instance, if the value of this ratio is 1, we know that
wss80 represents exactly 80% of the vDisk. In other words, caching wss80 worth of a
vDisk’s objects will an 80% hit ratio. For values less than 1, we can infer that the vDisk
can reach 80% hit ratio by caching less than 80% of its accessed vDisk blocks.
Ideally we do not want all vDisks to have the same ratio. If all vDisks can reach that hit
ratio by caching 80% of its disk blocks, we can always set a cache size which guarantees
this. We intend to have a good mix of vDisks in our workload set where this ratio di�ers
for each one of them.

We now list the workload sets and some details about them.

• Syn6GB
This workload is (synthethically) generated using the tool described in the previous section.
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We use the digit ’6’ in the name to denote the total size of cache (6 GB) this workload will
run on. The vDisks in this set vary in their IOPS, going from 25 to 200. The collective IOPS
of the vDisks in this set is 625 which indicates we can expect nearly 625 requests that within
a second of our simulation. The collective wss80 is nearly 7350 MB. We include vDisks with
various wss80-to-disk ratios, ranging from 0.31 to 1.1. We have set the size of all vDisks to
100 GB as total size does not a�ect our empirical analysis, but only the size of vDisk actually
accessed.

vDisk vDisk Size
(GB)

Avg. IOPS Predetermined
wss80 (MB)

Data repr.
by wss80
(GB)

wss80-to-
disk
Ratio

syn520 100 100 2000 70.31 0.88
syn521 100 25 425 14.94 0.57
syn539 100 50 250 8.79 1.1
syn540 100 200 2200 77.34 0.97
syn554 100 100 175 6.15 0.31
syn570 100 150 2300 80.86 1.01

Table 4.1: Characteristics of workload Syn6GB

• Syn4GB
This workload set is similar to Syn4GB. The total cache size for this workload is set to 4 GB.
The vDisk IOPS vary from 25 to 200 and the collective IOPS is 675. The collective wss80 is
nearly 4425 MB. The wss80-to-disk ratios range from 0.2 to 1.26. All vDisks are 100 GB in
size.

vDisk vDisk Size
(GB)

Avg. IOPS Predetermined
wss80 (MB)

Data repr.
by wss80
(GB)

wss80-to-
disk
Ratio

syn504 100 50 650 22.85 1.14
syn506 100 25 600 21.09 1.26
syn508 100 100 325 11.43 0.95
syn540 100 150 2400 84.38 1.05
syn551 100 200 150 5.27 0.2
syn557 100 150 300 10.55 0.25

Table 4.2: Characteristics of workload Syn4GB

• RealCSE
This workload is recorded using blktrace on VMs running on the IIT Bombay CSE Depar-
ment Infrastructure. The VMs on which the traces were recorded comprise of a mail server
(Post�x, Dovecot, Mailman), three web servers (httpd, Nginx), an LDAP server (OpenL-
DAP), and a database server (MySQL). All the traces were recorded for the same duration of
12 Hours on two consecutive weekdays. The volume of block I/O events in the traces for all
these VMs di�er depending on the tra�c that particular VM had to serve. All these traces
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were recorded on device partitions formatted with the ext4 �lesystem, but all VMs did not
have the same kernel version. The IOPS range from 0.45 to 20 (collective IOPS is 51.19) and
the collective wss80 is close to 105 MB. Due to the latter being very low, we have set the
total cache size to 32 MB for this workload.

vDisk vDisk Size
(GB)

Avg. IOPS Predetermined
wss80 (MB)

Data repr.
by wss80 (GB)

mail1 100 13.93 5 0.18
mail2 500 19.99 1 0.04
mail3 1000 8.89 90 3.16

db 19 2.54 1 0.04
ldap 19 2.12 1 0.04
web1 19 2.19 5 0.18
web2 19 1.08 1 0.04
web3 16 0.45 1 0.04

Table 4.3: Characteristics of workload RealCSE

Note that we do not include the wss80-to-disk ratio here as we do not know exactly how
much of the disk in in use by the individual vDisk workloads.

Figure 4.4: RealCSE: Disk block access patterns for mail3 (left) and web1 (right)

From the access patterns in the �gures above, we can see why the wss80 values are very
low for these 2 vDisks. The other vDisks have similar access patterns as well. These access
exhibit very high temporal locality in addition to the visible high spatial locality. Since
these workloads are running on a real �lesystem, the accessed with high locality mostly
correspond to system processes that perform periodic tasks such as journaling.
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In the table below, we have categorized various characteristics of the 3 workloads we have
described. The Average IOPS and wss80 values are relative to each other. For IOPS distribu-
tion, we know that the synthetic workloads were generated using values for sectors (blocks)
sampled from uniform distribution. As for RealCSE workload, we observe from the access
patterns of individual vDisks as well as their cumulative accesses that it is bursty in nature.
For the synthetic workloads, spatial locality is maintained to some extent due to out choices
for various sector parameters, but there is low temporal locality as the sectors accessed are
sampled and they may or may not repeat within a short duration. Although, temporal locality
due to consecutive accesses to same group of sectors (which can be covered by a single HM1
object) is possible. As for RealCSE workload, we have seen from both the access patterns and
the static analysis that it exhibits both high spatial and high temporal localities.

Workload
Set

Type Average
IOPS

IOPS
Distribution

Spatial
Locality

Temporal
Locality

wss80

Syn6GB Synthetic Medium Uniform Medium Low High
Syn4GB Synthetic Medium Uniform Medium Low Medium
RealCSE Real Low Bursty High High Low

Table 4.4: High-level characteristics of workloads
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4.2 Parameters & Metrics

Parameter Space

Throughout the experimentation, we make use of a large set of parameters that a�ect the
various metrics we will measure. From this set of parameters, only some are studied in depth
in the experiment, prioritized on basis of their relevance to our view of prewarming bene�ts.
For instance, we would, as a �rst step, would like to observe how the choice of a heuristic
for establishing an order of importance among the cache objects will a�ect relevance of those
objects after we load them into the cache. But the total size of the hypervisor cache, or the
size of the Hashmap objects is of lower relevance at this stage of our study.

We have the following parameters �xed throughout all the experiments:

• HM1 object size: 1400 B
• HM3 object size: 27648 B ( 27 KB)
• Total cache size: (�xed depending on the workload used)

– Single-touch pool size: 20% of the total cache size
– Multi-touch pool size: 80% of the total cache size

Note: The cache size is set to the same value on the source as well as on the destination
node.

• Cache replacement policy: LRU
• Representation used for persistent state: Bit Array
• Prewarm set partition policy:

– Between HM1 and HM3 objects: No partitioning
– Among the vDisks (for HM1 objects): No partitioning

• Total duration of I/O tra�c seen by cache: 4 Hours
• Time instant at which node failure happens: 90th minute
• Number of vDisks considered for failover migration: All vDisks in the workload set
• Number of vDisks running on target node (before failover): None

Note that for the current study, we do not distinguish between read and write requests during
cache lookup.

We now list some �xed parameters that vary across the workloads we use for this experiment.

We start by listing some information about the workloads used for the experiments, which is
�xed across the experiments. It is provided in the table below:
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Workload
Set

No. of
vDisks

Total
Requests
Issued
(millions)

Total
Metadata
Objects
(thousands)

Collective
Avg. IOPS
of vDisks

Total Cache
Size

Syn6GB 6 8.95 745.86 625 6 GiB
Syn4GB 6 9.68 504.78 675 4 GiB
RealCSE 8 0.74 39.67 51 32 MiB

Table 4.5: Workload-speci�c �xed parameters used in experiments

The following parameters are tunable and we vary at least one of these in each of our exper-
iment runs. The values over which these parameters are varied are also mentioned below.

• Snapshot Rate: number of I/O requests after which we dump the cache state
10 K, 50 K, 100 K

• Prewarm Set Size Limit: total size of metadata objects (as fraction of the total cache size)
considered for prewarming the cache
5%, 10%, 25%, 50%, 75%, 100%

• Prewarm Rate: the rate at which we load the prewarm set objects into the cache
• Heuristic for snapshot analysis:

– Constrained-k-Frequent: no parameters
– Constrained-k-Recent: no parameters
– Constrained-k-Frerecent

∗ Weight function (f(x)): weight for an object if present in the snapshot number x
x (Linear), x2 (Quadratic)

We do not use the non-constrained heuristics anywhere in the experiments.

Note: There is always an implicit upper bound on the prewarm set size. If the cache gets
full while prewarming, we stop the prewarming even if there are objects remaining in the
prewarm set.
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Metric Space

There are several metrics that we can consider for evaluating the prewarming process. They
are mainly related to either the cost or the bene�t of prewarming. For instance, we can con-
sider cache miss penalty and saving cache snapshots to disk as costs in terms of latency caused
on the storage I/O path. In this study, we do not take into account these costs associated with
prewarming. Instead, we focus on the hit ratio bene�ts as the benchmark for e�ectiveness of
the prewarming process.

We capture the following metrics in our simulation on the destination node cache:

• Cache Hit Ratio (for each second)
• per-vDisk Hit Ratio (for each second)
• Instantaneous Hit Ratio: the value of cache hit ratio within 1 second after the failure
• {5, 15, 30}-min-avg Hit Ratio: the average cache hit ratio in a time frame of 5, 15 and 30

minutes just after the failure

We also have captured the time it takes (on destination) to reach the hit ratio before failure
(on source). But in some of the experiments, we have noticed that after reaching that hit ratio
at a certain point in time, the hit ratio starts to decline again. Hence, we do not consider time
to reach a certain hit ratio as a metric.
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4.3 Node Failover Scenario

This experiment involves simulating the scenario where a node in a failover cluster experi-
ences failure and all its running VM are live-migrated to another node. We assume here that
there are no VMs already running on the target node. Unlike the node on which the VMs
were initially running, the target node will have a cold cache, i.e. the information about the
objects in cache is lost. The VMs will start running from the same point at which the source
node experienced failure. We expect to see a drastic drop in the cache hit ratio (as well as in
the hit ratios of individual VMs) when the VMs start running on the target node, but it should
stabilize as the VMs continue to run.

Figure 4.5: Node failover scenario

In this experiment, we answer the following question:
To what extent will prewarming the cache on the target node help in alleviating the
drastic drop in the hit ratio due to the cache being cold for the incoming VMs, and
in reaching a high hit ratio within a shorter time period?

We capture the hit ratio of the cache on the initial node up to the point when it fails, and
then on the new node after failover. As in the previous experiment, we do this at �xed time
intervals, and compare the impact on the hit ratio with and without prewarming the cache on
the new node.

The procedure for performing this experiment is as follows:
1. Issue the block I/O requests to the cache until n seconds is served
2. Measure the hit ratio of the cache at each second
3. Dump the cache state at fixed intervals (determined by snapshot rate)
4. Analyze the snapshots using one of the heuristics to get the prewarm set
5. Reset the cache and load the objects determined in the previous step
6. Issue the block I/O request starting (n+1)th second
7. Measure the hit ratio of the cache at each second

Throughout this experiment, we �rst issue the requests for the �rst 90 minutes, reset the
cache to simulate failover and then continue the run for another 150 minutes. At the end of
this experiment, we have two sets of cache hit ratios, one where the cache on target node
was cold after 5400th second (90 minutes) and the other where we prewarmed the cache with
certain objects after the same point in time. Figure 4.6 shows an overview of the timeline we
follow for all experiments running in this scenario.
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Figure 4.6: Timeline of node failover

The experiments were run for only 3 of the 6 heuristics mentioned earlier, leaving out the ones
with no memory constraint (k-Frequent, k-Frerecent and k-recent) because for these heuris-
tics, we needed to manually specify a score threshold which in some cases will result in the
prewarm set not utilizing available space.

Moreover, we also skip high snapshot rates such as 1K requests and 5K requests as it in-
volves a large size of cache state being written to the disk and will incur more overhead in
terms of disk accesses and computation time on the simulation system.

In the following subsections, we have provided a subset of results for our workloads, with
various combinations of parameters. These combinations may not o�er the highest hit ratios,
but are included for the purpose of observing the e�ect they have on the hit ratio. In the case
of two combinations resulting in same time or hit ratio, we chose the one with lower snapshot
rate (e.g. 100 K instead of 50 K).

We perform various experiments with the node failover scenario to study the e�ect of chang-
ing one parameter, keeping the others �xed. While we are interested in seeing the ones that
give us the highest bene�ts, we also need to study the impact one parameter can make on
our overall prewarm process. We will use the inferences gathered from these experiments to
come up with a set of hypotheses which can help us determine the parameter values from the
runtime state of individual vDisks.
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We perform each of these experiments try to answer a set of questions, which are centred
around our choice of individual (tunable) paramaters.

• What are the performance implications of choosing a prewarm set size limit for the (desti-
nation) cache? What is the cost-bene�t tradeo� here, and which of those values can give us
reasonable prewarm bene�ts?

• What are the performance implications of choosing a prewarm rate for the (destination)
cache? What is the cost-bene�t tradeo� here, and which of those values can give us rea-
sonable prewarm bene�ts?

• What are the performance implications of choosing a certain snapshot rate for the (source)
cache? What is the cost-bene�t tradeo� in the rate we choose? Does one rate outperform
the others in most cases?

• How does the choice of a certain heuristic a�ect the selection of important objects to load
(and in turn a�ect the prewarm bene�ts)? Is there a heuristic we can use that gives us higher
hit ratios (relative to other heuristics), regardless of our choice for other parameters?

• Given the implications of these 4 parameters, which combination should we recommended
to use, given some information about the cache and individual vDisks at runtime (before
failure)?

The �rst two questions are concerned with parameters that a�ect the cache on destination
node, while the next two a�ect the cache on source.

We will look at each of these questions for all the workloads. At the end of these experiments,
we will try to come up with a set of ideas for determining the values for these parameters at
runtime (on source node, before failure).
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4.3.1 Workload: Syn6GB

We �rst mention the hit ratio values we obtained on a cold cache for this workload. These
values will remain constant across all experiments using this workload. The Hit Ratio before
failure was obtained on the source cache, while the others were recorded on the destination
cache.

HR before failure Instantaneous HR 5-min avg. HR 15-min avg. HR 30-min avg. HR
0.8 0.36 0.43 0.52 0.6

Table 4.6: Syn6GB: Values for metrics recorded in the cold cache

Implications of prewarm set size limit on the destination

Prewarm set size limit constrains the cache memory available on the destination cache for
prewarming. A large prewarm set size will be able to accommodate more objects. But at the
same time, the prewarming process will need more time to actually fetch those objects from
the metadata store and then load them in the memory. Moreover, if the cache is not empty
(and the destination node has a few running VMs), a large prewarm set will cause a lot of
evictions which may a�ect the VMs’ performance. Ideally, we would like to keep this limit at
a low value which can guarantees a reasonable improvement in the hit ratio.

Snapshot
Rate
(requests)

Prewarm
Set Size
Limit
(% 6 GiB)

Prewarm
Rate

Heuristic Instant.
HR

5-min avg.
HR

15-min
avg. HR

30-min
avg. HR

100 K 5% 100 MBps k-Recent 0.41 0.64 0.69 0.74
100 K 10% 100 MBps k-Recent 0.41 0.65 0.7 0.75
100 K 25% 100 MBps k-Recent 0.41 0.68 0.73 0.77
100 K 50% 100 MBps k-Recent 0.41 0.72 0.77 0.8
100 K 75% 100 MBps k-Recent 0.41 0.74 0.75 0.77
100 K 100% 100 MBps k-Recent 0.41 0.72 0.73 0.76

Table 4.7: Syn6GB: E�ect of various Prewarm Set Size Limits on the cache

We observe from the table above that increasing the prewarm set size limit does help the
cache in terms of hit ratio, but only up to a certain extent. Even prewarming only 5% of the
destination cache (~307 MB) results in an average hit ratio of 0.74 for the �rst 30 minutes, a
signi�cant improvement over 0.6 with cold cache. Furthermore, we observe that the hit ratio
bene�ts start to decline after 50% limit. This happens due to the fact that loading 75% of the
cache occupies most of multi-touch pool (which is 80% of the cache), and loading 100% will
occupy it completely. When the VM tra�c is running, it will load some objects in the cache
(which were not in prewarm set), these objects will get to the multi-touch part and cause
evictions. The prewarm objects that get evicted may have been needed in the near future,
but their absence due to eviction causes an extra misses. Another reason for this behavior
is that the heuristic used (k-Recent) will load objects that are temporally relevant (relative to
the point of failure). Most of the objects in the 50% limit set are being accessed within �rst 30
minutes, but in 75% or 100% limit sets, they will be evicted before they are accessed.
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We can say here that prewarming more than 50% of the cache does not help the cache to
an extent that we would expect. In the scenario where some VMs are already running on
the destination (before failover happens), prewarming with higher limits may cause evictions
of their objects as well, a�ecting their performance. Moreover, increasing the prewarm rate
helps the hit ratio for �rst few minutes (especially 5-min-avg), but as the tra�c continues to
run these di�erences start to fade and the hit ratios for them eventually converge to the same
value.

Figure 4.7: Syn6GB: Comparison of various Prewarm Set Size Limits for Hit Ratio metrics

The �gure above compares the hit ratio metrics for various values of prewarm set limits,
keeping snapshot rate �xed at 100K, heuristic as k-Recent and prewarm rate at 100 MBps.
The lower part of each bar with hatch pattern shows the corresponding hit ratio value for
cold cache.
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Implications of prewarm rate on the destination

Prewarm rate a�ects how fast we can load the objects in the prewarm set into the destination
cache. A higher rate might give a higher chance to the temporally relevant objects to be loaded
into the cache. If we can load all the objects (with an in�nite rate) within a second, the VMs
would not experience a miss only because the required object was in the prewarm set, but
could not be loaded as fast. But at the same time, a higher rate needs more bandwidth on
the storage I/O path (including network resources), potentially disturbing running VM tra�c
as well as that of the whole cluster. Moreover, very high rates are practically infeasible due
to the physical limitations of hardware resources. Ideally, we want this rate to be as low as
possible, while giving us the maximum bene�t in terms of hit ratio.

Snapshot
Rate
(requests)

Prewarm
Set Size
Limit
(% 6 GiB)

Prewarm
Rate

Heuristic Instant.
HR

5-min avg.
HR

15-min
avg. HR

30-min
avg. HR

100 K 50% 50 MBps k-Recent 0.38 0.7 0.76 0.79
100 K 50% 100 MBps k-Recent 0.41 0.72 0.77 0.8
100 K 50% 500 MBps k-Recent 0.61 0.74 0.78 0.8
100 K 50% ∞ k-Recent 0.73 0.75 0.78 0.8

Table 4.8: Syn6GB: E�ect of various Prewarm Rates on the cache

We observe here that increasing the prewarm rate helps the hit ratio, but only for the �rst
few minutes. In the table above, we can see that the 30-minute values are almost the same for
all prewarm rates. Even if we load more objects into the cache, only a �xed number of those
will be accessed in the �rst few minutes. Moreover, if the rate is low, it takes more time to
prewarm the cache. For instance, to prewarm 3 GB (50%) at 50 MBps, it would take around 60
seconds. The same would take 30 seconds when prewarmed at 100 MBps.

The �gure below compares the hit ratio metrics for various values of prewarm rates, keeping
snapshot rate �xed at 100K, heuristic as k-Recent and prewarm set limit at 50%. The lower
part of each bar with hatch pattern shows the corresponding hit ratio value for cold cache.
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Figure 4.8: Syn6GB: Comparison of various Prewarm Rates for Hit Ratio metrics

Implications of snapshot rate used for saving the cache state

Snapshot rate a�ects the frequency at which we capture our in-memory cache state and save
it to the disk for analysis in the near future. A high snapshot rate is able to capture the cache
state at a �ner granularity, i.e., if there are objects that are frequently going in and out of
the cache, these will only be noticed only if the cache is snapshotted at high rates. When
using snapshots for analysis, we will have a larger number of these snapshots to process,
which can possibly give us a better selection of objects. But at the same time, high snapshot
rate creates issues as well. High rates will result in more snapshots being written to the disk
(and more frequently as well), which can a�ect the storage I/O path severely and result in
degraded storage performance of the running VMs. Moreover, having more snapshot makes
the heuristic-based analysis slower. We can perform an online analysis, where snapshots are
analyzed as they are created and the prewarm set is built incrementally. But, this type of
analysis will also be slower for high rates. Ideally, we want this rate to be as low as possible,
while resulting in a good selection of objects for the prewarm set.

Snapshot
Rate
(requests)

Prewarm
Set Size
Limit
(% 6 GiB)

Prewarm
Rate

Heuristic Instant.
HR

5-min avg.
HR

15-min
avg. HR

30-min
avg. HR

10 K 75% 100 MBps k-Frequent 0.38 0.72 0.78 0.8
50 K 75% 100 MBps k-Frequent 0.38 0.73 0.78 0.8
100 K 75% 100 MBps k-Frequent 0.39 0.73 0.78 0.8

Table 4.9: Syn6GB: E�ect of various Snapshot Rates on the cache
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In the table above, we can observe that choice of a snapshot rate does not have a signi�cant
impact on the hit ratio. There is only a minute di�erence for the same with 10K rate and with
100K rate. Due to the same reason, we choose a lower rate (100K) in all our results.

Implications of heuristic used for snapshot analysis

Heuristic used for analysis a�ects the selection of objects for prewarm set, as well as the order
of importance of objects within the set. Each heuristic has its own advantages. For instance,
if we choose objects based on their recency, the storage tra�c within the next few minutes
may experience high hit ratio due to temporal locality of their accesses. A frequency-based
selection may help in the longer run, as we are selecting mostly used objects regardless of
their access time. A combination of these two (frerecency) is expected to give a bene�t in
the immediate time period, as well as in the an extended time period. While we want the
prewarming to reduce the drastic drop in the immediate hit ratio after failure, it will be good
to do it in a way which helps the cache in the longer run as well.

Snapshot
Rate
(requests)

Prewarm
Set Size
Limit
(% 6 GiB)

Prewarm
Rate

Heuristic Instant.
HR

5-min
avg. HR

15-min
avg. HR

30-min
avg. HR

100 K 10% 50 MBps k-Recent 0.38 0.64 0.7 0.75
100 K 10% 50 MBps k-Frequent 0.38 0.51 0.59 0.65
100 K 10% 50 MBps k-Frerecent (LNR) 0.38 0.51 0.58 0.65
100 K 10% 50 MBps k-Frerecent (QDR) 0.38 0.51 0.58 0.65

Table 4.10: Syn6GB: E�ect of various Heuristics on the cache (low prewarm set limit)

From the table above, we can infer that for the given set of other parameter values, k-Recent
performs better. One of the reason for the same is that we are interested in only the gains in
hit ratio for a short duration after prewarming. k-Frerecent and k-Frequent give results simi-
lar to each other as frequency heuristic is not able to select a good set of objects, as compared
to the recency heuristic. Moreover, we have observed that for high prewarm size limits (75%
and 100%), the k-Frequent heuristic performs better than the k-Recent one. This can observed
in the table below.

Snapshot
Rate
(requests)

Prewarm
Set Size
Limit
(% 6 GiB)

Prewarm
Rate

Heuristic Instant.
HR

5-min
avg. HR

15-min
avg. HR

30-min
avg. HR

100 K 75% 50 MBps k-Recent 0.38 0.7 0.73 0.75
100 K 75% 50 MBps k-Frequent 0.38 0.67 0.75 0.78
100 K 75% 50 MBps k-Frerecent (LNR) 0.38 0.67 0.75 0.78
100 K 75% 50 MBps k-Frerecent (QDR) 0.38 0.66 0.75 0.78

Table 4.11: Syn6GB: E�ect of various Heuristics on the cache (high prewarm set limit)
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The main reason for this is that the eviction or prewarm objects caused due to excessive
prewarming here will evict the most recent or the most frequent objects �rst. But, eviction of
most recent objects is worse than that of most frequent objects because the recent objects are
meant for immediate VM tra�c which will now cause many misses for them. While eviction
of the most frequent objects is a problem too, from the results above, we can infer that the
number of such objects evicted are fewer than those for k-Reecnt. In the complete set of
results for this experiment (with same values for all other parameters), we observed that the
evictions for k-Recent start to happen 20 seconds earlier than that for k-Frequent.
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Per-vDisk analysis

Figure 4.9: Syn6GB: Correlation between WSS and share in Prewarm Set for vDisks

Figure 4.10: Syn6GB: Correlation between avg. IOPS and WSS (left), avg. IOPS and Prewarm
Set share (right) for vDisks

In the �gures above, we have plotted the correlation between the IOPS of vDisks, and their
WSS and Prewarm Set Share obtained during the experiment. These numbers are obtained
from the experiment run with 50% prewarm set size limit, k-Recent heuristic for snapshot
analysis, and a prewarm rate of 100 MBps. The WSS was estimated using a moving 10-minute
window with a stride of 5 minutes.

From the graph on top, we can infer that for all vDisks in this workload, prewarm set share is
proportional to their WSS before failure. The graphs at the bottom compare how the IOPS of
each vDisk a�ect the WSS and set share of each vDisk. It can be seen that vDisks with higher
IOPS value are having higher WSS and a larger share in the prewarm set, as expected. Since
these vDisks have higher IOPS, they will use the cache at a higher frequency and they will
have more objects cached.
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Figure 4.11: Syn6GB: Impact of prewarming on the vDisk hit ratio for 5 minutes after failure:
cold cache (left) and prewarmed cache (right)

In the �gures above, we have plotted the individual vDisk hit ratios, comparing the cold cache
with prewarmed cache. We can infer here that prewarming does help them individually, even
if it is by a small margin. There is a large di�erence in the hit ratio improvements for vDisks
2 (orange) and 6 (olive). This can be attributed to the di�erences in their IOPS as well as in
their shares in the prewarm sets.

Figure 4.12: Syn6GB: 5-minute average Hit Ratios for vDisks 2 (left) and 6 (right) against their
prewarm set sizes

From the 2 �gures above, we can infer the extent to which 5-minute hit ratios are a�ected
by the prewarm set sizes for those vDisks. For vDisk 2, there was an increase in the 5-min
hit ratio by 0.01 when the prewarm size for it is increased by nearly 80 MB. For vDisk 6, the
same amount of increment in the hit ratio can be seen with nearly 50 MB. Moreover, when
the latter was able to get a good prewarm set share, we saw an increment of 0.05 in the hit
ratio. We could possibly see a better increment for vDisk 2 if it were given a better share in
the prewarm set. This is not possible in the current setup as there is no scheme for explicit
partitioning of the set for each vDisk.
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Figure 4.13: Syn6GB: Impact of prewarming on the (cumulative) cache hit ratio after failure

In the �gure above, we can see the overall impact prewarming has on the cache. The parameter
combinations used for prewarming here are the same as in the previous �gure. One more
observation made here is that the time it takes to reach the hit ratio value that was just before
failure is cut by more than an hour.

56



4.3.2 Workload: Syn4GB

Mentioned below are the hit ratio values we obtained on a cold cache for this workload.

HR before failure Instantaneous HR 5-min avg. HR 15-min avg. HR 30-min avg. HR
0.83 0.51 0.56 0.63 0.69

Table 4.12: Syn4GB: Values for metrics recorded in the cold cache

Implications of prewarm set size limit on the destination

Snapshot
Rate
(requests)

Prewarm
Set Size
Limit
(% 4 GiB)

Prewarm
Rate

Heuristic Instant.
HR

5-min avg.
HR

15-min
avg. HR

30-min
avg. HR

100 K 5% 500 MBps k-Recent 0.68 0.71 0.76 0.79
100 K 10% 500 MBps k-Recent 0.69 0.72 0.77 0.8
100 K 25% 500 MBps k-Recent 0.69 0.74 0.79 0.81
100 K 50% 500 MBps k-Recent 0.69 0.78 0.81 0.83
100 K 75% 500 MBps k-Recent 0.69 0.8 0.8 0.81
100 K 100% 500 MBps k-Recent 0.69 0.76 0.78 0.8

Table 4.13: Syn4GB: E�ect of various Prewarm Set Size Limits on the cache

We make the same observation here as we did in the corresponding experiment for the pre-
vious workload (Syn6GB). Increasing the prewarm set limit helps the 30-minute average hit
ratio, but up to a certain extent. For 75% and 100% values, we see again that the prewarmed
objects are more prone to eviction from multi-touch pool due to the running VM tra�c. More-
over, loading even only 5% of the cache gives us a signi�cant bene�t in 30-minute hit ratio of
0.74 over the cold cache value of 0.6.

The �gure below compares the hit ratio metrics for various values of prewarm set limits,
keeping snapshot rate �xed at 100K, heuristic as k-Recent and prewarm rate at 500 MBps.
The lower part of each bar with hatch pattern shows the corresponding hit ratio value for
cold cache.
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Figure 4.14: Syn4GB: Comparison of various Prewarm Set Size Limits for Hit Ratio metrics

Implications of prewarm rate on the destination

Snapshot
Rate
(requests)

Prewarm
Set Size
Limit
(% 4 GiB)

Prewarm
Rate

Heuristic Instant.
HR

5-min avg.
HR

15-min
avg. HR

30-min
avg. HR

100 K 75% 50 MBps k-Frequent 0.54 0.75 0.8 0.82
100 K 75% 100 MBps k-Frequent 0.55 0.79 0.82 0.83
100 K 75% 500 MBps k-Frequent 0.61 0.82 0.83 0.84
100 K 75% ∞ k-Frequent 0.82 0.83 0.84 0.84

Table 4.14: Syn4GB: E�ect of various Prewarm Rates on the cache

As in the same experiment for the previous workload (Syn6GB), we see here that increasing
the prewarm rate helps in the immediate hit ratios (instantaneous, 5-min-avg), but for an ex-
tended time period, the hit ratio values eventually converge. Loading the objects at only 50
MBps or 100 MBps has a great improvement in the 5-minute value which is 0.43 for cold cache.

The �gure below compares the Hit Ratio metrics for various values of prewarm rates, keeping
the snapshot rate �xed at 100K, heuristic as k-Recent and prewarm set limit at 75%. The lower
part of each bar with hatch pattern shows the corresponding hit ratio value for cold cache.
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Figure 4.15: Syn4GB: Comparison of various Prewarm Rates for Hit Ratio metrics

Implications of snapshot rate used for saving the cache state

Snapshot
Rate
(requests)

Prewarm
Set Size
Limit
(% 6 GiB)

Prewarm
Rate

Heuristic Instant.
HR

5-min avg.
HR

15-min
avg. HR

30-min
avg. HR

10 K 75% 100 MBps k-Frequent 0.54 0.78 0.81 0.83
50 K 75% 100 MBps k-Frequent 0.54 0.78 0.81 0.83
100 K 75% 100 MBps k-Frequent 0.55 0.79 0.82 0.83

Table 4.15: Syn4GB: E�ect of various Snapshot Rates on the cache

The snapshot rate does not have a signi�cant e�ect for this workload as well. Since we see
a very small di�erence in the hit ratios, we proceed with using 100K as the rate for other
experiments using this workload.
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Implications of heuristic used for snapshot analysis

Snapshot
Rate
(requests)

Prewarm
Set Size
Limit
(% 6 GiB)

Prewarm
Rate

Heuristic Instant.
HR

5-min
avg. HR

15-min
avg. HR

30-min
avg. HR

100 K 75% 100 MBps k-Recent 0.61 0.77 0.78 0.8
100 K 75% 100 MBps k-Frequent 0.55 0.79 0.82 0.83
100 K 75% 100 MBps k-Frerecent (LNR) 0.55 0.78 0.81 0.83
100 K 75% 100 MBps k-Frerecent (QDR) 0.55 0.78 0.81 0.82

Table 4.16: Syn4GB: E�ect of various Heuristics on the cache

The e�ect of the choice of heuristic on the hit ratios is also similar to the one we saw for the
previous workload (Syn6GB). With higher prewarm size limits, k-Frequent performs better,
while k-Recent performs better with lower ones.
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Per-vDisk analysis

Figure 4.16: Syn4GB: Correlation between WSS and share in Prewarm Set for vDisks

Figure 4.17: Syn4GB: Correlation between avg. IOPS and WSS (left), avg. IOPS and Prewarm
Set share (right) for vDisks

We have plotted the correlation between the IOPS of vDisks, and the WSS and Prewarm Set
Share obtained during the experiment. These numbers are obtained from the experiment run
with 75% prewarm set size limit and k-Recent heuristic for snapshot analysis. The WSS was
estimated using a moving 10-minute window with a stride of 5 minutes, same as before.

From the graph on top, we can infer that for all vDisks, prewarm set share is proportional
to their WSS before failure. The graphs at the bottom compare how the IOPS of each vDisk
a�ect the WSS and set share of each vDisk. Here, we see that all vDisks except one are having
similar WSS values and Prewarm Set shares. The one vDisk with extreme values for both
(vDisk 4) is the one which had the highest (predetermined) wss80 and a high IOPS value, as
described in the table 4.2.
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Figure 4.18: Syn4GB: Impact of prewarming on the vDisk hit ratio for 5 minutes after failure:
cold cache (left) and prewarmed cache (right)

In the �gures above, we can see the hit ratios of individual vDisks. Prewarming does help
the vDisks in achieving high hit ratios in the �rst 5 minutes. For vDisks 5 and 6, there is
little improvement in the same. For the others, the improvement is signi�cant (especially for
vDisks 1, 2 and 4).

Figure 4.19: Syn6GB: 5-minute average Hit Ratios for vDisks 2 (left) and 5 (right) against their
prewarm set sizes

From the 2 �gures above, we can infer the extent to which 5-minute hit ratios are a�ected by
the prewarm set sizes for those vDisks. For vDisk 2, there was an increase in the 5-min hit
ratio by 0.02 when the prewarm size for it is increased by nearly 50 MB. For vDisk 5, there is
not improvement observed with 50 MB. Moreover, when the latter was able to get prewarm
set share of nearly 150 MB, we saw an increment of 0.01 in the hit ratio; no increment with
further increase in prewarm set share. With 150 MB of prewarm set share, vDisk 2 could get
an increment of nearly 0.03. With a partioning in place for each vDisk, we should ideally limit
the share for vDisk at around 150 MB.
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Figure 4.20: Syn4GB: Impact of prewarming on the (cumulative) cache hit ratio after failure

In the �gure above, we can see the overall impact prewarming has on the cache. The param-
eter combinations used for prewarming here are the same as in the previous �gure. For this
workload as well, we can see that the time it takes to reach the hit ratio value that was just
before failure is cut by more than an hour.
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4.3.3 Workload: RealCSE

Mentioned below are the hit ratio values we obtained on a cold cache for this workload.

HR before failure Instantaneous HR 5-min avg. HR 15-min avg. HR 30-min avg. HR
0.95 0.33 0.89 0.91 0.92

Table 4.17: RealCSE: Values for metrics recorded in the cold cache

Implications of prewarm set size limit on the destination

Snapshot
Rate
(requests)

Prewarm
Set Size
Limit
(% 32 MiB)

Prewarm
Rate

Heuristic Instant.
HR

5-min avg.
HR

15-min
avg. HR

30-min
avg. HR

100 K 5% 50 MBps k-Recent 0.5 0.92 0.93 0.94
100 K 10% 50 MBps k-Recent 0.67 0.93 0.94 0.94
100 K 25% 50 MBps k-Recent 0.83 0.94 0.95 0.95
100 K 50% 50 MBps k-Recent 1 0.95 0.95 0.95
100 K 75% 50 MBps k-Recent 1 0.95 0.95 0.95
100 K 100% 50 MBps k-Recent 1 0.95 0.94 0.95

Table 4.18: RealCSE: E�ect of various Prewarm Set Size Limits on the cache

We also observe that most inferences from the results previous workloads (Syn6GB and Syn4GB)
apply here as well. Since the cold cache hit ratios are quite high already, prewarming does
only little help in increasing the hit ratio for the �rst few minutes. We can infer from the table
above that increasing the prewarm set limit to 50% or more gives a little bene�t over the cold
cache values.

The �gure below compares the hit ratio metrics for various values of prewarm set limits,
keeping snapshot rate �xed at 100K, heuristic as k-Recent and prewarm rate at 50 MBps. The
lower part of each bar with hatch pattern shows the corresponding hit ratio value for cold
cache.
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Figure 4.21: RealCSE: Comparison of various Prewarm Set Size Limits for Hit Ratio metrics

Implications of prewarm rate on the destination

Snapshot
Rate
(requests)

Prewarm
Set Size
Limit
(% 32 MiB)

Prewarm
Rate

Heuristic Instant.
HR

5-min avg.
HR

15-min
avg. HR

30-min
avg. HR

100 K 25% 50 MBps k-Recent 0.83 0.94 0.95 0.95
100 K 25% 100 MBps k-Recent 0.83 0.94 0.95 0.95
100 K 25% 500 MBps k-Recent 0.83 0.94 0.95 0.95
100 K 25% ∞ k-Recent 0.83 0.94 0.95 0.95

Table 4.19: RealCSE: E�ect of various Prewarm Rates on the cache

Unlike the results for this experiment with the previous workloads, the results do not change
here at all with the prewarm rates. The reason is that since the destination cache size is also 32
MB, we can load everything in the prewarm set at only 50 MBps. We do not require throttling
of prewarming for this workload.

The �gure below compares the Hit Ratio metrics for various values of prewarm rates, keeping
the snapshot rate �xed at 100K, heuristic as k-Recent and prewarm set limit at 25%. The lower
part of each bar with hatch pattern shows the corresponding hit ratio value for cold cache.
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Figure 4.22: RealCSE: Comparison of various Prewarm Rates for Hit Ratio metrics

Implications of snapshot rate used for saving the cache state

Snapshot
Rate
(requests)

Prewarm
Set Size
Limit
(% 6 GiB)

Prewarm
Rate

Heuristic Instant.
HR

5-min avg.
HR

15-min
avg. HR

30-min
avg. HR

10 K 25% 50 MBps k-Frequent 0.83 0.94 0.94 0.95
50 K 25% 50 MBps k-Frequent 1 0.94 0.95 0.95
100 K 25% 50 MBps k-Frequent 0.83 0.94 0.95 0.95

Table 4.20: RealCSE: E�ect of various Snapshot Rates on the cache

The snapshot rate does not have a signi�cant e�ect for this workload as well. Since we see
a very small di�erence in the hit ratios, we proceed with using 100K as the rate for other
experiments using this workload.
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Implications of heuristic used for snapshot analysis

Snapshot
Rate
(requests)

Prewarm
Set Size
Limit
(% 6 GiB)

Prewarm
Rate

Heuristic Instant.
HR

5-min
avg. HR

15-min
avg. HR

30-min
avg. HR

100 K 25% 100 MBps k-Recent 0.83 0.94 0.95 0.95
100 K 25% 100 MBps k-Frequent 0.83 0.94 0.95 0.95
100 K 25% 100 MBps k-Frerecent (LNR) 0.83 0.94 0.95 0.95
100 K 25% 100 MBps k-Frerecent (QDR) 0.83 0.94 0.95 0.95

Table 4.21: RealCSE: E�ect of various Heuristics on the cache

The e�ect of the choice of heuristic on the hit ratios is not noticeable here. This is the same
for all combinations of the other parameters as well. This behavior is indicative of the fact
that this workload has a very high locality of reference, both temporally and spatially.
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Per-vDisk analysis

Figure 4.23: RealCSE: Correlation between WSS and share in Prewarm Set for vDisks

Figure 4.24: RealCSE: Correlation between avg. IOPS and WSS (left), avg. IOPS and Prewarm
Set share (right) for vDisks

We have plotted the correlation between the IOPS of vDisks, and the WSS and Prewarm Set
Share obtained during the experiment for this workload. These numbers are obtained from
the experiment run with 25% prewarm set size limit and k-Recent heuristic for snapshot anal-
ysis. The WSS was estimated using a moving 10-minute window with a stride of 5 minutes,
same as before.

From the graph on top, we can infer that for all vDisks, prewarm set share is (almost) propor-
tional to their WSS before failure. The vDisk towards far right (vDisk 3) has a very high WSS
as it had the highest (predetermined) wss80, and thus the lowest locality of reference among
the vDisks. The individual values are in Table 4.3. The graphs at the bottom compare how the
IOPS of each vDisk a�ect the WSS and prewarm set share of each vDisk. Here, we see that all
vDisks except vDisk 3 are having proportional WSS values, and all of them are having similar
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Prewarm Set shares. Even though vDisk 3 has highest IOPS value among all the vDisks, its
(predetermined) wss80 value is very low.

Figure 4.25: RealCSE: Impact of prewarming on the vDisk hit ratio for 5 minutes after failure:
cold cache (left) and prewarmed cache (right)

The two �gures above show the prewarming bene�ts for each vDisk. All of the vDisks in this
workload experience an increased hit ratio within the �rst 5 minutes. In the results, we have
also observed that increasing the prewarm set size (after 5% limit) does not help in reaching
a higher hit ratio. We can easily achieve a reasonable hit ratio for all vDisks within the �rst
few minutes after failure by prewarming only 5% (or less) of the cache.
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Figure 4.26: RealCSE: Impact of prewarming on the (cumulative) cache hit ratio after failure

In the �gure above, we can see the overall impact prewarming has on the cache. The param-
eter combinations used for prewarming here are the same as in the previous �gure. For this
workload as well, the time it takes to reach the hit ratio value that was just before failure was
reached within a few minutes. But, the hit ratio continues to �uctuate for a while after that.
The prewarming does not help this workload much as it already is able to reach high hit ratios
in the �rst few minutes with cold cache.
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Summary across workloads

This experiment was run with 3 workloads, 2 of which are synthetic. We observe that the
vDisks in real workloads are not able to utilize a large portion of the disk. Most of them have
their I/O activity focused on multiple small sized hotspots. Regardless of the portion of disk
they utilize, their accesses also have a certain pattern which is repeated over time. Our syn-
thetic workloads have high spatial locality in some of the vDisks, but the temporal locality
was not explicitly considered while generating them. From the various experiment results
we can infer that the workloads Syn6GB and Syn4GB exhibit similar behavior for the same
parameter combinations, with minor di�erences due to their vDisk con�gurations. But those
results do not apply to the workload RealCSE. We saw that prewarming the cache bene�ted
both Syn6GB and Syn4GB to a great extent, but it does not help much in the case of RealCSE
since it had very high temporal locality as well.

Moreover, we have inferred that the various parameters related to a vDisk such as IOPS and
WSS a�ect the size of its prewarm set share. For most vDisks, we get a slightly higher hit
ratio when this share size is increased. The bene�t in hit ratio with increasing prewarm set
size depends heavily on the disk block access pattern of the vDisk as well. For the vDisks that
do not bene�t from an increased prewarm set set share, we should assign only a small share
to them. For the same reason, we need a policy for partitioning the prewarm set according to
these attributes of each vDisk.

Another important observation made across these workloads is that even when prewarming
the cache with low prewarm set size limit and with prewarm low rate, we are able to see
considerable improvements over the cold cache. Unless the workload has very high locality
of accesses, prewarming is needed to alleviate the drastic drop in the hit ratio after failure.
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4.3.4 Online estimation of parameters

In all the experiments we have performed, we �rst �x the values for each parameter and then
measure the hit ratio on the destination node. But we have no way of knowing in advance
which of combinations of these parameter values to use. In a practical setup, we should be
able to determine the parameter value while the storage tra�c is running and then use them
if the node fails and we need prewarming at the destination.

At runtime, we have the following information for each vDisk available to us:

• Hit ratios of each vDisk
• Working set size of each vDisk
• Average IOPS for each vDisk

For prewarming at the destination, we need values for two parameters: prewarm set size and
prewarm rate. Prewarm set size indicates how many objects should be considered for loading
into the cache, and prewarm rate indicates how fast these objects need to be loaded into the
cache. Also, we assume here that we can specify the values for these parameters for each
vDisk separately.

There are several questions that arise from this online style of estimation for the parameters:

• Should we consider prewarming a vDisk at the destination cache?

If a vDisk was able to reach a high hit ratio quickly (and maintains it) on the source node,
then it has high locality of accesses. We can skip prewarming it as there will be little or no
gains in the hit ratio on the destination.
For vDisks in a workload having lower IOPS values than the others, there is high chance
that their WSS is low as well. Since we can have a small prewarm set for that vDisk, we can
choose to prewarm it. Similarly, we can always prewarm vDisks that have low WSS value
(regardless of IOPS), such as only 1-5% of the destination cache.
Even if a vDisk has high IOPS values and low WSS, we should always try to prewarm it.
In general, if there is a vDisk which can perform well even without prewarming, we can
choose to not prewarm it.

• What is the size of the prewarm set for a vDisk that we should load into into the cache?

If we choose to prewarm a vDisk, we can partition the total cache memory available for
prewarming proportionally based on the WSS of vDisks. Another way to partition the pre-
warm set is on the basis of their average IOPS value.
We can also skip the partitioning completely and select a �xed size (such as 10% available
cache memory on the destination) and start the prewarming process, with a certain pre-
warm rate. If the vDisk gets to a high hit ratio (such as its hit ratio before failure), stop the
prewarming process for the vDisk. Similarly, if prewarming this vDisk is causing evictions,
stop the prewarming.
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• What is the rate at which we should prewarm a vDisk?

We need an upper bound on prewarming rate for all vDisks, and this bound can be the
same for all vDisks. The prewarm rate should depend on the rate at which vDisk loads ob-
jects into the cache due to its normal storage I/O tra�c. Ideally, we should load the objects
into the cache faster than the vDisks requests them.
For vDisks with higher IOPS value, we should try loading the objects faster and vice-versa.
If we have an available bandwidth for prewarming, we can divide it proportionally based
on the vDisks’ IOPS and use that as the prewarming rate. Since we load the most important
objects �rst, this rate can be changed dynamically based on the time elapsed in prewarming.
For instance, we can start with a high prewarm rate and halve it each second.
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5. Conclusion & Future Work

From the results obtained from the experiment, we conclude that prewarming the cache does
help mitigate the drop in hit ratio due to cold cache. The extent to which this drop is reduced
depends on the combination of parameters (especially the snapshot rate, heuristic, memory
limit and prewarm rate) we use. In general, we saw in the results for all workloads that
snaphotting the cache at 100 K requests shows the most promising results. Moreover, (con-
strained) k-Recent heuristic performs well for all of these workloads, but for higher prewarm
memory limits, (constrained) k-Frequent performs slightly better than the k-Recent.

In the �rst workload (Syn6GB), we were able to achieve an average hit ratio of 0.8 within 30
minutes using only 50% of cache for prewarming at 100MBps, when the cold cache was at 0.6.
Moreover, since the hit ratio before failure was also 0.8, we were able to get to this value in a
short time period.

In the results for second workload (Syn4GB), we saw similar improvements as well. With
only 50% cache available for prewarming at 500MBps, we were able to get a 30-minute aver-
age hit ratio of 0.83. This is an improvement as well over the 0.69 hit ratio value for the cold
cache. Similar to the previous workload, we were able to reach the hit ratio before failure
(0.83) within 30 minutes after failure.

In the results for third workload (RealCSE), we observed that the bene�ts of prewarming apply
not only to synthetic workloads, but to the real workloads as well. This workload had vDisks
with a very high locality of references. Even with the cold cache, we had the 5-minute average
hit ratio at 0.92. Our prewarming process did help in achieving a higher hit ratio in the �rst
few minutes. With only 25% cache available for prewarming at 50MBps, we saw an improved
5-minute average of 0.94. Due to high locality in disk block accesses, prewarming the cache
with only a few objects helps us signi�cantly.
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While the current setup for these experiments yielded promising results, we have to �nd ways
to achieve better results which are indicative of improved storage performance.
The �rst step would be to run the same experiments for more diverse workloads. The work-
loads should be either be real or generated using some benchmark. These workloads should
cover a wide range of combinations of various attributes such as locality of accesses, IOPS
distributions and WSSes.
Moreover, we had �xed a few parameters for all these experiments, and the next step should
be to try varying some of them for the experiments. Some important parameters (currently
�xed) that we need to consider for tuning are:

• Sizes of HM1 and HM3 objects (sampled from a distribution)
• Partitioning of prewarm set for HM1 and HM3 objects
• Time instant at which failover happens (and the total duration)
• Number of vDisks migrating and number of vDisks already running on the destination

Apart from expanding the parameter space, we also need to add the notion of time into the
simulator, where miss penalty being composed of disk and network accesses in units of time.
We also need to consider the arrival and completion times of individual requests for a more
elaborate empirical analysis. We need these properties to ensure a more realistic simulation
and to create a better model of the Nutanix DSF Infrastructure.
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