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ABSTRACT
Despite the growing popularity of enterprise virtual desk-
top infrastructure (VDI), little is known about its stor-
age traffic characteristics. In addition, no prior work
has considered the detailed characteristics of virtual ma-
chine (VM) behavior on VDI. In this paper, we ana-
lyze the enterprise storage traffic on commercial office
VDI using designated VMs. For 28 consecutive days,
we gathered various types of traces, including a usage
questionnaire and active and passive measurements. To
characterize the storage traffic, we focused on two per-
spectives: fibre channel (FC) traffic and VM behav-
ior. From the FC traffic perspective, we found that
read traffic is dominant, although the applications are
similar to those in a previous small-scale VDI. In par-
ticular, the write response time of large transactions,
e.g.,128 KiB, is strongly affected by a slight decrease in
cache hits during an update storm. From the VM be-
havior, we found that all active user VMs generate only
25% of traffic. Although a few VMs generate massive
traffic, their impact is small. These characteristics are
unique in comparison with the small-scale VDI. Our re-
sults have significant implications for designing the next
generation of VDI and improving its performance.
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1. INTRODUCTION
The past few years have seen dramatic growth in

virtual desktop infrastructure (VDI) [12, 28]. VDI,
whose benefits include improved operational efficiency
and higher cost savings, has been used in real-world
offices and universities. There are two types of VDI:
pool-based VDI and VDI using designated virtual ma-
chines (VMs). The storage in the designated VMs is
similar to remote storage in clouds. In both types, stor-
age and the storage area network (SAN) greatly affect
VDI performance. For instance, a large increase in the
response time between VMs and storage can affect the
quality of experience (QoE) of VM users and the overall
VDI performance.

Many studies [4, 6, 9, 16, 17] have analyzed the com-
mon Internet file system (CIFS) and traffic in personal
cloud storage. However, few studies have analyzed stor-
age traffic characteristics on VDI by collecting traces
from a specific component of a VDI system. Shamma
et al. [25] analyzed a small VDI system (55 VMs) with
actual VDI traces. Although they presented a workload
analysis and the traffic characteristics, they only investi-
gated specific monitoring components, e.g., a disk-level
driver, on VMs.

The research goal of this paper is to provide a deep
understanding of storage traffic characteristics in en-
terprise VDI using designated VMs from two perspec-
tives: fibre channel (FC) traffic and VM behavior. We
gathered actual data from a part of an enterprise VDI
that provides office VDI to an IT company 1. In this
VDI, a designated Windows VM is provided to each
user. Moreover, all VMs are always running regard-
less of logging events to avoid boot storms and increase
VM connectivity. Between 2/22/2016 and 3/20/2016
(four weeks), we analyzed datasets corresponding to
79.8 TiB of storage traffic on approximately 300 VMs.
The datasets were compiled from a VDI usage ques-
tionnaire, lists of applications on all VMs, FC traces

1We cannot disclose the VDI scale or the company be-
cause we have a contract with the company to operate
their VDI system.



Table 1: Summary of major findings and their implications for the target VDI.
VDI Findings Implications
Analysis

FC
traffic

Read is dominant, although the applications are similar Cache and address management for read
to the small-scale VDI [§3.2, §4.2] (different from [25]). traffic should be enhanced in VDI storage.
During an update storm, a large number of transactions A short time interval is required to detect
access similar address blocks in bursts over the burst, and address prediction methods
a short period of time [§5.4] (similar to [14, 18, 22]). can help to reduce their response time.
During the storm, the write response time of The transaction size for write cache hits
large transactions, e.g., 128 KiB, is sensitive should be considered to improve overall
to a slight decrease in write cache hit rate [§5.3, §5.4] (N). VDI performance during the storm.

VM
behavior

Although few VMs generate dominant traffic, The VDI can perform sufficiently
their impact is small [§6.3] (different from [6, 9, 17]). by using the uniform load balancing strategy.
Anti-virus and Windows service are major causes These operations are essential, so a novel
of large traffic in idle VMs [§6.2] (similar to [25]). approach is required to control idle VMs.
All active VMs generate only 25% of traffic, but heavy Traffic from active VMs should be more highly
traffic from idle VMs affects their response time [§6.1] (N). prioritized to shorten their response time.

N: new observation. § section index.

based on packet capture [27], and logs from storage,
a VDI broker [12], and Windows Management Instru-
mentation (WMI) [21]. Hereafter, we refer to VMs con-
nected to users as active VMs and VMs disconnected
from them as idle VMs. Our unique datasets give us
an opportunity to validate previous results, like those
of Shamma et al. [25], and our key findings and impli-
cations (see Table 1 for a summary) provide a better
understanding of the VDI system.

Our contributions are summarized below:
1) The traffic characteristics for large-scale VDI are
compared with those for small-scale VDI [25].
2) VM behavior is comprehensively analyzed on the ba-
sis of storage traffic.
3) Our results are compared with those of past storage
analysis studies.
4) A discussion of significant implications for future VDI
and its performance improvement derives from the basis
of our analysis.

The rest of this paper is organized as follows. Section
2 covers related work, and Sections 3 and 4, respectively,
describe the measurements and the target VDI. Sections
5 and 6 present the results of the comprehensive analysis
(FC traffic and VM behavior), and Section 7 discusses
our findings and explains their implications. Section 8
concludes the paper with a brief summary.

2. RELATED WORK
This section gives an overview of previous related

work, including that on the CIFS [16], a small-scale
VDI [25], and personal cloud storages [6, 9, 17], from
the perspectives of FC traffic and VM behavior. Al-
though the applications running on our VDI are simi-
lar, storage characteristics differ from those in previous
work [25]. The previous results were write-heavy in the
input/output operations per second (IOPS) and read-
heavy in throughput (measured in Mbps). The major

cause of write-heavy was a large proportion of meta-
data. In the read traffic, Windows directory was fre-
quently accessed and it generated a large proportion of
read traffic. However, the read traffic is dominant at
both IOPS and throughput in our results due to the
idle VMs. Fundamentally, an update storm on our VDI
differs from the traces [14, 22] of Microsoft Exchange e-
mail server. But, our results show similar burstiness and
spatial observation [18]. Additionally, we clarify how to
affect the write transaction size during the storm. The
periodical daily patterns were similar to those for an of-
fice CIFS [16] and mobile traffic [30] in a business area.

The previous studies focused on the unbalance usage
of cloud storage. Drago et al. [6] presented that a heavy
user group is responsible for 50% of Dropbox sessions
in home networks. Liu et al. [17] showed that the small
number of files accounts for as much as 70% of read re-
quests. Gracia-Tinedo et al. [9] investigated user-level
storage workloads on UbuntuOne. They found the in-
equality of the traffic across active users through Gini
coefficient (0.89). The reason was that 1% of users ac-
count for the 65.6% of the total traffic. In our VDI, we
find few VMs generate dominant traffic. However, Gini
coefficient (0.709) on ours is smaller than UbuntuOne
and 1% of active VMs generate only 16.6% of traffic.
Compared with the studies, the workload is more ho-
mogeneously distributed across VMs on our VDI.

Extensive studies have investigated VM behavior with
storage traffic and workload traces. Birke et al. [4] pre-
sented VM-level storage workloads on enterprise dat-
acenters. Seo et al. [24] modeled I/O trace patterns
with public traces [15]. Narayanan et al. [23] showed
that workloads (such as web searches, content caching
in edge nodes, and datacenter management software)
have more read traffic than write traffic. Zhang et al.
[31] investigated the workload of desktop applications
(e.g. Microsoft Office, Skype, and Google Chrome) on
20 Windows desktops (Windows 7) and found that read



traffic was mainly dominant in the top ones. The ap-
plications are similar to those in our target VDI, and
the traffic pattern is also close to ours. Shamma et al.
[25] introduced the storage workload of VDI, on which
55 VMs were running and that is mainly used for of-
fice work. They found that the anti-virus application
generates many transactions at the peaks in workload.
These findings are similar to ours, and we validate them
on our large-scale VDI. In addition, we separate the
storage traffic into active and idle VMs.

The main difference between our work and Shamma
et al.’s is that we studied the VDI in detail using des-
ignated VMs with various datasets instead of simply
measuring it from a specific viewpoint. Moreover, the
VDI system (300 VMs) is larger than theirs (55 VMs).
Thus, our results reveal the basic but essential storage
traffic characteristics from which we can deeply under-
stand the VDI.

3. METHODOLOGY & DATASETS

3.1 Measurement Methodology
There are three constraints on measuring commercial

real-world VDI. One is that we cannot install monitor-
ing components [25] on a VM or hypervisor. The VDI
is in commercial production use, and it is unclear how
the monitoring components affect the VMs and the en-
tire VDI system. Another is that it is hard to ascer-
tain which VMs are being used because they are always
running. The other is that client contracts prohibit the
management side from logging on to the VMs and in-
specting them and their payload in packets. Thus, the
management side can neither identify which applica-
tions are installed nor which ones are run frequently on
VMs. To investigate the storage traffic characteristics
of VDI, we used the following measurement methods:
VDI monitoring system: This system fetches per-
formance metrics from the storage and VDI servers.
First, we gathered the private storage MIBs for each
LUN. Next, we collected metrics called Windows perfor-
mance counters using WMI [21]. These metrics are as-
sociated with the virtual disks of individual VMs, such
as read/write bytes per second and read/write counts per
second [10]. This dataset was obtained every 30 seconds
as mentioned above.
FC capture system [27]: This system stores the full
payload as binary data and extracts a part of the FC
headers. The packets are copied to a capture server us-
ing port mirroring. We calculated transaction size with
fc.relative offset at an FC header and the response time
as the difference in the time stamps between the first
and last packets in a transaction.
Connection broker [12]: This is used to identify the
active VMs. It provides a login portal to users. Through
the portal, the broker notes which users are currently
active. We calculated the number of active VMs every
30 seconds.

Table 2: Summary of datasets.
Dataset collection term 28 days (2/22-3/20)
Active VMs (Total VMs) 262 (321)
Total connections 10,881
WMI and storage logs size 45.2 GiB
FC trace size 79.8 TiB
Total Read bytes 64.8 TiB (81%)
Total Write bytes 15.0 TiB (19%)
Total Read transactions 2,455,443,072 (73%)
Total Write transactions 898,281,224 (27%)

System profiler [11]: This is used to investigate the
user applications. It provides a daily list of applica-
tions from all VMs. The original list includes Windows
updates and application patches. Because the updates
and patches are of no help in identifying a user’s appli-
cations, we empirically excluded them and categorized
the types of applications. Process Monitor [20] is ex-
cluded in the profiler.
Usage questionnaire: The questionnaire was used to
determine which applications were actually run. Even
if many users install an application, they may not run
it frequently. For instance, Python is installed by many
users, but there is no evidence of its usage. As men-
tioned above, we never logged into the user VMs directly
and could not gather the profiles of executed applica-
tions, so we used the questionnaires to gather informa-
tion about their daily usage.

3.2 Datasets
We gathered the datasets from the various measure-

ment methods for 24 hours each day from Monday 2/22/
2016 00:00 to Monday 3/21/2016 00:00. Table 2 sum-
marizes the various datasets. Read traffic is dominant in
total bytes and transaction counts, although the appli-
cations are similar to those of the small-scale VDI [25].
Because this primary characteristic differs from that in
previous results [25], we will clarify why the read traffic
is dominant in this paper. Again, the previous work [25]
only obtained datasets from a hypervisor. On the other
hand, we obtained various types of logs and were able to
use these datasets to precisely analyze our target VDI
on the basis of not only FC but also VM behavior.

4. VIRTUAL DESKTOP INFRASTRUC-
TURE

4.1 Target VDI
Our target VDI is a part of a VDI system and has

been in production use since April 2013. It consists of
storage, six VDI servers (Windows 2008 R2), 10G Fibre
Channel over Ethernet (FCoE) fabric, and a connection
broker. An overview of the target VDI with the mea-
surement systems is illustrated in Figure 1. Each VDI
server has two physical CPUs and hosts about 50 VMs.



Table 3: Specifications of target VDI system.

VDI server
FUJITSU Server PRIMERGY RX200 S8

CPU CPU Intel E5-2695v2 (2.4 GHz, 12 cores, 30 MiB) × 2
Memory 256 GiB

Block storage
FUJITSU Storage ETERNUS DX90 S2

HDD HDD 8 TB (900 GB SAS × 9, 10krpm) with RAID 6

Virtual Machine

OS Microsoft Windows 7 Enterprise 32bit or 64bit
Logical CPU 2 cores

Memory 4 GB
Disk 100 GB

Network Commodity FCoE 10GbE switch fabric

VDI software Microsoft Windows Server 2008 R2(Hyper-V) + Citrix XenDesktop 5.6

Users on office 

FC capture 
system 

VDI Servers x6 

10G Ethernet 
Backbone 

Fabric 

10G Ethernet 
FCoE fabric 

LAG 

VDI monitoring  
system 

Collect  
WMI count and  
storage MIB  

Capture  
FC frames 

Storage x6 

Port  
mirroring 

Connection 
broker 

Collect 
connection logs 

Figure 1: Target VDI with measurement sys-
tems.

The tag VLAN (1002) with CoS (3) is used to separate
VDI storage traffic on the FCoE fabric. The Xen Desk-
top [12] is only used as the connection broker. The host
OS is Microsoft Windows Server 2008 R2, and the hy-
pervisor is Hyper-V [19], which handles live migration
of user VMs and their disks. In our VDI, the live migra-
tion is manually triggered by management side. Block
storage is applied as a storage system to shorten the
response time. In the storage, write-back for caching is
used to improve the write performance. There is one
LUN on one block storage, and it corresponds to one
VDI server (50 VMs) only. This constraint makes it
impossible to observe file sizes, types, and duplications
at each VM, which is very different from a CIFS or cloud
object storage service. Each component is summarized
in Table 3.

As mentioned before, a designated Windows VM is
provided to each user. It provides pre-installed ap-
plications, such as a mailer (Outlook), Microsoft Of-
fice (Word, PowerPoint, Excel), and anti-virus software
(McAfee). If a user is disconnected from the VM on a
pool-based VDI, a connection broker always allocates a
new VM to the user, and then the user executes his/her
programs again. However, such time-consuming oper-
ations are not required in a designated VM. Moreover,
the user can install desired applications anytime and
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Figure 2: Active users for each day (each line
indicates each day).

execute them freely, similar to ordinary cloud storage.
To clarify the active VMs, we used the connection

logs [5] from the broker. These logs show which users
are connected to their VMs and which are not. In Fig-
ure 2, each line represents the number of active users
of each VM for each day. Unsurprisingly, there are two
types of patterns: weekend and weekday. In the week-
day pattern, there were approximately 50 to 70 active
users from 08:00 to 20:00. On the other hand, there
were few active users on the weekend. Therefore, we
excluded the night and the weekend from our analysis
lists. We also found a similar periodic pattern in the
traffic (the periodicity is described in Section 5.2). Pre-
vious studies [4, 16] also showed a similar pattern. From
the results, we chose the time range from 08:00 to 20:00
for our analysis.

4.2 User Applications
In this section, we mainly focus on what types of ap-

plications were frequently used on the target VDI. We
manually and empirically classified them into nine cate-
gories and visualized them in a treemap. Figure 3 shows
the treemap of applications installed on our target VDI.
The thick-lined rectangles represent the nine categories.
The largest rectangle is the pre-installed software, such
as Microsoft Office and anti-virus. The rectangle for
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Figure 3: Treemap of applications installed on
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Figure 4: Questionnaire results (top three fre-
quently used applications).

programming is also large and includes many types of
applications, probably because several users installed
different types of programming applications. Addition-
ally, the web browser, text editor, and PDF software
are also larger than other applications.

However, a question remains: were the installed ap-
plications actually executed by the users? Since we can-
not access the user VMs directly, we distributed a set
of questionnaires about the daily usage of the VMs and
obtained 90 responses. Figure 4 shows the results for
a question about the three applications the users most
frequently used on their VMs. We learned from the re-
sponses that about 75.6% of users used their desktop
for office work and 31.1% for backup storage only, in
which the users back up their data, such as PowerPoint
and Excel files, and restored them on their local PCs.
The most frequently used applications were Microsoft
Office, the mailer, and the web browser.

5. FC TRAFFIC-BASED ANALYSIS

5.1 Primary traffic characteristics
In this section, we present the primary characteristics

of the FC traffic. To investigate changes in the trans-
action size, we calculated the traffic distribution on the
basis of total counts and bytes. For write transaction
size, the minimum and maximum values were 512 bytes
and 512 KiB. Additionally, the write size distribution
was wider than that in the previous study [26]. The
read size was similar to the write size.

In the total counts, we found that approximately 80%
of write transactions were smaller than 20 KiB. Unsur-
prisingly, we also found that 4 KiB had the largest ratio
(approximately 40―50% of total transactions) in both
read and write transactions, because 4 KiB is a common
block size. In the total bytes, the transactions smaller
than 4 KiB only constituted less than 20%. The ra-
tio of 128 KiB was approximately 10%, but this was
the largest ratio in the total bytes. Interestingly, these
characteristics were similar to those [3, 13] between the
mice and elephant flows in TCP/IP.

5.2 Periodicity of traffic pattern
Here, we analyze the periodicity of traffic patterns.

If there is periodicity, the traffic pattern will be easy to
predict. The prediction results will then help to shorten
the response time and improve cache memory usage.

We investigated the daily distribution of the through-
put of both read and write traffic and found similar re-
sults over the four weeks. Figures 5(a) and 5(b) show
the read and write throughput over the four weeks, re-
spectively. These results are illustrated by storage logs
and cover 08:00 to 20:00 on weekdays only. Thus, 12
hours equals one day. Each day, the throughput was
higher in the morning than in the afternoon on the tar-
get VDI. Moreover, some spikes in read throughput are
found around lunch time at the read. Next, we observed
the throughput peaks at 09:00. The diurnal burstiness
at write throughput is particularly pronounced. The
major causes of the burstiness were update storms on
the entire VDI system. The peak-to-mean ratio in write
throughput is 6.29 and that in read throughput is 2.25.
For each week, we found a strong periodic tendency of
the throughput in both sets of results. At Lag=12 (1
day), the autocorrelation function (ACF) at both read
and write is higher than 0.8. We also found a similar
daily distribution for the IOPS, but these results are
omitted for the sake of brevity.

In summary, there is an obvious periodicity pattern
with three time bins: morning, lunch time, and after-
noon. We will focus on these time bins to analyze the
FC and VM behavior.

5.3 Response time
The response time is an important factor related to

the overall VDI performance. It depends on many fac-
tors, such as cache, access patterns, and network con-
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gestion. Typically, the recommended threshold of the
response time is approximately 20 or 30 ms [29]. If the
response time exceeds the threshold, the users experi-
ence a delayed response.

We can measure the response time of read/write trans-
actions using the FC traces. Approximately 3.67% of
the read was larger than 20 ms, while approximately
0.234% of the write was larger than the threshold. Th-
rough this analysis, we unfortunately were unable to
find significant characteristics that contribute to the
VDI storage traffic. Alternatively, we focused on the
increased response time when the values are larger than
the threshold in the morning (09:00), lunch time (12:00),
and afternoon (16:00) time bins. As mentioned be-
fore, there was an update storm in the morning and
the largest write throughput achieved in the morning.
The CDF of the write response exceeding the threshold
is shown in Figure 6. The CDF shape in the morning
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Figure 7: CDF of write transaction sizes.

is different from the other bins. Moreover, 1.5% of the
response time exceeded the threshold, and this was also
higher than the entire ratio for the write (0.234%).

Since the write response time in the morning had dif-
ferent characteristics, we next ask: what are the write
sizes distributed over the threshold? Figure 7 shows the
CDF shape of write sizes for the time bins. In the to-
tal traces (Figure 7(a)), 4 KiB unsurprisingly has the
largest proportion (approximately 50%). However, the
CDF shape at 09:00 differs from those in the other time
bins. In addition, 128 KiB has a larger proportion than
the other sizes, such as 32 KiB. Next, the sizes over
the threshold were extracted from the total traces. The
CDF is shown in Figure 7(b). The CDF shapes in the
other time bins are similar to those in the total traces.
Meanwhile, 4 KiB greatly decreased from 50% to 12%
in the morning. In particular, 128 KiB had the largest
proportion (65%). Interestingly, this characteristic was
only observed in the morning. Thus, the large writes
were strongly affected in the morning. We will identify
the major cause of the increased response time with the
large writes in the morning in the next section.

5.4 Update storm (Burstiness)
In this section, we investigate the cause of the in-

creased response time and its impact. As mentioned in
Section 4.1, McAfee is mainly used for anti-virus soft-
ware, and the cause of the increased response time is
its regular update. This update proceeds as follows.
First, a McAfee agent is connected to an internal up-
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date server for a short period (09:05–09:20). The agent
collects security events and reports them to the update
server. Then it searches for the latest update patch
(there are two types of patch, DAT and compressed
DAT). Finally, the agent downloads the patch and in-
stalls it in the VM. The update is very simple but, be-
cause it is simultaneously executed by hundreds of VMs,
it acts as an update storm.

During the update storms, the throughput of both
read and write traffic increased dramatically to 6 or 7
Gbps. To clarify the detailed characteristics of a storm,
we selected a representative LUN containing 47 VMs.
All VMs in the LUN were related to this update storm.
Again, there was only one LUN at one block storage.
First, we calculated the read/write percentages for both
the IOPS and throughput. In the storm, write traffic
was dominant at both IOPS and throughput. In the
IOPS, it was 57%, while the read was 43%. Similarly,
write accounted for 68% of throughput, while read ac-
counted for 32%. The characteristics will help in repro-
ducing the storm using storage benchmarks [1, 2, 8].
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To clarify the other characteristics, such as storage
cache hits and response time, we focused on the tempo-
ral distribution from the storage logs every 30 seconds.
The cache hits and mean response time are shown in
Figures 8(a) and 8(b). Although the write cache hit
rate is normally close to approximately 100%, it dra-
matically decreases to 40% during the storm. When the
cache hit rate is slightly decreased, the response time is
largely increased. The maximum mean response time is
about 45 ms, which exceeds the threshold of response
time (20 ms). Thus, the cache hit rate and the response
time are found to negatively correlate. Next, the read
cache hit rate is always lower than the write cache hit
rate regardless of the storm. After the storm, the read
response time is lower than the threshold. Additionally,
the read cache hit rate widely fluctuated from 18% to
90% in the different time bins.

Normally, write-back cache can help to reduce the re-
sponse time if there is enough cache memory. Again,
write-back for write caching was applied in the target
VDI. However, the memory was obviously not suffi-
cient to accommodate all write transactions when many
write transactions were aggressively generated during
the storm. When there was a lack of cache memory
with respect to the volume of write traffic, the large
writes were much more affected than the small ones.
As a result, their response time was greatly increased.

Because we cannot accurately observe the spatial dis-
tribution of an access pattern from the storage logs, we
used the FC traces. Through the traces, we can identify
the access patterns of the transaction in the LUN. The
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Figure 11: Aggregate throughput of active and
idle VMs.
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Figure 12: Read-heavy applications running on
idle VM.

spatial distribution every 10 seconds during the storm
is shown in Figure 9. If the read/write transactions
are larger than threshold, we plotted a point in LBA
unit (1 GiB). Many similar logical addresses were si-
multaneously accessed during a large number of write
transactions, while the number of the read transactions
was decreased because of the impact of the write trans-
actions.

During the update storm, most VMs were forcedly
frozen, so the user cannot execute any programs. The
cause of decreased reads was that neither the active nor
idle VMs can execute background processes or generate
read operations. To mitigate the effects of the update
storms, we analyzed the behavior of updates and dis-
persed the update schedule of VMs between 07:00 and
09:00. Since the updates were dispersed, the storm was
mitigated on the target VDI.

6. CHARACTERIZING VM BEHAVIOR

6.1 VM-level storage traffic
In this section, we quantitatively analyze the VM be-

havior in detail. For the analysis, we basically used
the WMI logs in the VDI servers. VM-level traffic on
one day (2/22/2016) is illustrated in Figures 10(a) and
10(b). Continuous small write traffic (light gray color)
is observed, while burst read traffic (deep black color)
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occurs. We assume that such small traffic at the VMs
would be generated for timestamping logs. Again, we
cannot observe the packet payload due to the contracts.
Next, the VM-level traffic widely fluctuates and de-
pends both on time and the VMs. For example, massive
traffic was intensively generated during the 09:00 time
bin due to the update storm. Moreover, we can observe
that some VMs have consecutive traffic generated over
several hours. Such VMs can affect the performance of
an entire VDI system. The write also showed similar
characteristics.

We classified the VM-level traffic into that generated
by active VMs (connected to users) and that gener-
ated by idle VMs (not connected to users) over the four
weeks in Figure 11. The traffic of active VMs contains
the foreground processes of users. It may affect their
QoE. This figure indicates that the active VMs issue
less traffic than the idle ones. The active VMs issued
24.5% (read 21.2%, write 39.1%) of total traffic. Thus,
the traffic issued by the idle VMs accounted for 75.5%
of total traffic. To improve the QoE of active users,
it may be important to automatically distinguish and
suppress the background traffic on a hypervisor, virtual
switch, and switch fabric.

6.2 Idle VM behavior
To reveal why the idle VMs generate large traffic, we

investigated the I/O of the individual processes on an
idle VM by using Process Monitor [20]. Process Mon-
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Figure 15: Lorenz curves of total workload for each VM
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Figure 16: CDF for distribution of total workload on each VM

itor was only used in this measurement, and a remote
CIFS disk was used to avoid overheads on the block
storage. We deployed six idle VMs that have no post-
installed programs or artificial overheads for about 24
hours. In the measurement, the storm was removed to
disperse the update schedule and make the idle VMs
behave similarly.

We selected a representative idle VM to introduce
the result. In the idle VM, read traffic (93% [13.2
GiB]) was dominant in comparison with write traffic
(7% [0.9 GiB]). This read ratio was higher than that in
the dataset (Table 2). Figures 12 and 13 summarize the
results for several read/write heavy applications. The
traffic is mainly generated by the top three applications:
anti-virus, system profiling [11], and Windows service.
Windows service corresponds to a common Windows
process called svchost.exe. This process manages multi-
ple Windows daemon processes. The top three applica-
tions showed similar characteristics, and our results are
also similar to those in previous work [25].

6.3 Traffic distribution across active VMs
In this section, we analyze the distribution of the

VM-level traffic across the active VMs. We characterize
the VMs that generated dominant traffic (we call them
heavy VMs) through statistical analysis.

We calculated the Gini coefficients [7] (Figure 14) of
traffic for each hourly time bin to reveal the existence of
the heavy VMs. A low Gini coefficient means that the
VM-level traffic is homogeneous, and a high one means a

few heavy VMs generate the majority of overall traffic.
We found the lowest Gini (0.377) from 09:00 through
10:00 because of the update on almost all VMs. On the
other hand, the largest Gini (0.709) was in the traffic
from 12:00 through 13:00. A major reason for this was
the virus scans scheduled by some VMs during lunch
time, which generates the many reads toward the virtual
disks. Lastly, the afternoon has similar Gini coefficients.
The results indicate the ordinary usage of VDI.

Through the Gini coefficient, we can also categorize
three time-bin patterns: morning, lunch time, and af-
ternoon. We plotted the corresponding Lorenz curve
and CDF in Figures 15 and 16, where the three rep-
resentative time bins are morning (09:00), lunch time
(12:00), and afternoon (16:00). We reconfirmed from
these results that 1) the traffic in the morning time bin
has a narrow deviation across VMs because all VMs
generated larger traffic (virus updates) and that 2) the
read traffic during lunch has a wider deviation across
VMs because about 10% of VMs generated large read
traffic. In the Lorenz curve, the write in the morning
is lower than in the other time bins. This means the
morning has a more uniform distribution than the oth-
ers. In contrast, the coefficient at lunch time is higher
than the others. Thus, lunch time has a more unequal
distribution than the others. Although some VMs con-
tinuously generated more traffic than the others, the
Gini coefficients are smaller than in the previous results
(0.89) [9]. Moreover, 1% of active VMs at lunch time
generate only 16.6% of traffic. Although there are heavy



VMs at lunch time, their impact is not as large as in
previous studies [6, 9, 17]. In conclusion, these results
differ from those in previous studies [6, 9, 17], and the
VM-level traffic is relatively homogeneous across VMs.

7. DISCUSSION
In this paper, we focus on deepening our understand-

ing of the nature of storage traffic by presenting mea-
surements and analyses of enterprise VDI. We believe
that the results of our study will be useful for both aca-
demics and practitioners. Below, we discuss some im-
plications and opportunities for improvement that can
be obtained from our findings.

The implications derived from the FC-based analysis
are summarized as follows. First, a short time interval
is required to observe the burstiness accurately. During
an update storm, many transactions were rapidly gen-
erated in a short time period. Ordinary measurement
methods cannot catch the precise behavior of the storm.
Second, a method for predicting block addresses can
help to shorten the response time. During the storm,
similar block addresses for each VM were accessed in a
short time period. Third, cache and address block man-
agement at storage should be enhanced to handle the
dominant read traffic. Lastly, the write response time
was seriously affected by their cache misses during the
storm. In particular, the large transactions, such as 128
KiB, significantly suffered. As a result, the entire VDI
performance drastically decreased. The write transac-
tion size for cache hits should be considered to improve
the overall VDI performance.

The implications derived from the VM behavior are
summarized as follows. First, the active VMs may be af-
fected by the workload generated by the idle VMs. Dur-
ing an update storm, VM-level traffic was homogeneous
and the entire response time was largely increased. Giv-
ing higher priority to the active VMs can improve their
response time. In addition, the periodical traffic at the
idle VMs can be reduced by the hypervisor. Second,
the anti-virus was a dominant workload in idle VMs.
It could be excluded from the active VM workload. It
should also be carefully managed to improve disk per-
formance. Finally, the storage traffic across VMs was
relatively small. At the largest Gini coefficient, 1% of
active VMs generated only 16.6% of traffic. We suggest
that the uniform load balancing strategy for all VMs is
sufficient and that no specific strategies for heavy VMs
are required for office VDI.

8. CONCLUSION
In this paper, we focused on understanding the nature

of storage traffic by extensively analyzing enterprise vir-
tual desktop infrastructure (VDI) using designated vir-
tual machines (VMs). The storage traffic characteris-
tics were reported from two aspects: fibre channel (FC)
analysis and VM behavior. Some of our findings differed
from those in related studies, while others enabled us to

validate those for small-scale VDI systems and from dif-
ferent perspectives. Our analysis and implications pro-
vide a deep and comprehensive understanding of storage
traffic characteristics, which will be useful for designing
future VDI and improving its performance.

In future work, we intend to analyze the character-
istics of user application workloads on the active VMs.
We will also investigate the storage traffic characteris-
tics on pool-based VDI.
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