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1. Introduction

In virtualized environments, where multiple VMs are running on a physical server employing
a hypervisor, storage I/O often becomes the performance bottleneck. This is partly due to
the nature of the underlying storage devices, which have access latency of a few milliseconds
(as compared to the DRAM with latency of a few nanoseconds). A cluster of such physical
servers usually have arrays of storage devices accessible through network interfaces. Two ma-
jor storage setups prevalent in such environments are centralized storage wherein a common
pool of storage devices is shared among the nodes in the cluster using a network �lesystem,
and decentralized storage wherein each node in the cluster consists of local storage which runs
a distributed �lesystem. Having such storage setups add network access latency to the exist-
ing latency incurred by the storage devices. We will consider virtualized environments with
distributed storage for this study.

Figure 1.1: Common storage setups (distributed and centralized) in virtualized environments

Many such environments also make use of a combination of HDDs and SSDs to divide the
data logically into tiers, with SSDs keeping the hot data. While SSDs provide an improvement
in access latency (in the order of a few microseconds), they are expensive and are limited in
size as compared to HDDs. Moreover, in networked storage setups, the network latency can
still dominate the total storage I/O latency.

When a VM performs an I/O operation, the hypervisor intercepts the corresponding request
and delegates it to the underlying storage mechanism, realizing a mechanism usually called
storage virtualization. Hypervisor, being the manager of all system resources, is the natural
choice for virtualization-oriented I/O performance improvements and optimizations. When-
ever there is a need to fetch certain data from someplace, and this fetching is a costly operation,
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we think of caches. A great deal of research is done in the past for making use of a cache inside
the hypervisor layer. This cache is intended to work as a client-side cache for keeping storage
I/O data fetched over the network.

Figure 1.2: Virtualized environments with hypervisor cache

We de�ne a few characteristics of our view of this cache below.

• Hypervisor-managed
The hypervisor intercepts storage I/O requests from the VMs, and performs lookup in
the cache. If the required data is found, it returns the same. If the lookup results in
a cache miss, it invokes certain primitives to fetch the data from underlying storage
system. The VMs have no control over the operation of this cache, and it remains trans-
parent to them.

• Uni�ed
Unlike a page cache employed by modern kernels which is used for caching only the
data read from the disk, the cache also stores the metadata belonging to the underlying
distributed �lesystem. We refer to individual entities in the cache (disk blocks
as well as �lesystem metadata) as objects. Thus the cache stores heterogeneous
objects, and objects of the same type may vary in size.

• Inclusive
The cache is used to store disk blocks and metadata blocks read from the underlying
storage system. Upon lookup for a certain block, the hypervisor will return its data
to the requesting VM. The VM may have its own operating system bu�er/page cache
which stores this data in memory. Thus, the same data block may be cached inside the
VM cache as well in the hypervisor cache.

• Shared
All VMs running on a node will share this cache with equal priority, and there is no
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logical partitioning for each VM. This also means that there might be contention among
the VMs performing storage I/O operations when the cache is accessed.

• Volatile
The cache is primarily maintained in-memory, with some part spanning over a fast
storage devices such as SSD. If a node were to restart or fail, the cache contents are lost.

• Local
The cache is local to a particular node, and is not accessible from other nodes. So, the
contents of this cache will di�er from node to node in the cluster. This is unlike the
underlying storage which is shared among all the nodes in the cluster.

• Static-sized
The cache is �xed in size and does not grow or shrink based on the memory available.
While a dynamic cache seems better choice in virtualized setup, we assume its size to
be �xed in our study.
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Cold Cache, Warm Cache and Prewarming

Cold cache refers to the state of hypervisor cache in which either the cache is empty or it con-
tains stale objects i.e. those objects which were cached in previous runs and are not needed
to serve the upcoming I/O requests. We can also have a partially cold cache which means that
the objects required by a particular VM or a set of VMs are not cached. When the cache is �rst
initialized by the hypervisor, it will essentially be empty and initial few lookup operations will
result in cold misses. Furthermore, if the cache is full with objects of a few already running
VMs and a new VM comes up on that node, the cache will be cold for that VM. So, when any
VM or a group of VMs start on a node, they will essentially experience a cold cache. The cache
may also contain some objects of a VM from its previous run, and the VM gets reset. In this
case, even when the cache contains its objects, those cached objects may not be needed now.
Nevertheless, there will be a drop in the hit ratio (at least in the initial time period of storage
I/O tra�c) due to very high cache misses.

Warm cache on the other hand means that some objects are present in the cache which are
relevant to one or more VMs running on the node. That is, there is a high chance that the
objects will be referenced in the near future. Even if the cache is not full, but is able to ac-
commodate all of these relevant objects, it is warm. A cache full with irrelevant objects in
not warm. Having relevant objects in the cache may help in increasing the performance as a
result of an increase in the overall hit ratio.

Working set of a VM in this context will refer to the set of cache objects that are actively in use
by the VM. This will include objects which are frequently being accessed by the VM and/or
will be accessed in the near future. Since the hypervisor cache is shared in nature, it might
be possible that the working sets of all VMs cannot be accommodated and the workloads
with high rate of storage I/O tra�c may cause performance drop in other VM’s storage I/O
operations.

Prewarming refers to the process of proactively loading the cache with the relevant objects of
one or more VMs. We use the term prewarming instead of prefetching to emphasize the cold
and warm cache states. It is a two-step process: �rst, we need to identify the set of objects to
load, and then, we need to actually fetch these objects into the cache. Note that the objects
we prewarm the cache with might be evicted from the cache eventually as the relevance of
the objects to storage I/O tra�c starts to fade.

Prewarm Set refers to the set of (hot) objects considered for prewarming the cache. A prewarm
set can be considered as good if it is a good enough approximation of the working sets of
guest VMs. We also use the term Prewarm Time which is the time taken by the cache to reach
a certain (high) hit ratio, for instance, the hit ratio that we will get after 2 hours without
prewarming.
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1.1 Problem Description

As described above, the cache is local to a node as it caters to the requests coming from
the VMs on that particular node. From a performance point-of-view, the cached data in this
hypervisor cache is as important as the backing data on the distributed �lesystem. A cold
hypervisor cache would not result in drastic reduction in performance as compared to per-
formance with no hypervisor cache present. But, there will be no improvement in the overall
I/O performance, and the cache will fail to ful�l its purpose. Therefore, we can say that a cold
cache will result in reduced performance.

We �rst identify some considerable scenarios where the cache is rendered cold, resulting in
performance drop. Then we try to de�ne the problem scope and an approach to the solution.

One cold-cache scenario is when a node boots up, and then all the VMs on it boot up. The
hypervisor initializes the cache, and it is empty at the start. There are a lot of cache misses due
to required objects not being present in the cache. As the VMs perform storage I/O operations
starting with their bootup sequence, the cache starts getting �lled with objects and hit ratio
tends to increase due to possible locality in the data accessed by the VMs. A similar case is
when the node is already up, but all its VMs boot up. The cache will have some objects of
these VMs from their last run. But, those objects may be stale and they may not be needed at
boot time, or in the initial storage I/O operations. The cache state is equivalent to being cold
even when it is �lled with the VMs’ objects.

Figure 1.3: Cold cache when a node starts up (left) and when node failover happens (right)

Another interesting scenario is when a node experiences a failure and the cache state is lost.
VMs in most virtualized setups are con�gure with High Availability (HA) i.e they are started
on another node from the same point of execution when the failure happened. The nodes
are con�gured to be a part of a failover cluster and guarantee a certain uptime for their guest
VMs. Solutions to HA, such as lock-stepping or asynchronous replication ensure that the VM
state is available at another node, but they don’t account for the hypervisor cache state for
the VM. When a set of VMs experience HA migration to another node, the hypervisor cache
at that node is cold for them. The hot objects in cache for the VMs are not available anymore
and the cache at new node will result in misses and lookups in the underlying storage. At the
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time instant when VMs start executing at the new node, the overall hit ratio of the cache will
take a drastic drop, and will slowly build up. It might take a considerable amount of time for
the cache to reach a stable hit ratio (close to the one just before failure).

A similar case happens when a certain VM is migrated to another node (but not its hypervisor
cache state), and the cache performance of the destination node is disturbed. There might be
some VMs already running on the destination node and due to the addition of a new VM (for
whom the cache is cold), the combined hit ratios of existing VMs, the hit ratio of migrated
VM, and in general, the overall hit ratio is poor for an initial time period.

In this study we try to answer the following question:
Given a storage cache inside the hypervisor, how to reduce the time it takes to warm
up the cache?
Ideally, we want to operate with a cache that is loaded with important objects at all times,
and thus we need to �nd a way to keep it warm at all times. Although the cache eventually
gets �lled with objects actively used by the VMs as they issue storage I/O requests, we aim at
keeping the cache warm even in the initial time period of storage tra�c.

There are multiple questions that need to be answered as part of answering the question
above.

• What are the performance implications of having a cold cache? How much degradation
in performance can be expected when the VM workloads experience a series of cold cache
misses?

• Will proactively prewarming the cache result in improved storage I/O performance? In
other words, will the prewarming help mitigate the performance degradation due to cache
being cold?

• How to determine the set of objects to be loaded into the cache so that it is e�ectively warm?
What should be the size of this prewarm set and which objects should be a part of it?

• What is the impact of prewarming on the performance of other VMs which are actively
using the cache? Is prewarming the cache for a VM worth a possible drop in hit ratio of
other VMs?

• How to quantify the various overheads arising from the prewarming process and with these
overheads being present, is it worthwhile to prewarm the cache?

• Can changing the behaviour and properties of cache itself help us in determining a better
prewarm set (and better performance in general)? The scope includes, but is not limited to,
replacement policies, logical partitioning policies and memory limits.

• For the VM workloads having speci�c disk block access patterns, can we recognize and
leverage these patterns to make informed decisions in constructing the prewarm set for
those VMs?
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1.2 Solution Approach

A VM running on the hypervisor node is a black-box, i.e. we have no way of peeking inside
its memory to get storage I/O-related information, such as the contents of the page cache.
Moreover, we also have no information about how its disk blocks are laid out on the vdisk,
and which disk blocks are the most important to consider for caching. Some examples of im-
portant disk blocks include �lesystem super blocks, bitmap blocks and inode blocks. We are
restricted to using only non-intrusive approaches for mitigating this problem of cold caches.

The only part visible to the hypervisor is the block I/O access requests that the VM issues to
its vdisk. These requests are seen by the cache and a lookup is performed. After the required
data is fetched into the cache, it is served from there. We can look inside the cache to see
what data is cached for a vdisk, since the cache is part of hypervisor. To �nd out important
blocks for a vdisk, we can continuously monitor the cache and keep track of the objects that
are needed. But, as the cache is volatile, its state can be lost due to failures and there is no
way to recover the same.

• The �rst step is to ensure that the cache state is persisted to a storage medium so that it
can be recovered even if a failure happens. We can save the contents of cache to the disk
periodically to ensure persistence. We will discuss the format for representing a persistent
cache state and techniques for saving and loading the state in the next chapter.

• The second step is to enable the cache to use these saved states and determine objects that
are important to a vdisk, so that we may reuse them and proactively fetch them into the
cache when it goes cold (i.e. prewarm it). There are various methods to establish the im-
portance of an object to a vdisk, and we will discuss some of them in the next chapter.

• Finally, we will perform some experiments speci�c to a couple scenarios where the cache
goes cold and we try to prewarm it to see if the performance drop (if any) due to cache
going cold can be avoided.
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2. Background & Related Work

Hyperconverged Infrastructure

An infrastructure consists of various resources such as compute, storage and network with as-
sociated operations such as resource management, orchestration and automation. Converged
infrastructure refers to coupling all the resources of an infrastructure into a single unit, cre-
ating a common pool of virtualized resources. Hyperconverged infrastructure, an extension
to the converged one, involves performing data center operations (related to storage and net-
working) in the software layer, making it hardware-agnostic.

Figure 2.1: Overview of the Nutanix HCI

We use the Nutanix HCI as our base model of an infrastructure where we aim to improve the
storage I/O performance. Figure 2.1 shows a simpl�ed view of the Nutanix HCI. It consists of
clustered nodes connected through a backbone network. Each node consists of local storage,
a number of client VMs, and a special VM called Controller VM (CVM). Furthermore, each
node has a combination of HDDs and SSDs as part of its local storage for policy-based tiering
of data. Each VM has one or more virtual disks (or vdisks) attached to it, a resource provided
by the hypervisor via storage virtualization. The virtual disk data of these VMs are stored in
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the node’s local storage, and is optionally replicated to other nodes.

Distributed Storage Fabric

A distributed �lesystem, formerly known as Nutanix Distributed Filesystem (NDFS), is used to
access the underlying storage. NDFS is now integrated into Distributed Storage Fabric (DSF),
which provides features such as backup, compression, deduplication and disaster recovery.
DSF appears to a node as a centralized storage array, but all VM I/O operations are performed
using the local storage. Due to the distributed nature of storage, DSF maintains some meta-
data about where the data is actually stored in the cluster. Apache Cassandra is used to store
this metadata as key-value pair in a distributed fashion, where each node also acts as a node
in the Cassandra ring. Thus, the actual virtual disk data, as well the associated metadata are
distributed across the nodes in the cluster.

Controller VM

CVM is responsible for serving all I/O operations performed by the VMs running on that node.
The local storage of a node is directly attached to the CVM using PCI passthrough mecha-
nism. This makes CVM a privileged VM, having complete control over all storage resources
and it provides storage interface (via NFS, SMB, iSCSI etc.) to all other VMs. It also realizes
software-de�ned storage by providing features such as RAID, compression and deduplication.

Figure 2.2: Overview of the CVM cache

The CVM on each node consists of a local cache for storing blocks of the virtual disks it is
hosting. Apart from the caching the vdisk data, this cache is also utilized for storing the
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metadata we mentioned earlier, making the cache uni�ed in nature. We refer to this local
cache of the CVM as the hypervisor cache.

The CVM cache consists of two tiers (memory and SSD) and has two pools (single-touch and
multi-touch) as shown in Figure 2.2. The two triangles represent the pools, with smaller one
being the single-touch pool and the larger one being the multi-touch pool. Single-touch pool
is intended for storing objects that are fetched into the cache for one-time access. From this
pool, an object can either get evicted according to the replacement policy, or can get promoted
to the multi-touch pool on subsequent access. Multi-touch pool keeps the objects that are ac-
tively in use by the VMs. It spans both memory and SSD. An object evicted from memory
portion of this pool goes into the SSD portion, and similarly, an object promoted (on subse-
quent access) from SSD portion goes into the memory portion. Eviction from SSD portion
results in an eviction from the cache. As indicated in the �gure, LRU policy is used for re-
placement in both pools.

Metadata

Nutanix DSF makes use of Apache Cassandra ring to store the distributed �lesystem metadata
as key-value pairs. They have layers of metadata translation such that the value returned on
a key lookup at �rst layer is used as a key for the next layer. To get to the actual data, we
have to go through a series of lookups though the metadata layers. While the actual schema
of the key-value structures are complex, we use a rather simpli�ed version. Each layer of
the metadata can be visualized as a hashmap, having di�erent data structures for the key and
value parts.

Figure 2.3: Metadata translation in Nutanix HCI

We de�ne a few storage terms used in the Nutanix HCI:

• vDisk or vdisk is the storage medium from a VM’s perspective. Hypervisor provides the
VM with one or more vdisks, each of which has a unique identi�er within the cluster.

• Extent or vblock is the building block of a vdisk. It is 1 MB in size and a vdisk is stored
as a set of extents scattered across the underlying storage. A vblock number addresses
1 MB chunk of the vdisk, and that number space is local to a particular vdisk.

• Extent Group or egroup consists of 4 extents and is 4 MB in size. Each egroup has
a unique identi�er within the cluster, and is stored as a �le on the underlying storage
media.
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The �rst hashmap takes the cryptographic hash of a vdisk ID and a vblock number as the key
and stores an egroup ID as the value. The second hashmap is similar to the �rst one, but is
used only if the requesting vdisk is a snapshot of another vdisk. The third hashmap takes an
egroup ID as the key and produces an o�set into the egroup �le where the requested data is
stored. The scope of this project involves prewarming the cache only with these metadata
objects and not the actual data blocks. To further simplify our study, we currently use only
the �rst and third metadata hashmaps in our metadata translation layer. We will use the
terms HM1 and HM3 to denote the �rst and third Hashmap, respectively.

Figure 2.4: Cache Lookup Flow

Figure 2.4 shows how a block I/O request coming from a vdisk is served by the cache. The
requested block is �rst looked up in the data portion of the uni�ed cache, and is served directly
if found. We assume that the data is most likely not present in this portion, and that the
metadata cache lookups will happen. The path in bold represents the best case scenario where
the required metadata objects are found in the cache.
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3. Design & Implementation

Due to proprietary nature of Nutanix DSF software, we are currently not able to modify their
source code to add the prewarmimg functionality. We instead aim at mimicking the relevant
parts of their infrastructure in our own simulator and use it to �nd solutions to the problems
mentioned in the previous section. The scope of our work involves the following:

• Create a simulator which o�ers a reasonable model of the components of the Nutanix
DSF infrastructure relevant to this study

• Generate VM workloads which can be served by the hypervisor cache in the format an
actual hypervisor gets storage I/O requests from its VMs

• De�ne a persistent cache state, as well as various primitives in the cache which will
enable the prewarming, such as saving and loading the persistent state

• Come up with a set of relevant parameters and heuristics which can help us determine
a good prewarm set and explore the parameter space

• Run a set of experiments which can provide us with an empirical analysis of our pre-
warming strategies and help us determine the e�ectiveness as well as feasibility of pre-
warming

3.1 Simulation Environment

Our simulation environment consists of the hypervisor cache, metadata hashmaps and driver
functions for running various experiments. We can view this simulation as a system which
is fed a sequence of block I/O requests and under the presence of various tunable and �xed
parameters produces a set of metrics that enable us to get the answer for various questions
we are interested in. Figure 3.1 shows a basic model of our system.
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Figure 3.1: Basic overview of the simulation

The general sequence of steps taken in our experiments is as follows:

1. Read requests one by one from the block I/O trace file
1a. Split the request into two if it spans over two extents
1b. Perform lookup in the cache for HM1 key determined from the request

− If the HM1 object is not there in the metadata map, create and insert it
− If the HM1 object is not cached, fetch it into the cache

1c. Perform lookup in the cache for HM3 key corresponding to the value of
looked up HM1 object
− If the HM1 object is not there in the metadata map, create and insert it
− If the HM1 object is not cached, fetch it into the cache

1d. Record metrics such as hits, misses and number of cached objects for
lookups

1e. If the number of requests served (since last snapshot was taken) exceed
the snapshot rate:

Dump the bitmaps of all vdisks and HM3 objects to the disk
2. Analyze the snapshots taken so far

2a. Read the snapshots one−by−one starting from the last one
− Create a bitmap for each vdisk and for HM3 representing the prewarm set
− Perform analysis according to heuristic used
− Mark the objects to be included in the prewarm set

3. Reset the cache and load the objects from prewarm set into the cache
3a. Query those objects from metadata maps which are in the prewarm set
3b. Fetch them into the cache

4. Repeat the requests or restart them from the last point
4a. Perform the same lookup sequence again as before
4b. Record metrics such as hits, misses and number of cached objects for
lookups

Note that in the current simulation, we do not consider time for various events such as disk
access, network transfer and even for request arrivals and completions. The simulator acts as
a block I/O trace analyzer currently.
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3.2 VM I/O Traces

To simulate VM workloads running on a hypervisor, we use a series of pre-recorded VM block
I/O requests and issue them to our cache. The blktrace utility was used to record block I/O on
various VMs running on the IITB CSE Department Infrastructure.

It is a block-level I/O tracing utility which extracts information about various events from
the kernel. The events are communicated by the kernel in debugfs �les (in /sys/kernel/debug)
through a series of bu�ers. We pass a Linux partition device �le (such as /dev/sda1) as an input
to it and it collects all the block I/O events associated with that device. As part of each event
it traces, it captures certain attributes such as the timestamp of the event, the Logical Block
Address (LBA) or the sector, the size of the request, and the type of request (Read/Write),
among other attributes. Another related utility, blkparse, is used to provide a verbose output
of the traces recorded by blktrace. We use blkparse to convert the traces into CSV format.

blktrace can also trace various types of block layer events such as Inserted (request sent to I/O
scheduler and queued which will be later serviced by the driver), Issued (a queued request is
sent to the driver) and Complete (an issued request is serviced). We have �ltered these events
and recorded only the requests that are Issued. In virtualized setups, the VM-issued storage
I/O requests will eventually be serviced by the hypervisor, and in our case, the hypervisor
cache. So, we are concerned only with those requests that reach the driver and can be seen
by our cache.

The VMs on which the traces were recorded comprise of a mail server (Post�x, Dovecot, Mail-
man), three web servers (Apache httpd, Nginx), an LDAP server (OpenLDAP), and a database
server (MySQL). All the traces were recorded for the same duration of 12 Hours on two con-
secutive weekdays. The volume of block I/O events in the traces for all these VMs di�er
depending on the tra�c that particular VM had to serve. All these traces were recorded on
device partitions formatted with the ext4 �lesystem, but all VMs did not have the same ker-
nel version. An important thing to note here is that these traces do not capture the
bootup sequence of these VMs. The traces are recorded on up and running VMs.

We use the following set of commands on VMs running a Linux kernel to record block I/O
traces. The �rst one runs for 12 hours and captures block I/O events (�letered by Issued
event). The second one parses the information captured by blktrace and produces the block
I/O requests in a human-readable CSV format. This set of commands is run on each VM that
we consider for workload generation, as mentioned above.
blktrace −d /dev/sda1 −d /dev/sdb1 −w 43200 −a issue
blkparse sda1.blktrace.0 sdb1.blktrace.0 −q −f "%d,0,%S,%N,%T.%t\n"

It was observed during the traces that most events captured on any VM corresponded to two
types of processes, apart from the user-space applications. These two types of processes run
as background tasks, one of which is the kworker threads and the other is jbd2. An example
of blkparse output is shown below.

8,32 0 16132 21528.832980937 253 D WS 1049159784 + 8 [kworker/0:1H]
8,32 4 7556 21538.815958634 578 D WS 1049159792 + 56 [jbd2/sdc−8]
8,32 4 7557 21538.817070529 378 D WS 1049159848 + 8 [kworker/4:1H]
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8,32 0 16133 21543.935871627 9005 D W 476832560 + 8 [kworker/u16:1]
8,32 2 1334 21545.984095780 578 D WS 1049159856 + 144 [jbd2/sdc−8]

kworker is the name given to kernel worker threads which are responsible for doing all kernel-
level activities such as handling hardware interrupts and performing I/O operations. Journal-
ing Block Device (JBD) is a layer in the kernel which provides an interface to various jour-
naling �lesystems. ext4 uses a variant of JBD called jbd2.

The output from blktrace was formatted to include only the relevant information. All the
block I/O traces used in the simulations have the following format:

{Type},{vDisk ID},{Sector Number},{Size},{Timestamp}

where:

• Type is either R (read) or W (write). R and W may be su�xed with F (Force Unit
Access), A (readahead), S (sync) or M (metadata). We do not consider these su�xes to
di�erentiate the request type further.

• vDisk ID is a global identi�er for a virtual disk provisioned to a VM. We assume vDisk
IDs as consecutive whole numbers starting with 0.

• Sector Number is the sector number (512 KB sector size) of the vdisk which is to be
accessed. The actual o�est is calculated by multiplying the sector number with 512.

• Size is the amount of data (in bytes) that will be read or written to the vdisk.

• Timestamp is the time (in nanoseconds) of each request relative to the start time of
our tracing utility.

The traces recorded from various VMs are merged into a single CSV �le. After merging, the
requests are sorted on the basis of the nanosecond fraction of their timestamp (i.e. seconds are
discarded) mainly to introduce randomness because the requests when ordered by complete
timestamp showed very high localities of reference in the cache and thus very high hit ratio
(even without prewarming).

The trace �le is read line-by-line by the simulator, and after parsing each line, a request is
issued to the cache. In all our traces, there are requests with size over 1MB, and many re-
quests span over more than one extent. We �nd all such cases as the traces are parsed and
issue two or more requests to the cache which are extent-aligned.

For example, when the following request is read from the trace �le,

R,2,1292882848,1310720,005286153

we get the following information:

Type: Read
vDisk ID: 2
Sector Number: 1292882848
Byte Offset: 661956018176 (Sector Number * 512)
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vblock Number: 631290 (Byte Offset / 1MB)
vblock Offset: 475136 (Byte Offset % 1MB)
Size: 1310720 Bytes

Since in this case, the request size exceeds 1 MB, we split it into two requests that are vblock-
aligned as follows:

Request #1:
Type: Read
vDisk ID: 2
vblock Number: 631290
vblock Offset: 475136
Size: 573440 Bytes

Request #2:
Type: Read
vDisk ID: 2
vblock Number: 631291
vblock Offset: 0
Size: 737280 Bytes

3.3 Cache Design

3.3.1 Pools & Tiers

We model our cache as having multiple pools, and having both a memory and SSD component.
The memory part consists of a single-touch and a multi-touch pool, whereas the SSD part has
only the multi-touch pool. So, multi-touch pool spans over both memory and SSD, whereas
the single-touch pool in completely in memory. Intuitively, the sizes of these pools increase as
we go from single to multi-touch. This is the same con�guration as the Nutanix DSF Uni�ed
Cache. In our design of the cache, the single-touch pool is the smallest in size, SSD part of
multi-touch pool is the largest in size, and the size of memory multi-touch pool sits somewhere
in between theirs.

Single-touch pool stores the objects that are fetched into the cache once but are not read again.
These objects will be eventually evicted from the cache by the replacement policy unless they
are accessed again. Upon a second access to an object in the single-touch pool, it is promoted
to the memory part of multi-touch pool. An object will remain in the memory multi-touch
pool until it is evicted by the replacement policy, which will demote it to the SSD part of the
multi-touch pool. Note that subsequent accesses to an object in the memory multi-touch pool
will not change its pool, but will only result in an update in its state for replacement policy.
An object in the SSD pool will either be promoted to multi-touch pool upon a subsequent
access, or will be evicted from the cache by the replacement policy. This is the same as shown
in Figure 2.2.

Note that while the cache is divided into multiple tiers and pools, there is no partioning within
the cache for the various types of objects. We do not specify the share of cache either for HM1
and HM3 objects, or for the HM1 objects of various vdisks.
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For the purpose of this study, the cache contains only metadata objects (not memory pages or
the block data), and the objects are of two types (HM1 and HM3), depending on the hashmap
they belong to.

The cache records several metrics during simulation, especially the following numbers:

• hits in each pool for each type of hashmap object
• overall misses for each type of hashmap object
• evictions from each pool for each type of hashmap object
• objects of each hashmap in each pool

In addition to these, it records several numbers for each vdisk that the cache serves, such as:

• HM1 objects in each pool

• hits in each pool (only for HM1 objects)

• overall misses (only for HM1 objects)
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An example of these recorded metrics as they appear in the simulation output is given below:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| (objects) | HASHMAP 1 | HASHMAP 3 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| SINGLE POOL | 358 | 359 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| MULTI POOL | 1804 | 1804 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| SSD POOL | 3610 | 3609 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| (misses) | HASHMAP 1 | HASHMAP 3 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| TOTAL | 535379 | 534928 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| (hits) | HASHMAP 1 | HASHMAP 3 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| SINGLE POOL | 136730 | 136679 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| MULTI POOL | 2768238 | 2768595 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| SSD POOL | 274753 | 274898 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| (evictions) | HASHMAP 1 | HASHMAP 3 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| SINGLE POOL | 398291 | 397890 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| MULTI POOL | 409679 | 409773 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| SSD POOL | 131316 | 131266 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| (HM1 hits) | SINGLE | MULTI | SSD | HITS | MISSES | HIT RATIO |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 0 | 4527 | 810961 | 18462 | 833950 | 11835 | 0.986 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 1 | 63793 | 1322921 | 141657 | 1528371 | 238055 | 0.865 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 2 | 43763 | 330445 | 61626 | 435834 | 218870 | 0.666 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 3 | 2176 | 92727 | 9815 | 104718 | 11679 | 0.900 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 4 | 2953 | 86478 | 7708 | 97139 | 11323 | 0.896 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 5 | 16544 | 85290 | 23280 | 125114 | 28186 | 0.816 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 6 | 2074 | 28321 | 7150 | 37545 | 10424 | 0.783 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| VDISK 7 | 900 | 11095 | 5055 | 17050 | 5007 | 0.773 |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Memory Hits : 5810242 (SINGLE + MULTI)
Total Hits : 6359893
Total Misses: 1070307
Hit Ratio : 0.855952
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3.3.2 Replacement Policies

LRU and LFU policies have been implemented for cache replacement. ARC policy could not
be applied to this cache as we have two types of objects (with disproportional sizes) that can
be stored in the cache as opposed to �xed-size pages because ARC limits the cache by number
of pages, not the total available memory.

Since the cache is made up of 3 di�erent pools with di�erent actions for eviction and subse-
quent accesses, we use 3 separate instances of these policies, i.e., there is a separate LRU/LFU
list for each pool of the cache.

Figure 3.2: Implementation overview of LRU (left) and LFU (right)

• LRU was implemented using a double-linked list of key-value pairs, with the most recent
entries added to the Rear and the least recent entries removed from the Front, similar to a
queue. The insertion and eviction procedures take O(1) time, but certain operations such
as deletion take O(n) where n is the total number of pairs in the cache. Binary Heaps can
also be used to implement LRU, but all the operations will take O(log2 n) time. Deletion
operation is used when we move a pair from single-touch to memory multi-touch pool, or
from SSD multi-touch to memory multi-touch pool. We use a di�erent approach to �nding
the position of a pair in the LRU list which makes the deletion happen in O(1), speci�ed in
the next section. Since the position of an object in the LRU list indicates its recency, we do
not attach a timestamp counter to each object.

• LFUwas implemented using a combination of two linked lists, �rst of which is single-linked
and the other double-linked. The �rst linked list acts as the frequency list, where each
node serves as the Head to a double-linked list of pairs having the same frequency. This
�rst-level Frequency list contains nodes in ascending order of frequency. The second-level
double-linked list stores the pairs in LRU manner. Using this two-dimensional linked-list
setup makes insertion, eviction and deletion operations takeO(1) time, as opposed to using
Binary Heaps which requires O(log2 n) time.

Since the comparison of replacement policies is not the current goal of this study, and since
the Nutanix Uni�ed Cache uses LRU, we have not used LFU in the empirical analysis.
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3.4 Filesystem Metadata Layer

Nutanix HCI makes use of 3 hashmaps in its metadata layer. While they are implemented
using Apache Cassandra in the HCI, we make use of hashmaps (implemented using red-black
trees) to simulate the behaviour. We consider only the �rst and third hashmap for the metadata
lookups in this project.

(HM1) Description Type Notes
Key hash(vdisk ID,

vblock number)
40-character long string
of hexadecimals

SHA1 hash of two integers converted into
character string

Value egroup ID 32-bit integer integer conversion of 6 hexadecimal characters
taken from the hashed key

Table 3.1: Implementation details of a Hashmap 1 Key-Value pair

(HM3) Description Type Notes
Key egroup ID 32-bit integer –
Value list of extents and slices – uninitialized data; this value is ignored after lookup

Table 3.2: Implementation details of a Hashmap 3 Key-Value pair

Each hashmap object in our implementation consists of a root node and a read-write lock.
A node is made up of a key-value pair and red-black tree metadata (parent, left, right and
colour). We also embed certain cache metadata values within each node. The cache metadata
consists of a �ag indicating if the node is in the cache (and in which pool) or not, and it also
contains an embedded linked list for each of the cache replacement policies, LRU and LFU.

Figure 3.3: Structure of a node

The embedding of cache metadata and replacement policy metadata inside a node helps in
e�ciently inserting, deleting and evicting a node into/from the cache. Using this, we can
simply set a few �elds in each node to represent its availability in the cache, as well as its
position in the LRU/LFU list. If we don’t use this approach, we need to maintain another
hashmap for the objects in the cache, and each insertion/deletion/eviction operation will take
additional O(ln n) time. Moreover, embedding the information about LRU/LFU lists inside a
node makes the list independent of the type of node which is added to the list.
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Figure 3.4: Using separate hashmaps for the metadata and the cache

Figure 3.5: Reusing the metadata hashmap for cache lookup

Figures 3.4 and 3.5 highlight the di�erence made by embedding the cache metadata and re-
placement policy metadata inside the cache. We can reuse the same hashmaps (1 and 3) we
maintain for our key-value store and

3.5 Persistent Cache State

Since the cache is prone to volatility in the face of multiple failure scenarios, we need to per-
sist the cache state into the disk. We can save all the objects in the cache as well as its internal
metadata to the disk by serializing its data structures. The problem with this approach is that
we might be saving some data that is unimportant as we just need a way to know which ob-
jects were there in the cache last time the state was saved.

Another approach is to save only the data of objects currently in the cache by de�ning prim-
itives to serialize/deserialize these objects. There are two problems associated with this ap-
proach. First, we will have to save a large amount of data (in the order of GBs) to the disk,
resulting in storage I/O overhead. Second, the objects (especially the Hashmap 3 objects) we
saved last time to the disk may have their data modi�ed (by other nodes in the cluster) by the
time we read them back.

Yet another approach is to save only the information about which objects are in the cache,
and not their data, to the disk. Since the objects in the cache are key-value pairs queried from
metadata hashmaps, we can only maintain the key part in our cache state as the value can
always be queried again. For instance, we can simply write the following line to a �le on the
disk

37:345,5496,5876,450968
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which will mean that objects corresponding to the vblock numbers 345, 5496, 5876, 450968
of the vdisk 37 were in the cache at the time this state was captured. Moreover, we can have
a separate �le for each vdisk and one �le for all the Hashmap 3 objects.

We further simplify the representation by exploiting the nature of these keys. All keys of
hashmap 1 consist of a hash of the requesting vdisk and the vblock number. For this Hashmap,
we maintain some state per-vdisk. Since the vblock number range for each vdisk is �xed (as
its maximum size is �xed), we can keep information about all its vblocks being in the cache
or not by using a bitmap. When a vblock belonging to a certain vdisk is added to the cache,
we can turn the corresponding bit on. For example, if a vdisk is 10 GB in size, we know that
it consists of 10 K extents (vblocks). Then, we need 10 K bits (≈1.2 KB) to represent Hashmap
1 cached objects for that vdisk.
For hashmap 3 objects, we need to maintain only one bitmap as its key, the egroup ID, is global
to the �lesystem. Moreover, as the key for Hashmap 3 is a �xed-width unsigned integer (32-
bit length assumed in this study), we will need 232 bits (≈512 MB) to represent the cache
membership of its objects.

The bitmap representation takes some additional space in memory as part of cache-internal
metadata. But, it saves a lot of space when saved to the disk, as compared to saving the
complete object data. We have two choices for implementing the bitmap for persistent cache
state:

• Bit Array
An array of integers can be used to represent the space of all the valid bits which correspond
to an object. We use an array of 64-bit unsigned integers, thereby grouping 64 objects into
a single variable. To set/unset a bit, we need to �rst �nd the integer in the array which
represents that bit, and then get to that bit. To get to an integer in the array, we can divide
an object number by 64, and similarly to get to the speci�c bit, we can perform a modulo 64
operation. Bit set/unset operation itself will be a combination of bitwise shift and bitwise
and/or/not operations. Setting/unsetting a particular bit is anO(1) operation. Although this
representation saves space by using only 1 bit for an objects, space may still be wasted if the
bit array is large and only a few bits are set. This representation is costly if large contiguous
ranges of bits are never accessed.
Bit Array for vdisk X (HM1 objects for vblocks 1 & 2 are cached)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

vblock 0 vblock 1 vblock 2 vblock 3 ... vblock n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0 1 1 0 ... 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Bit Array for vdisk Y (HM1 objects for vblocks 0 & 1 are cached)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

vblock 0 vblock 1 vblock 2 vblock 3 ... vblock m
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 1 0 0 ... 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Bit Array for HM3 (objects for egroup ID 1 & 3 are cached)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

egroup 0 egroup 1 egroup 2 egroup 3 ... egroup k
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0 1 0 1 ... 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

• Bit Set
A hashmap can be used to represent the bits, where the key is an integer and its value is
a set of bits (which in turn is also an integer). We use 64-bit integers for the key as well
the value. The key is a multiple of 64 and a key x represents all bits from x to 2 ∗ x − 1,
i.e. 64 bits (which is its value). Moreover, the hashmap will have an entry for a particular
key only if at least one bit in its 64-bit space is set. Setting/unsetting a particular bit is an
O(log2 n) operation. When the �rst bit is set in a 64-bit chunk, a new entry will be added
to the hashmap. Similarly, when the last set bit is unset, the corresponding entry will be
deleted. This representation saves space on disk as compared to the bit array representation
as information is maintained only for used bit spaces.
Bit Set for vdisk X (HM1 objects for vblocks 192 & 3467 are cached)
3: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
54: 00000000 00000000 00000000 00000000 00000000 00000000 00001000 00000000

Bit Set for vdisk Y (HM1 objects for vblocks 763245 & 763246 are cached)
11925: 00000000 00000000 01100000 00000000 00000000 00000000 00000000 00000000

Bit Set for HM3 (HM3 objects 23948 & 45678762 are cached)
374: 00000000 00000000 00000100 00000000 00000000 00000000 00010000 00000000
713730: 00000000 00000000 00000100 00000000 00000000 00000000 00000000 00000000

Note that when we are saving a bit set to the disk, we don’t need to write the complete 64-
character binary string and can simply use its corresponding 64-bit unsigned integer value.
The �les the on disk having information about the bit sets mentioned in the example above
can be simpli�ed as below:
Bit Set for vdisk X
3,1
54,2048

Bit Set for vdisk Y
11925,105553116266496

Bit Set for HM3
374,4398046515200
713730,4398046511104

For empirical analysis performed in this study, we use only the Bit Array representation.

3.5.1 Cache Snapshots

Since the contents the cache will be updated very frequently, we need to capture the state of
our cache at various time intervals and generate a series of snapshots.
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We periodically dump the bitmaps maintained by the cache for each vdisk’s hashmap 1 objects
and for the hashmap 3 objects to the underlying storage in separate �les. We call these �les
cache snapshots and in this manner, the cache is persisted. The dump �le names follow the
following format:

{Base Name}.{Bitmap Type}.{Node/Cache ID}.{Epoch Number}

where:

• Base Name denotes the absolute path to the dump �le for each vDisk

• Bitmap Type is either .csv (for Bit Set) or .bin (for Bit Array)

• Node/Cache ID is an identi�er for the cache generating the dumps, useful only in the
scenario where we simulate two instances of the cache in parallel

• Epoch Number speci�es the epoch at which this dump was made. Currently, we are
taking the time period of 30 seconds as one epoch.

We de�ne the term snapshot rate as the number of requests after which a snapshot of the
cache is made. So, a snapshot rate of 1 K will mean that we snapshot the cache after every
1000 requests. We currently do not make the snapshots at �xed time intervals as the simula-
tion does not take into account the time taken to serve a request. We instead record the total
number of block I/O requests seen by the cache and make the snapshot if a certain number of
requests were issued since last snapshot was taken.

Figure 3.6: Snapshot rate tradeo�s

Figure 3.6 compares the tradeo�s associated with using very high and very low snapshot rates.
We ideally want a snapshot rate which is not very extreme and avoid the respective draw-
backs. Since we are saving these snapshot �les to the underlying storage, and the distributed
�lesystem supports replication (with a certain Replication Factor), the snapshot �les saved on
the node that experiences a failure will still be available on the distributed �lesystem.
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3.6 Heuristic-based Snapshot Analysis

As part of our approach to prewarm the cache, we need to determine the set of objects to
prewarm the cache with, and in order to do so, we need to analyze a series of cache snapshots
taken in the past. Ideally, we want those objects in the prewarm set which are important and
will be relevant after they are fetched into the cache, in the sense that loading them into the
cache should result in a high hit rate and prevent cache pollution. But at the same time, we
need to restrict the size of this set as loading the objects into the cache will require a series
of lookups in the metadata layer (distributed key-value store), which will incur additional
overhead of network transfers.

As mentioned earlier, we represent each object as a bit in a bitmap, and the collection of
bitmaps of all vdisks’ HM1 objects and of HM3 objects at a particular time makes up a snap-
shot. If a bit at a certain position is set in a snapshot, we say that the corresponding object
was present in the cache at the time we captured this snapshot.

Determining the cache prewarm set can be reduced to the problem of �nding most important
and relevant objects optionally constrained by the total size of the prewarm set.
HM1 (VDISK 0) HM1 (VDISK 1) HM3
−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−

1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1 0 Snapshot 1
0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 Snapshot 2
1 1 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 Snapshot 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 Snapshot n
−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−

1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 Prewarm set
−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−

To �nd a solution to this problem with the given constraint, we use a few heuristics, explained
below, which can e�ectively help us in establishing the importance and/or relevance of an
object.

1. k-Frequent (Frequency without memory constraints)
Gives highest priority to the objects which appear in most snapshots. We measure the
frequency of a cached object by percentage of snapshots it is present in. In our case, we can
count the number of snapshots in which a particular bit was set to determine its frequency.

1 0 0 0 0 1 1 0 0 1 Snapshot 1
0 0 0 1 1 0 1 1 0 0 Snapshot 2
1 1 0 0 0 0 1 0 1 1 Snapshot 3
0 0 0 1 1 1 0 1 1 1 Snapshot 4
1 0 1 0 1 1 0 1 1 0 Snapshot 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 1 1 2 3 3 3 3 3 3 Frequency count
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 0 0 1 1 1 1 1 1 1 Objects occurring in at least 50% snapshots
−−−−−−−−−−−−−−−−−−−−−−−−−−−− (Prewarm set)

2. k-Recent (Recency without memory constraints)
Gives highest priority to the objects which appear in the most/least recent snapshots. To
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take recency into account we add all the objects in the last few (or �rst few) snapshots to our
prewarm set. Whether to take the most recent or least recent snapshots into consideration
depends on when we are prewarming the cache. We will make use of both most and least
recent snapshots in our analysis for di�erent scenarios.

1 0 0 0 0 1 1 0 0 1 Snapshot 1
0 0 0 1 1 0 1 1 0 0 Snapshot 2
1 1 0 0 0 0 1 0 1 1 Snapshot 3
0 0 0 1 1 1 0 1 1 1 Snapshot 4
1 0 1 0 1 1 0 1 1 0 Snapshot 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 0 1 1 1 1 0 1 1 1 Objects in the last 2 snapshots
−−−−−−−−−−−−−−−−−−−−−−−−−−−− (Prewarm set)

3. k-Frerecent (Frequency & Recency without memory constraints)
Priority of an object is determined by how frequently it has occurred in the snapshots as
well as how recent was its last occurrence in the snapshots. Another way to see this is
that taking both of these factors into account helps us distinguish between objects with
the same recency or the same frequency value. One method of applying this heuristic is to
perform a weighted sum of all bits in all the snapshots. Then we can sort the bits according
to their summed weight and consider all the objects having highest ’n’ values or top ’x%’
objects by values; we use percentage instead of an absolute number to select objects. There
are many ways to de�ne a weight for objects in a particular snapshot. For instance, a weight
of 1 for all snapshots will result in the same heuristic as k-Frequent. We use two methods
for determining the weight, both of which are functions of the snapshot number. One of
them is the identity function: f (x) = x, and the other is the square function: f (x) = x ∗ x.
x here is the snapshot number, where a value of 1 means the �rst snapshot and it keeps
increasing by 1 for each subsequent snapshot. In the example below, we use the square
function.
Another way to do this is to keep adding the objects into the prewarm set till the memory
constraint is satis�ed.

1 0 0 0 0 1 1 0 0 1 Snapshot 1 (weight: 1)
0 0 0 1 1 0 1 1 0 0 Snapshot 2 (weight: 4)
1 1 0 0 0 0 1 0 1 1 Snapshot 3 (weight: 9)
0 0 0 1 1 1 0 1 1 1 Snapshot 4 (weight: 16)
1 0 1 0 1 1 0 1 1 0 Snapshot 5 (weight: 25)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

35 9 25 20 45 42 14 45 50 26 Weighted Sum
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 0 0 0 1 1 0 1 1 0 Objects having a score of 30 or more
−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (Prewarm set)

4. Constrained-k-Frequent (Frequency with memory constraints)
This is similar to k-Frequent, but with an upper limit on the prewarm set size. We do not
specify the frequency value explicitly as a parameter and keep on adding the most frequent
objects until the memory limit is exceeded. In practice, we always have a constraint on
the total memory available for prewarming and explicitly specifying a frequency value or
percentage might result in the prewarm set being either over�lled or not being fully �lled
up to potential.
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1 0 0 0 0 1 1 0 0 1 Snapshot 1
0 0 0 1 1 0 1 1 0 0 Snapshot 2
1 1 0 0 0 0 1 0 1 1 Snapshot 3
0 0 0 1 1 1 0 1 1 1 Snapshot 4
1 0 1 0 1 1 0 1 1 0 Snapshot 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 1 1 2 3 3 3 3 3 3 Frequency score
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 3 3 3 3 3 3 2 1 1 Frqequency values
0 4 5 6 7 8 9 3 1 2 Objects sorted by frequency
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 1 1 1 1 0 0 0 0 0 Memory constraint ~size of 5 objects
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 0 0 0 1 1 1 1 0 0 Prewarm set
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5. Constrained-k-Recent (Recency with memory constraints)
This is similar to k-Recent, but with an upper limit on the prewarm set size. We do not
specify the recency value explicitly as a parameter and keep on adding all the objects in
most recent snapshots until the memory limit is exceeded. As was the case with an explicit
frequency value, explicitly specifying a recency value might result in the prewarm set being
either over�lled or not being fully �lled up to potential.

1 0 0 0 0 1 1 0 0 1 Snapshot 1
0 0 0 1 1 0 1 1 0 0 Snapshot 2
1 1 0 0 0 0 1 0 1 1 Snapshot 3
0 0 0 1 1 1 0 1 1 1 Snapshot 4
1 0 1 0 1 1 0 1 1 0 Snapshot 5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 3 5 4 5 5 3 5 5 4 Recency score
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 5 5 5 5 5 4 4 3 3 Recency values
0 2 4 5 7 8 3 9 1 6 Objects sorted by recency
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 1 1 1 1 0 0 0 0 0 Memory constraint ~size of 5 objects
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 0 1 0 1 1 0 1 0 0 Prewarm set
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6. Constrained-k-Frerecent (Frequency & Recency with memory constraints)
In k-Frerecent, we de�ned a way to assign weights to objects in a snapshot and perform
a weighted sum to establish importance, but we needed to manually specify the threshold
(top x% objects). Here, we do not specify a threshold for the weighted sum of objects and
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keep adding them to the prewarm set (in decreasing order of their sum values) until the
upper limit on prewarm set is exceeded.

1 0 0 0 0 1 1 0 0 1 Snapshot 1 (weight: 1)
0 0 0 1 1 0 1 1 0 0 Snapshot 2 (weight: 4)
1 1 0 0 0 0 1 0 1 1 Snapshot 3 (weight: 9)
0 0 0 1 1 1 0 1 1 1 Snapshot 4 (weight: 16)
1 0 1 0 1 1 0 1 1 0 Snapshot 5 (weight: 25)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

35 9 25 20 45 42 14 45 50 26 Weighted Sum
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

50 45 45 42 35 26 25 20 14 9 Score values
8 4 7 5 0 9 2 3 6 1 Objects sorted by score
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 1 1 1 1 0 0 0 0 0 Memory constraint ~size of 5 objects
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 0 0 0 1 1 0 1 1 0 Prewarm set
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3.6.1 Prewarm Set Partitioning

Since we have two types of metadata objects and a number of vdisks, we need to logically par-
tition the set to decide the share for each type of object. This is necessary in order to ensure
that one type of object (or a vdisk object) does not �ll up the whole set and to accommodate
a diverse set of objects.

We consider two types of partitioning for the prewarm set:

• Partition between all HM1 and HM3 objects
We need to determine the share of the prewarm set for each type of metadata object as both
HM1 and HM3 objects have di�erent costs and bene�ts. There are many policies to perform
this partition:

– Equal HM3: Split the prewarm set into two equal parts for HM1 and HM3 objects
– No HM3: Consider only HM1 objects for the prewarm set, and ignore all the cached

HM3 objects
– Closed HM3: Consider only those HM3 objects which can be resolved into by another

HM1 object in the cache; use the remaining space for HM1 objects.

• Partition among the HM1 objects for each vdisk
We need to further partition the space available for HM1 objects for each vdisk to ensure
that vdisks with a large number of objects in the cache do not cloud those with only a few
objects. Some policies that can be used to perform this partition are:
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– Proportional Share: Split the prewarm set for vdisks in ratios calculated from the num-
ber of their currently cached objects

– Fair Share (vdisk): Split the prewarm set for HM1 objects equally for all vdisks
– Fair Share (VM): Split the prewarm set for HM1 objects equally for all VMs (a VM can

have more than one vdisk)

Note that even if we partition the space for HM1 objects for each vdisk, it might be possible
that some vdisk does not have su�cient cached objects to �ll up its share. Hence, this
partitioning will be performed iteratively, redistributing remaining space in the prewarm
set among the vdisks that have more cached objects.

3.7 Cache Prewarming

After we analyze a set of snapshots taken in the past and determine the objects that will
become a part of the prewarm set, we set the bits corresponding to those objects in a new
(prewarm) bitmap. As before, there will one such bitmap for each vdisk’s HM1 objects and
one for HM3 objects. We can optionally save this prewarm bitmap to the disk to checkpoint
our analysis so that for next analysis, all the snapshots taken prior to this analysis will not be
needed again. With this bitmap ready, we know which objects to load into the cache as we
have the key part already in the bitmaps (remember that the position of a bit in the bitmap
tells us about the cache membership of that object). The next step is to actually fetch these
objects from the metadata store and store them in the cache. We are not considering the var-
ious costs associated with the metadata lookups over the network in the current study.

After we have queried the value associated with an object in the prewarm set, we need to
store the object in the cache. The cache itself can be in one of two states: cold (either empty
or has stale objects) or warm (having objects of some running VMs). Moreover, since we have
a multi-pool cache, we have a choice in which combination of the three pools to use to load
these objects. We consider two such combinations: complete multi-touch pool (memory and
SSD part), and memory part of multi-touch pool. The memory constraint for each of these
will be the total size of pools we are using.
In both of these combinations of pools, we start loading objects in the memory part of multi-
touch �rst. If it gets �lled up, the older objects are splilled over to the SSD part and newer
objects get into the memory part.

We do not load objects into single touch pool as the prewarm set contains important objects,
and they may get evicted from the cache if other objects (not in prewarm set) are loaded into
the cache. We keep the single touch pool free for those objects which are needed by the vdisks,
but not included in the prewarm set.
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4. Experiments & Results

The simulation involved 3 types of experiments which mimic speci�c scenarios which can
render the cache cold, either completely or partially. Each experiment involves issuing block
I/O requests to the cache and measuring the hit ratio. Note that the outcome of these exper-
iments depend heavily on the nature of the block I/O requests the cache serves. We perform
all our experiments using the block I/O traces described in Chapter 3.

The time for each run of our experiment is averaged from the total requests received in the
total time duration, and is de�ned as follows.

1 minute = 5100 block I/O requests

4.1 Parameters & Metrics

Parameter Space

We have the following parameters which are �xed throughout all the experiments:

• HM1 object size: 1400 B
• HM3 object size: 27 KB (27648 B)
• Total cache size: 160 MB

– Single-touch pool size: 10 MB
– Multi-touch memory pool size: 50 MB
– Multi-touch SSD pool size: 100 MB

Note: The cache size is �xed as such to increase the memory pressure since the IOPS is very
low in the block I/O traces, and the number of vdisks being served is small-scale.

• Total no. of I/O requests: ≈3.7 million (3,715,100 requests)

– Total HM1 objects in the metadata store: 75562
– Total HM3 objects in the metadata store: 75381

• Number of vdisks: 8 (sizes (in GB): 96, 492, 984, 19, 19, 19, 19, 16)
• Cache replacement policy: LRU
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• Bitmap representation for persistent state: Bit Array
• Partition of prewarm set between HM1 and HM3 objects: Equal share
• Partition of prewarm set between vdisks (for HM1 objects): Fair share
• Time instant at which node failure happens (Experiment 2): 364th minute
• Time instant at which the VM migrates (Experiment 3): 405th minute
• Number of vdisks considered for migration: 1 (vdisk 1)

In table 4.1, some information about the vdisks used for the experiments is provided. Note
that for the current study, we do not distinguish between read and write requests during cache
lookup.

vdisk ID vdisk Size Total
Requests

Read % Write % Min
Request
Size

Max
Request
Size

0 96 GB 843199 7.30 92.70 4 KB 1280 KB
1 492 GB 1729845 29.30 70.70 4 KB 1280 KB
2 984 GB 644935 66.64 33.36 4 KB 1280 KB
3 19 GB 115254 17.02 82.98 4 KB 512 KB
4 19 GB 106298 26.15 73.85 4 KB 512 KB
5 19 GB 136473 18.73 81.27 4 KB 512 KB
6 19 GB 47595 10.74 89.26 4 KB 504 KB
7 16 GB 21977 9.70 90.30 4 KB 512 KB

Table 4.1: Characterization of the vdisks served by the cache

The following parameters are tunable and we vary at least one of these in our experiment
runs. The values over which these parameters are varied are also mentioned below:

• Snapshot rate: no. of I/O requests after which we dump the cache state
1 K, 5 K, 10 K, 50 K, 100 K

• Prewarm set size limit: total size of metadata objects (in MB) considered for prewarming
the cache
50 MB (Multi-touch pool - memory part), 150 MB (Complete multi-touch pool)

• Heuristic for snapshot analysis:

– k-Frequent
∗ Frequency Score (k%): consider all objects appearing in at least k% of total snap-

shots
100%, 50%, 33%, 25%, 20%

– k-Recent
∗ Recency Score (k): consider all objects from last k snapshots (�rst k snapshots for

Experiment 1)
1, 2, 3, 4, 5
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– k-Frerecent
∗ Score Threshold (k%): consider top k% objects by weight score

1%, 5%, 10%, 15%, 20%

∗ Weight function (f(x)): weight for an object if present in the snapshot number x
x (Linear), x2 (Quadratic)

– Constrained-k-Frequent: no parameters
– Constrained-k-Recent: no parameters
– Constrained-k-Frerecent

∗ Weight function (f(x)): weight for an object if present in the snapshot number x
x (Linear), x2 (Quadratic)

Note: There is always an upper bound on the prewarm set size. In the heuristics without
memory constraint, we abort the experiment run if the size limit is exceeded.

Metric Space

We capture the following metrics in our simulation:

• Cache hit ratio (recorded after each minute)
• Total size of persistent cache state written to the disk for various snapshot rates (indepen-

dent of other tunable parameters)
• Time taken by prewarmed cache to reach the 90th, 95th, and 99th percentiles of the hit ratio

of the (initially) cold cache (referred to as "Time to P90, P95 and P99" in the result tables).
The percentile values are calculated from the cache hit ratio value at the end of simulation.

• Total size of the prewarm set after heuristic-based snapshot anslysis
• Total number of HM1 and HM3 objects in the prewarm set
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Snapshot Rate Analysis

As part of our experiments, we have also captured various metrics associated with the snap-
shot rates, and these metric are independent of other tunable parameters such as the memory
constraint or heuristic used. We measure the total size of cache state persisted which depends
on the number and sizes of vdisks, and this is the total amount which is written in multiple
snapshot �les. We also measure (at time of taking a snapshot) the number of objects that
changed in the cache (fetched into/evicted from the cache) since the last snapshot was taken.
The numbers shown in the table below for this are averaged over all the snapshots. Note
that the total number of snapshots taken will depend on the total number of requests and the
snapshot rate.

Snapshot Rate
(one snapshot per n
requests)

Total size of
cache state persisted
to the disk
(MB)

Number of
snapshots taken
(per vdisk and for
HM3 objects)

Average change in
cache state
(no. of objects
changed between
consecutive
snapshots)

1 K 8189 3716 416
5 K 1639 744 1891
10 K 820 372 3272
50 K 165 75 4585
100 K 84 38 5038

Table 4.2: Metrics collected for various snapshot rates

From the table 4.2, we can infer that low snapshot rates are able to capture changes in objects
in the cache at a �ner granularity, but the total size of snapshots written to the disk is in
the order of a few GBs. Moreover, this is the result when we are using only 8 vdisks in the
simulation. Adding more vdisks will add to the total size. While snapshots taken at very
high rates consume very less space in the disk, it misses a lot of intermediate states of objects
getting in and out of the cache. We will use the snapshot rate of 1 K in the �rst experiment
for comparison, but we omit in further experiments because it needs a large amount of state
written to the disk and will incur more computational and I/O overheads for doing the same.

33



4.2 Experiment Scenarios

4.2.1 Node Restart

This experiment involves simulating the scenario where a node restarts and with it, all the
VMs running on it. This can also be seen as the scenario where the node does not restart, but
the VMs start up. In both cases, the cache will be rendered cols and when the VMs start up,
they will experience many misses. We expect to see a very low cache hit ratio when the VMs
start, but as they continue to run the hit ratio should stabilize as the cache will now be loaded
with the metadata objects i.e., the cache will be warm.

Figure 4.1: Node restart scenario

In this experiment, we answer the following question:
Does prewarming the cache helps inmitigating the drastic drop in the hit ratio when
VMs boot up from a cold cache? In other words, can we reduce the time it takes to
warm up a cold cache experienced at the beginning of storage I/O tra�c?

The procedure for performing this experiment is as follows:

1. Issue the block I/O requests to the cache
2. Measure the hit ratio of the cache after each minute
3. Dump the cache state at fixed intervals (determined by snapshot rate)
4. Analyze the snapshots using one of the heuristics to get the prewarm set
5. Reset the cache and load the objects determined in the previous step
6. Issue the same block I/O requests from beginning to the cache
7. Measure the hit ratio of the cache after each minute

At the end of this experiment, we have two sets of cache hit ratios for each minute, one where
the cache was cold and the other where we prewarmed the cache with certain objects. This ex-
periment was run multiple times for di�erent values of the tunable parameters as mentioned
previously and we plot a graph for the results obtained as shown in Figure 4.2. We show the
hit ratios for only the �rst 3 hours as the aim of this experiment is to compare the hit ratio at
the beginning of each run, with and without prewarming the cache. Tables 4.4, 4.5, 4.6, 4.7,
4.8 and 4.9 show the metrics collected for each heuristic.

Note that we have omitted those results from these tables which were exceeding the
memory constraint. In all these tables, we have highlighted the top 4 combinations of pa-
rameters for each heuristic (2 for each of the size limits). These combinations o�er the lowest
warmup time. In the case of two combinations resulting in same warmup time, we chose the
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one with lower snapshot rate (e.g. 100 K instead of 50 K).

P90 value of
the Hit Ratio

Time taken by
cold cache to
reach the P90

value (minutes)

P95 value of
the Hit Ratio

Time taken by
cold cache to
reach the P95

value (minutes)

P99 value of
the Hit Ratio

Time taken by
cold cache to
reach the P99

value (minutes)
0.77 26 0.813 60 0.847 275

Table 4.3: Exp 1: Percentile values and warmup times for cold cache

Snapshot
Rate
(requests)

Frequency
Score

Size
Limit
(MB)

Size
(MB)

HM1
Objects

HM3
Objects

Time to
P90

(minutes)

Time to
P95

(minutes)

Time to
P99

(minutes)

1 K

100% 150 0.28 10 10 26 60 275
50% 150 64.45 463 2421 20 43 216
33% 150 98.20 793 3684 12 27 144
25% 150 135.18 1320 5060 8 20 113
100% 50 0.28 10 10 26 60 275
100% 150 1.80 64 65 26 59 272
50% 150 64.48 467 2422 20 43 216
33% 150 98.25 798 3686 12 28 144
25% 150 136.09 1332 5094 8 20 113

5 K

100% 50 1.80 64 65 26 59 272
100% 150 2.30 81 83 26 59 272
50% 150 64.86 468 2436 20 43 216
33% 150 98.86 795 3709 12 27 144
25% 150 136.81 1338 5121 8 20 114

10 K

100% 50 2.30 81 83 26 59 272
100% 150 3.30 119 119 26 59 272
50% 150 68.46 480 2572 19 41 212
33% 150 100.51 829 3770 12 26 141
25% 150 149.40 1522 5589 11 24 132

50 K

100% 50 3.30 119 119 26 59 272
100% 150 3.88 140 140 26 58 271
50% 150 70.25 501 2639 19 41 211
33% 150 114.85 1022 4304 10 24 134100 K

100% 50 3.88 140 140 26 58 271

Table 4.4: Exp 1: Results for k-Frequent heuristic
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Snapshot
Rate
(requests)

Size
Limit
(MB)

Size
(MB)

HM1
Objects

HM3
Objects

Time to
P90

(minutes)

Time to
P95

(minutes)

Time to
P99

(minutes)

1 K 150 149.86 56074 2844 0 5 40
50 49.99 18722 948 0 7 25

150 149.86 56074 2844 0 5 405 K 50 49.99 18722 948 0 7 25
150 149.34 55687 2844 0 5 4010 K 50 49.99 18722 948 0 7 25

50 K 150 124.39 36999 2844 0 0 26
50 49.99 18723 948 0 7 26

100 K 150 107.05 24015 2844 0 2 30
50 49.99 18722 948 0 9 31

Table 4.5: Exp 1: Results for Constrained-k-Frequent heuristic
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Snapshot
Rate
(requests)

Recency
Score

Size
Limit
(MB)

Size
(MB)

HM1
Objects

HM3
Objects

Time to
P90

(minutes)

Time to
P95

(minutes)

Time to
P99

(minutes)

1 K

1 150 4.96 178 179 26 59 272
2 150 8.25 297 298 26 58 271
3 150 11.55 416 417 25 56 266
4 150 14.85 535 536 25 55 265
5 150 17.56 633 634 25 55 264
1 50 4.96 178 179 26 59 272
2 50 8.25 297 298 26 58 271
3 50 11.55 416 417 25 56 266
4 50 14.85 535 536 25 55 265
5 50 17.56 633 634 25 55 264

5 K

1 150 17.56 633 634 25 55 264
2 150 28.92 1041 1044 23 52 252
3 150 37.48 1349 1353 22 48 244
4 150 46.37 1668 1674 0 46 222
5 150 53.37 1920 1927 0 43 217
1 50 17.56 633 634 25 55 264
2 50 28.92 1041 1044 23 52 252
3 50 37.48 1349 1353 22 48 244
4 50 46.37 1668 1674 0 46 222

10 K

1 150 28.92 1041 1044 23 52 252
2 150 46.37 1668 1674 0 46 222
3 150 59.60 2144 2152 0 41 213
4 150 71.52 2573 2582 0 33 188
5 150 83.78 3010 3025 0 22 141
1 50 28.92 1041 1044 23 52 252
2 50 46.37 1668 1674 0 46 222
1 150 49.96 1794 1804 8 30 170
2 150 79.82 2868 2882 1 9 85
3 150 106.05 3809 3829 0 5 14
4 150 128.45 4591 4639 0 2 16
5 150 149.64 5338 5405 0 8 36

50 K

1 50 49.96 1794 1804 8 30 170

100 K

1 150 49.96 1796 1804 9 19 134
2 150 82.91 2948 2995 2 11 36
3 150 111.80 3935 4041 0 7 25
4 150 140.82 4814 5097 0 8 31
1 50 49.96 1796 1804 9 19 134

Table 4.6: Exp 1: Results for k-Recent heuristic
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Snapshot
Rate
(requests)

Size
Limit
(MB)

Size
(MB)

HM1
Objects

HM3
Objects

Time to
P90

(minutes)

Time to
P95

(minutes)

Time to
P99

(minutes)

1 K 150 149.86 56074 2844 1 14 87
50 49.99 18722 948 12 24 135

5 K 150 149.86 56074 2844 1 14 87
50 49.99 18722 948 12 24 135

10 K 150 149.30 55657 2844 1 14 77
50 49.99 18721 948 12 24 134

150 124.13 36807 2844 0 7 4350 K 50 49.99 18722 948 12 24 133
150 106.70 23751 2844 1 14 62100 K 50 49.99 18723 948 9 20 100

Table 4.7: Exp 1: Results for Constrained-k-Recent heuristic

Snapshot
Rate
(requests)

Score
Function

Size
Limit
(MB)

Size
(MB)

HM1
Objects

HM3
Objects

Time to
P90

(minutes)

Time to
P95

(minutes)

Time to
P99

(minutes)

1 K

LNR 150 149.86 56074 2844 0 0 20
QDR 150 146.84 53816 2844 2 12 43
LNR 50 49.99 18722 948 0 7 20
QDR 50 49.99 18721 948 7 16 83

5 K

LNR 150 149.86 56074 2844 0 0 20
QDR 150 149.86 56074 2844 0 0 12
LNR 50 49.99 18722 948 0 7 21
QDR 50 49.99 18722 948 0 7 20
LNR 150 149.30 55657 2844 0 0 20
QDR 150 149.30 55657 2844 0 0 12
LNR 50 49.99 18721 948 0 7 2010 K

QDR 50 49.99 18721 948 0 7 20
LNR 150 124.13 36807 2844 0 0 14
QDR 150 124.13 36807 2844 0 0 7
LNR 50 49.99 18722 948 0 7 2150 K

QDR 50 49.99 18722 948 0 7 22

100 K

LNR 150 106.70 23751 2844 0 1 19
QDR 150 106.70 23751 2844 0 0 13
LNR 50 49.99 18723 948 0 9 26
QDR 50 49.99 18723 948 0 9 26

Table 4.8: Exp 1: Results for Constrained-k-Frerecent heuristic
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Snapshot
Rate
(requests)

Score
Threshold

Score
Function

Size
Limit
(MB)

Size
(MB)

HM1
Objects

HM3
Objects

Time to
P90

(minutes)

Time to
P95

(minutes)

Time to
P99

(minutes)

1 K

1% LNR 150 15.54 557 561 22 48 241
1% QDR 150 14.32 534 516 22 47 220
5% LNR 150 77.72 2800 2806 7 20 109
5% QDR 150 71.72 2687 2584 10 22 118
10% QDR 150 143.47 5378 5169 10 22 121
1% LNR 50 15.54 557 561 22 48 241
1% QDR 50 14.32 534 516 22 47 220

5 K

1% LNR 150 15.54 557 561 22 48 240
1% QDR 150 15.54 557 561 22 47 223
5% LNR 150 77.72 2800 2806 7 20 109
5% QDR 150 77.72 2800 2806 7 17 95
1% LNR 50 15.54 557 561 22 48 240
1% QDR 50 15.54 557 561 22 47 223

10 K

1% LNR 150 15.42 551 557 22 48 240
1% QDR 150 15.42 551 557 22 47 223
5% LNR 150 77.20 2779 2787 7 20 109
5% QDR 150 77.20 2779 2787 7 17 95
1% LNR 50 15.42 551 557 22 48 240
1% QDR 50 15.42 551 557 22 47 223
1% LNR 150 10.74 364 389 24 54 262
1% QDR 150 10.74 364 389 24 52 252
5% LNR 150 53.73 1835 1945 13 30 156
5% QDR 150 53.73 1835 1945 12 27 143
10% LNR 150 107.48 3676 3890 5 15 65
10% QDR 150 107.48 3676 3890 1 8 31
1% LNR 50 10.74 364 389 24 54 262

50 K

1% QDR 50 10.74 364 389 24 52 252
1% LNR 150 7.46 233 271 25 55 264
1% QDR 150 7.46 233 271 25 54 263
5% LNR 150 37.39 1185 1358 18 38 200
5% QDR 150 37.39 1185 1358 16 33 172
10% LNR 150 74.81 2372 2717 9 22 120
10% QDR 150 74.81 2372 2717 7 19 102
15% LNR 150 112.20 3560 4075 5 15 73
15% QDR 150 112.20 3560 4075 1 10 32
20% LNR 150 149.62 4747 5434 8 19 107
20% QDR 150 149.62 4747 5434 6 15 85
1% LNR 50 7.46 233 271 25 55 264
1% QDR 50 7.46 233 271 25 54 263
5% LNR 50 37.39 1185 1358 18 38 200

100 K

5% QDR 50 37.39 1185 1358 16 33 172

Table 4.9: Exp 1: Results for k-Frerecent heuristic
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Figure 4.2: Exp 1: Impact of prewarming on hit ratio using Constrained-k-Frerecent heuristic
and memory limit of 150 MB (top) and 50 MB (bottom)

We have plotted the graphs (Figure 4.2) for two combinations of parameters which yielded
the most promising results. The top two plots used Constrained-k-Frereent as heuristic, 50
K as the snapshot rate, 150 MB as memory limit and Quadratic function for the scores. The
bottom two plots used the same heuristic, but the snapshot rate of 10 K and the memory limit
of 50 MB. It is worth mentioning here that we run the same requests again from the beginning
after we reset the cache, which might not be the case in a real scenario.

The plots on the left compare the hit ratios where the horizontal grey-dotted line plots the
99th percentile of the (cold cache) hit ratio. The plots on the right show the gain in hit ra-
tio achieved with prewarming, and this gain diminishes with time. We make the following
observations from these graph plots:

• In the time v/s hit ratio plots above (left), we can see that the hit ratio for the cold cache
for �rst couple hours is very low, but it stabilizes later. When we prewarm the cache, we
see that the drop in the hit ratio for initial few minutes is greatly reduced. The warmup
time (for achieving the P99 hit ratio) is reduced to a few minutes (shown by the vertical
grey-dotted lines).
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• In the plots for gain in hit ratio (right), we can see that for the �rst few minutes, the gain
in hit ratio is very large, which is indicative of the performance drop avoided due to a cold
cache. This gain eventually becomes close to 0 as even the cold cache will eventually be
�lled with objects that are in active use.

Apart from the top results we have obtained in this experiment, there are a few worth noticing:

• In the results for Constrained-k-Frequent (Table 4.5) and Constrained-k-Frerecent (Table
4.8), even using 50 MB as the memory limit reduced the warmup time signi�cantly. The
lowest warmup time (for P99 hit ratio) achieved using 50 MB memory limit (20 minutes)
was when Constrained-k-Frecent heuristic was used, as plotted in the bottom two graphs
above.

• The score function used in the [Constrained-]k-Frerecent heuristics is very important as
in most of the results (especially when using 150 MB memory limit), using the Quadratic
function reduced the warmup time more than using Linear function did. The score function
used a�ects the selection of objects for the prewarm set and even though both of these
functions selected the same number of objects (HM1 and HM3), the resulting warmup times
were di�erent.

• For the memory limit of 150 MB, k-Recent performed well, reducing the time to reach P99 of
hit ratio to just 14 minutes. For the memory limit of 50 MB, Constrained-k-Recent performed
well, reducing the time to reach P99 of hit ratio to just 25 minutes.

Table 4.10 lists a subset of the results obtained that o�er the highest speedups in the warmup
time.

Heuristic
Used

Snapshot
Rate
(requests)

Prewarm Set
Size / Size
Limit
(MB)

Time to P99

for cold
cache
(minutes)

Time to P99

with
prewarming
(minutes)

Speedup
achieved

Constrained-k-Frerecent 50 K 124.13 / 150 275 7 39x
Constrained-k-Frerecent 10 K 49.99 / 50 275 20 13x
k-Recent (k=3) 50 K 106.05 / 150 275 14 19x
Constrained-k-Recent 10 K 49.99 / 50 275 25 11x

Table 4.10: Exp 1: Speedup values for the top results
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4.2.2 Node Failover

This experiment involves simulating the scenario where a node in a failover cluster experi-
ences some problem and all its VM are started on another node. Unlike the node on which
the VMs were initially running, the new node will have a cold cache, i.e. the information
about the cached objects is lost. The VMs will start running from the same point at which the
previous node experienced failure. We expect to see a drastic drop in the cache hit ratio when
the VMs start running on the new node, but it should stabilize as the VMs continue to run.

Figure 4.3: Node failover scenario

This scenario di�ers from the previous one in that the VMs experienced a cold cache when
they were starting up in that, while in this scenario, the VMs start from the same point where
they left o� on the failed node.

In this experiment, we try to answer the following question:
Does prewarming the cache on the new node with some objects helps in alleviating
the drastic drop in the hit ratio due to the cache being cold for the incoming VMs?

We capture the hit ratio of the cache on the initial node up to the point when it fails, and
then on the new node after failover. As in the previous experiment, we do this at �xed time
intervals, and compare the impact on the hit ratio with and without prewarming the cache on
the new node.

The procedure for performing this experiment is as follows:

1. Issue the block I/O requests to the cache until nth request is served
2. Measure the hit ratio of the cache after each minute
3. Dump the cache state at fixed intervals (determined by snapshot rate)
4. Analyze the snapshots using one of the heuristics to get the prewarm set
5. Reset the cache and load the objects determined in the previous step
6. Issue the block I/O request starting (n+1)th request
7. Measure the hit ratio of the cache after each minute

We issue the requests until 1857550 requests are served i.e. n is 1.856 million which is nearly
half of the total requests that the cache will see. This corresponds to the 364th minute of the
simulation run. At the end of this experiment, we have two sets of cache hit ratios for each
minute, one where the cache was cold after nth request and the other where we prewarmed
the cache with certain objects after nth request.
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This experiment was run for only 4 of the 6 heuristics mentioned earlier, leaving out k-
Frequent and k-Frerecent because for both of these heuristics, we needed to manually specify
a score threshold which in some cases resulted in prewarm set not utilizing available space
and in some cases did not properly satisfy memory constraints (as indicated by the results of
Experiment 1). We have kept k-Recent in consideration as we would be interested in knowing
whether prewarming the cache with a speci�c number of most recent snapshots holds any
bene�t.
Moreover, we also skip the snapshot rate of 1 K requests as it involves a large size of cache
state being written to the disk and will incur more overhead in terms of disk accesses and
computation time. Tables 4.5, 4.6, 4.7, and 4.8 show the metrics collected for each heuristic
we have considered for this experiment.

Note that we have omitted those results from these tables which were exceeding the
memory constraint. In all these tables, we have highlighted the top 4 combinations of pa-
rameters for each heuristic (2 for each of the size limits). These combinations o�er the lowest
warmup time. In the case of two combinations resulting in same warmup time, we chose the
one with lower snapshot rate (e.g. 100 K instead of 50 K).

P90 value of
the Hit Ratio

Time taken by
cold cache to
reach the P90

value (minutes)

P95 value of
the Hit Ratio

Time taken by
cold cache to
reach the P95

value (minutes)

P99 value of
the Hit Ratio

Time taken by
cold cache to
reach the P99

value (minutes)
0.765 31 0.808 57 0.842 180

Table 4.11: Exp 2: Percentile values and warmup times for cold cache

Snapshot
Rate
(requests)

Size
Limit
(MB)

Size
(MB)

HM1
Objects

HM3
Objects

Time to
P90

(minutes)

Time to
P95

(minutes)

Time to
P99

(minutes)
150 120.69 34230 2844 0 1 105 K 50 49.99 18722 948 2 11 38
150 120.25 33902 2844 0 1 1210 K 50 49.99 18722 948 2 10 36

50 K 150 104.41 22034 2844 0 3 20
50 49.99 18723 948 2 14 43

100 K 150 94.02 14251 2844 2 8 27
50 44.02 14251 948 4 18 49

Table 4.12: Exp 2: Results for Constrained-k-Frequent

43



Snapshot
Rate
(requests)

Recency
Score

Size
Limit
(MB)

Size
(MB)

HM1
Objects

HM3
Objects

Time to
P90

(minutes)

Time to
P95

(minutes)

Time to
P99

(minutes)
1 150 121.67 1787 4524 0 10 36
2 150 136.10 2305 5045 0 5 295 K
3 150 146.93 2694 5436 0 8 31

10 K 1 150 122.34 1793 4549 0 10 39
2 150 145.10 2609 5371 0 9 33

50 K 1 150 122.34 1793 4549 0 10 39
100 K 1 150 131.56 1786 4899 5 15 47

Table 4.13: Exp 2: Results for k-Recent

Snapshot
Rate
(requests)

Size
Limit
(MB)

Size
(MB)

HM1
Objects

HM3
Objects

Time to
P90

(minutes)

Time to
P95

(minutes)

Time to
P99

(minutes)
150 120.69 34230 2844 0 1 55 K 50 49.99 18723 948 1 8 32
150 120.25 33902 2844 0 1 810 K 50 49.99 18722 948 2 10 33

50 K 150 103.94 21686 2844 0 2 17
50 49.99 18722 948 2 10 34

100 K 150 93.36 13757 2844 2 8 28
50 43.36 13757 948 5 17 47

Table 4.14: Exp 2: Results for Constrained-k-Recent

Snapshot
Rate
(requests)

Score
Function

Size
Limit
(MB)

Size
(MB)

HM1
Objects

HM3
Objects

Time to
P90

(minutes)

Time to
P95

(minutes)

Time to
P99

(minutes)
LNR 150 120.69 34230 2844 0 1 10
QDR 150 120.69 34230 2844 0 1 17
LNR 50 49.99 18723 948 2 12 415 K

QDR 50 49.99 18723 948 2 12 43
LNR 150 120.25 33902 2844 0 1 12
QDR 150 120.25 33902 2844 0 2 18
LNR 50 49.99 18722 948 2 12 4110 K

QDR 50 49.99 18722 948 2 13 43
LNR 150 103.94 21686 2844 0 3 20
QDR 150 103.94 21686 2844 0 4 23
LNR 50 49.99 18722 948 2 13 4350 K

QDR 50 49.99 18722 948 2 14 44

100 K

LNR 150 93.36 13757 2844 2 8 29
QDR 150 93.36 13757 2844 2 8 28
LNR 50 43.36 13757 948 5 21 52
QDR 50 43.36 13757 948 5 22 53

Table 4.15: Exp 2: Results for Constrained-k-Frerecent

44



Figure 4.4: Exp 2: Impact of prewarming on hit ratio after failure using Constrained-k-Recent
heuristic and memory limit of 150 MB (top) and 50 MB (bottom)

We have plotted the graphs (Figure 4.4) for two combinations of parameters which yielded
the most promising results. All of the above plots use Constrained-k-Recent as heuristic and
5 K as the snapshot rate, but di�er in the memory limits.
The plots on the left compare the hit ratios where the horizontal grey-dotted line plots the
99th percentile of the (cold cache) hit ratio after the failure. The plot on the right show the
gain in hit ratio achieved with prewarming, with the gain diminishing with time. We make
the following observations from these graph plots:

• In the time v/s hit ratio plots above (left), we can see that the hit ratio for the cold cache for
�rst few hours after failure is very low, but stabilizes later. When we prewarm the cache,
we see that the drop in the hit ratio for initial few minutes is greatly reduced. The warmup
time (for achieving the P99 hit ratio) is reduced to a few minutes (shown by the vertical
grey-dotted lines).

• In the plots for gain in hit ratio (right), we can see that for the �rst few minutes after the
failure, the gain in hit ratio is very large, which is indicative of the performance drop avoided
due to a cold cache.
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Apart from the top results we have obtained in this experiment, there are a few worth noticing:

• In the results obtained for Constrained-k-Frequent and Constrained-k-Frerecent, we can see
that the time taken to get P99 hit ratio is very similar, especially with the 150 MB memory
limit.

• If we compare the results for Constrained-k-Frerecent for this experiment and the previous
one, we see that in this experiment, the Linear function resulted in lower warmup times as
compared to Quadratic function, but it was the opposite in the previous experiment.

Table 4.16 lists a subset of the results obtained that o�er the highest speedups in the warmup
time.

Heuristic
Used

Snapshot
Rate
(requests)

Prewarm Set
Size / Size
Limit
(MB)

Time to P99

for cold cache
(minutes)

Time to P99

with
prewarming
(minutes)

Speedup
achieved

Constrained-k-Recent 5 K 120.69 / 150 275 5 55x
Constrained-k-Recent 5 K 49.99 / 50 275 32 8x

Table 4.16: Exp 2: Speedup values for the top results
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4.2.3 VM Migration

This experiment involves simulating the scenario where a particular VM migrates from one
node (source) to another (destination). As part of the VM migration, the state of its vdisk(s) is
also transferred. But, the objects in the cache which were used by those vdisk(s) are not. On
the destination node, the cache will be cold for those vdisk(s) and it may have objects cached
for other VMs that are running on it. We expect to see a drop in the overall hit ratio as the
migrated VM will experience cold misses, and now that the cache has to accommodate objects
for the vdisk(s) of the migrated VM, the other VMs should experience more capacity misses.

Figure 4.5: VM Migration scenario

This scenario di�ers from the previous two as the cache will now be partially cold for the
migrated VM and all the VMs on the destination node will have to share the cache with the
new VM.

In this experiment, we try ot answer the following question:
Does prewarming the cache on the destination node with some objects of the vdisk
belonging to themigrating VMhelp in reducing the drastic drop in its hit ratio? And,
with the prewarming done for this vdisk, does the hit ratio of other vdisks gets af-
fected?

For the experiment, we assume that there is only one vdisk attached to the migrating VM.

The procedure for performing this experiment is as follows:

1. Run the block I/O traces on two caches (in separate threads) until nth request
2. Transfer the bitmap of migrating vdisk from first cache to the second
3. Load the objects from the migrated bitmap in the second cache
4. Resume the block I/O traces in the second cache, with additional traces for the

migrated vdisk
5. Measure the hit ratio of the cache after each minute

Both caches are issued the same set of block I/O requests, but the second cache (where VM
migrates to) will not see any request from the migrating vdisk until it is migrated. We issue
the requests to both caches until 1034882 requests are served (the �rst 405 minutes). At this
point we simulate that a vdisk is migrated from one node to another by sending over the pre-
warm set of this vdisk (in-memory bitmap of the vdisk maintained in the cache) to the second
thread. The total size of objects in prewarm set of vdisk 1 just before migration was ≈1.26 MB
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for 945 HM1 objects.

We do not save the cache state periodically and perform heuristic-based snapshot analysis in
this experiment. Instead, we consider only the last known cache state of the vdisk (represented
by its bitmap). In the second cache, we record the hit ratio after each minute when the vdisk
is served from the cache, with and without prewarming. So, in both cases the second cache
will see the block I/O requests for migrated vdisk from the point it was migrated, but only in
the latter one we load the objects from its migrated bitmap. When the objects of migrating
vdisk are loaded into the cache, some objects of other vdisks will be evicted.

Figure 4.6: Exp 3: Impact of prewarming on hit ratio of the migrated vdisk (left) and the overall
hit ratio of the destination node’s cache (right)

We make the following observations from the graph plots shown above:

• From the plot on the left, we can infer that prewarming the cache with objects of a migrated
vdisk helps mitigate the initial drop in the cache hit ratio for that vdisk. The warmup time
(for achieving the P99 hit ratio) is was reduced to 124 minutes from 347 minutes, resulting
in a speedup of 2.7x. The average gain in hit ratio for �rst 10 minutes was 0.173.

• In the plot on the right, we have the overall hit ratio of the cache on the destination node.
The vertical grey-dotted line marks the point at which VM was migrated. There was no
drop in the overall hit ratio when we loaded the new vdisks’s objects into the cache. In-
stead, there was a very slight increase in the hit ratio due to a signi�cant gain in the hit
ratio of the migrated vdisk.

• We have also measured the impact of prewarming on the combined hit ratio of other vdisks
served by the cache, and found that there was no signi�cant drop in their hit ratio as well.
This is mainly due to the fact that only 1.26 MB worth of cache objects were replaced with
the migrated vdisk’s objects.
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5. Conclusion & Future Work

From the results obtained for the �rst two experiments, we can infer that prewarming the
cache does help mitigate the drop in hit ratio due to cold cache. The extent to which this drop
is reduced depends on the combination of parameters (snapshot rate, heuristic, memory limit
etc.) we use. In general, we see that the snaphotting the cache at 5 K, 10 K, and 50 K requests
show the most promising results. Moreover, Constrained-k-Frerecent heuristic performs well
in both of these experiment scenarios, but Constrained-k-Recent showed the most promising
results in the second one.

In the �rst experiment, we were able to achieve the maximum speedup of 39x in reaching a
hit ratio value of P99 using Constrained-k-Frerecent, where it took the prewarmed cache only
7 minutes to reach the hit ratio that we would get from an (initially) cold cache after 4.5 hours.

In the second experiment, we got a speedup of 55x in in reaching a hit ratio value of P99
using Constrained-k-Recent, where it took the prewarmed cache only 5 minutes to reach the
hit ratio that we would get from a cold cache 4.5 hours after the failure.

In the third experiment, we observed that prewarming a cache for migrated VM helps reduce
the initial drop in hit ratio due to partially cold cache. Moreover, the other VMs are not signif-
icantly a�ected by prewarming action and the overall hit ratio does not reduce much as well.

While the current setup for these experiments yielded promising results, we would like to
go into more depth and �nd ways to achieve better speedup values which are indicative of
improved storage performance.

We had �xed a few parameters for all these experiments, and our next step will be to try
varying some of them for our experiments. Some important parameters (currently �xed) that
we need to consider for tuning are:

• Sizes of HM1 and HM3 objects (sampled from a distribution)
• Partitioning of prewarm set for HM1 and HM3 objects
• Time instants at which failure/migration happens
• Score function for [Constrained-]k-Frerecent heuristics
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We also need to issue a much larger set of block I/O requests which originate from more
vdisks/VMs and resemble actual workloads running on VMs. For the �rst experiment, we
need two sets of request traces which are recorded starting at the time when VMs boot up.
Two sets of requests are needed so that after we reset the cache, we do not have to issue the
same requests again.

Apart from expanding the parameter space, we also need to add the notion of time into the
simulator, with disk and network accesses being penalized in units of time. Moreover, we
need the arrival and completion times of individual requests for a more elaborate empirical
analysis. We need these properties to ensure a more realistic simulation and to create a better
model of the Nutanix DSF Infrastructure.
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