usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Octopus: an RDMA-enabled Distributed
Persistent Memory File System

Youyou Lu, Jiwu Shu, and Youmin Chen, Tsinghua University; Tao Li, University of Florida

https://www.usenix.org/conference/atc17/technical-sessions/presentation/Iu

This paper is included in the Proceedings of the

2017 USENIX Annual Technical Conference (USENIX ATC '17).
July 12-14, 2017 - Santa Clara, CA, USA
ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference
is sponsored by USENIX.

Octopus: an RDMA -enabled Distributed Persistent Memory File System

Youyou Lu Jiwu Shu* Youmin Chen
Tsinghua University Tsinghua University Tsinghua University
Tao Li
University of Florida

Abstract

Non-volatile memory (NVM) and remote direct memory
access (RDMA) provide extremely high performance
in storage and network hardware. However, existing
distributed file systems strictly isolate file system and
network layers, and the heavy layered software de-
signs leave high-speed hardware under-exploited. In
this paper, we propose an RDMA-enabled distributed
persistent memory file system, Octopus, to redesign file
system internal mechanisms by closely coupling NVM
and RDMA features. For data operations, Octopus
directly accesses a shared persistent memory pool to
reduce memory copying overhead, and actively fetches
and pushes data all in clients to re-balance the load be-
tween the server and network. For metadata operations,
Octopus introduces self-identified RPC for immediate
notification between file systems and networking, and
an efficient distributed transaction mechanism for con-
sistency. Evaluations show that Octopus achieves nearly
the raw bandwidth for large I/Os and orders of magnitude
better performance than existing distributed file systems.

1 Introduction

The in-memory storage and computing paradigm
emerges as both HPC and big data communities are
demanding extremely high performance in data storage
and processing. Recent in-memory storage systems,
including both database systems (e.g., SAP HANA [8])
and file systems (e.g., Alluxio [23]), have been used
to achieve high data processing performance. With
the emerging non-volatile memory (NVM) technologies,
such as phase change memory (PCM) [34, 21, 46],
resistive RAM (ReRAM), and 3D XPoint [7], data can be
stored persistently in main memory level, i.e., persistent
memory. New local file systems, including BPFS [11],
SCMFS [42], PMFS [14], and HiNFS [32], are built

*Jiwu Shu is the corresponding author.

recently to exploit the byte-addressability or persistence
advantages of non-volatile memories. Their promising
results have shown potentials of NVMs in high perfor-
mance of both data storage and processing.

Meanwhile, the remote direct memory access
(RDMA) technology brings extremely low latency and
high bandwidth to the networking. We have measured an
average latency and bandwidth of 0.9us and 6.35GB/s
with a 56 Gbps InfiniBand switch, compared to 75us and
118MB/s with Gigabit Ethernet (GigaE). RDMA has
greatly improved data center communications or RPCs
in recent studies [13, 37, 19, 20].

Distributed file systems are trying to support RDMA
networks for high performance, but mostly by substi-
tuting the communication module with an RDMA li-
brary. CephFS supports RDMA by using Accelio [2],
an RDMA-based asynchronous RPC middleware. Glus-
terFS implements its own RDMA library for data com-
munication [1]. NVEFES [16] is a HDFS variant that is
optimized with NVM and RDMA. And, Crail [9], a
recent distributed file system from IBM, is built on the
RDMA-optimized RPC library, DaRPC [37]. However,
these file systems strictly isolate file system and network
layers, by only replacing their data management and
communication modules without refactoring the internal
file system mechanisms. This layered and heavy soft-
ware design prevents file systems from exploiting the
hardware benefits. As we observed, GlusterFS has its
software latency that accounts for nearly 100% on NVM
and RDMA, while it is only 2% on disk. Similarly, it
achieves only 15% of raw InfiniBand bandwidth, com-
pared to 70% of the GigaE bandwidth. In conclusion,
the strict isolation between the file system and network
layers makes distributed file systems too heavy to exploit
the benefits of emerging high-speed hardware.

In this paper, we revisit both data and metadata mech-
anism designs of the distributed file system by taking
NVM and RDMA features into consideration. We pro-
pose an efficient distributed persistent memory file sys-

USENIX Association

2017 USENIX Annual Technical Conference 773

tem, Octopus!, to effectively exploit the benefits of high-
speed hardware. Octopus avoids the strict isolation of file
system and network layers, and redesigns the file system
internal mechanisms by closely coupling with NVM and
RDMA features. For the data management, Octopus
directly accesses a shared persistent memory pool by
exporting NVM to a global space, avoiding stacking a
distributed file system layer on local file systems, to
eliminate redundant memory copies. It also rebalances
the server and network loads, and revises the data I/O
flows to offload loads from servers to clients in a client-
active way for higher throughput. For the metadata
management, Octopus introduces a self-identified RPC
which carries sender’s identifier with the RDMA write
primitive for low-latency notification. In addition, it
proposes a new distributed transaction mechanism by
incorporating RDMA write and atomic primitives. As
such, Octopus efficiently incorporates RDMA into file
system designs that effectively exploit hardware benefits.
Our major contributions are summarized as follows.

e We propose novel I/O flows based on RDMA for
Octopus, which directly accesses a shared persistent
memory pool without stacked file system layers,
and actively fetches or pushes data in clients to
rebalance server and network loads.

e We redesign metadata mechanisms leveraging
RDMA primitives, including self-identified meta-
data RPC for low-latency notification, and a collect-
dispatch distributed transaction for low-overhead
consistency.

e We implement and evaluate Octopus. Experimental
results show that Octopus effectively explores the
raw hardware performance, and significantly out-
performs existing RDMA-optimized distributed file
systems.

2 Background and Motivation

2.1 Non-volatile Memory and RDMA

Non-Volatile Memory. Byte-addressable non-volatile
memory (NVM) technologies, including PCM [34, 21,
46], ReRAM, Memristor [36], are being intensively stud-
ied in recent years. Intel and Micron have announced
the 3D XPoint technology which is expected to be in
product in the near future [7]. These NVMs have ac-
cess latencies close to that of DRAM, while providing
data persistence as hard disks. In addition, NVMs are
expected to have better scalability than DRAM [34, 21].
Therefore, NVMs are promising candidates for storing
data persistently at the main memory level.

't is called Octopus because the file system performs remote direct
memory access just like a Octopus uses its eight legs.

Remote Direct Memory Access. Remote Direct
Memory Access (RDMA) enables low-latency network
access by directly accessing memory from remote
servers. It bypasses the operating system and supports
zero-copy networking, and thus achieves high bandwidth
and low latency in network accesses. There are two kinds
of commands in RDMA for remote memory access:

(1) Message Semantics, with typical RDMA send
and recv verbs for message passing, are similar to socket
programming. Before sending an RDMA send request
at the client side, an RDMA recv needs to be posted at
the server side with an attached address indicating where
to store the coming message.

(2) Memory Semantics, with typical RDMA read
and write verbs, use a new data communication model
(i.e., one-sided) in RDMA. In memory semantics, the
memory address in remote server where the message will
be stored is assigned at the sender side. This removes
the CPU involvement of remote servers. The memory
semantics provide relatively higher bandwidth and lower
latency than the message semantics.

In addition, RDMA provides other verbs, in-
cluding atomic verbs like compare_and swap and
fetch_and_add that enable atomic memory access of
remote servers.

2.2 Software Challenges on Emerging
High-Speed Hardware

In a storage system equipped with NVMs and RDMA en-
abled network, the hardware provides extremely higher
performance than traditional media like hard disks and
Gigabit Ethernet. Comparatively, overheads of the soft-
ware layer, which are negligible compared to slow disk
and Ethernet, now account for a significant part in the
whole system.

Latency. To understand the latency overhead of ex-
isting distributed file systems, we perform synchronous
1KB write operations on GlusterFS, and collect latencies
respectively in the storage, network, and software parts.
The latencies are averaged with 100 synchronous writes.
Figure 1(a) shows the latency breakdown of GlusterFS
on disk (denoted as diskGluster) and memory (denoted
as memGluster). To improve efficiency of GlusterFS on
memory, we run memGluster on EXT4-DAX [4], which
is optimized for NVM by bypassing the page cache and
reducing memory copies. In diskGluster, the storage
latency consumes the most part, nearly 98% of the total
latency. In memGluster, the storage latency percentage
drops dramatically to nearly zero. In comparison, the
file system software latency becomes the dominate part,
almost 100%. Similar trends have also been observed
in previous studies in local storage systems [38]. While
most distributed file systems stack the distributed data

774 2017 USENIX Annual Technical Conference

USENIX Association

StorangINetworH:ISoftwar% V7 1storagd——Network__JFile System

0/\
g (%) 18 ms 324 us 0 7

[N

o

o
-

83MB/s

@
o

Latency Breakdow
P2
o O

100 %

323MB/s

Normalized Bandwid
2
T

N
o o
©
=)

diskGlusterFS memGlusterFS diskGlusterFS memGlusterFS
(a) (b)
Figure 1: Software Overhead

management layer on another local file system (a.k.a,
stacked file system layers), they face more serious soft-
ware overhead than local storage systems.

Bandwidth. We also measure the maximum band-
width of GlusterFS to understand the software overhead
in terms of bandwidth. In the evaluation, we perform
IMB write requests to a single GlusterFS server repeat-
edly to get the average write bandwidth of GlusterFS.
Figure 1(b) shows the GlusterFS write bandwidth against
the storage and network bandwidths. In diskGluster,
GlusterFS achieves a bandwidth that is 93.6% of raw
disk bandwidth and 70.3% of raw Gigabit Ethernet band-
width. In memGluster, GlusterFS’s bandwidth is only
14.7% of raw memory bandwidth and 15.1% of raw In-
finiBand bandwidth. Existing file systems are inefficient
in exploiting the high bandwidth of new hardware.

We find that there are four mechanisms that contribute
to this inefficiency in existing distributed file systems.
First, data are copied multiple times in multiple places in
memory, including user buffer, file system page cache,
and network buffer. While this design is feasible for file
systems that are built for slow disks and networks, it has
a significant impact on system performance with high-
speed hardware. Second, when networking is getting
faster, the CPU at server side can be easily the bottleneck
when processing requests from a lot of clients. Third,
traditional RPC that is based on the event-driven model
has relatively high notification latency when hardware
provides low latency communication. Fourth, distributed
file systems have huge consistency overhead in dis-
tributed transactions, owing to multiple network round-
trips and complex processing logic.

As such, we propose to design an efficient distributed
memory file system for high-speed network and memory
hardware, by revisiting the internal mechanisms in both
data and metadata management.

3 Octopus Design

To effectively explore the benefits of raw hardware
performance, Octopus closely couples RDMA with file
system mechanism designs. Both data and metadata

mechanisms are reconsidered:
e High-Throughput Data I/O, to achieve high
I/0 bandwidth by reducing memory copies with

1. Server; = hash(“/home/a”).

CLIENTL .

1. Serverp, = hash(“/home/b”).

CLIENT2
A
P | Create(“/home/a”). P| Read(“/home/b”).
5. Return result. 141 Return file address.
3. Start Tx. 3. Lookup.| | 15 RDMA READ.
4. Collect, A 4
) Dispatch. [[)
metadata metadata
e -——— -———- -
I data =
- ——_ 1 __ -
H : . H
RDMA 1 IromA 1 I RDMA L
Server; Server; Server, Servery

| _ IShared Persistent Memory Pool [JjShared NvM []Private NVM

Figure 2: Octopus Architecture

a Shared Persistent Memory Pool, and improve
throughput of small I/Os using Client-Active 1/Os.

o Low-Latency Metadata Access, to provide a low-
latency and scalable metadata RPC with Self-
Identified RPC, and decrease consistency overhead
using the Collect-Dispatch Transaction.

3.1 Overview

Octopus is built for a cluster of servers that are equipped
with non-volatile memory and RDMA-enabled net-
works. Octopus consists of two parts: clients and data
servers. Octopus has no centralized metadata server,
and the metadata service is distributed to different data
servers. In Octopus, files are distributed to data servers
in a hash-based way, as shown in Figure 2. A file has
its metadata and data blocks in the same data server. But
its parent directory and its siblings may be distributed
to other servers. Note that the hash-based distribution
of file or data blocks is not a design focus of this paper.
Hash-based distribution may lead to difficulties in wear
leveling issue in non-volatile memory, and we leave this
problem for future work. Instead, we aim to discuss
novel metadata and data mechanism designs that are
enabled by RDMA in this paper.

In each server, the data area is exported and shared in
the whole cluster for remote direct data accesses, while
the metadata area is kept private for consistency reasons.
Figure 3 shows the data layout of each server, which
is organized into six zones: (1) Super Block to keep
the metadata of the file system. (2) Message Pool for
the metadata RPC for temporary message storage when
exchanging messages. (3) Metadata Index Zone using a
chained hash table to index the file or directory metadata
nodes in the metadata zone. Each entry in the chained
hash table contains name, i_addr, and 1ist_ptr fields,
which respectively represent the name of the file, the
physical address of the file’s inode, and the pointer to
link the metadata index for the files that has a same
hash value. A file hashes its name and locates its
metadata index to fetch its inode address. (4) Metadata
Zone to keep the file or directory metadata nodes (i.e.,
inode), each of which consumes 256 bytes. With the

USENIX Association

2017 USENIX Annual Technical Conference 775

— — — — —_——— e — — — —p— — — — — — — >
Super | Message | Metadata ' Metadata Zone ' Data Zone } Log |
Block ! Pool ! Index zone ! ! 1zone!

7| [bucket Joucket Joucket] I:l I:l
@ @
C—|[rame 5 s El e
i_addr S <
|l F — (] [
[Jerivate nvm Shared NVM

Figure 3: Data Layout in a Octopus Node

inode, Octopus locates the data blocks in the data zone.
(5) Data Zone to keep data blocks, including directory
entry blocks and file data blocks. (6) Log Zone for
transaction log blocks to ensure file system consistency.

While a data server keeps metadata and data respec-
tively in the private and shared area, Octopus accesses
the two areas remotely in different ways. For the private
metadata accesses, Octopus uses optimized remote pro-
cedure calls (RPC) as in existing distributed file systems.
For the shared data accesses, Octopus directly reads or
writes data objects remotely using RDMA primitives.

With the use of RDMA, Octopus removes duplicated
memory copies between file system images and memory
buffers by introducing the Shared Persistent Memory
Pool (shared pool for brevity). This shared pool is
formed with exported data areas from each data server
in the whole cluster (in Section 3.2.1). In current
implementation, the memory pool is initialized using
a static XML configuration file, which stores the pool
size and the cluster information. Octopus also redesigns
the read/write flows by sacrificing network round-trips
to amortize server loads using Client-Active I/Os (in
Section 3.2.2).

For metadata mechanisms, Octopus leverages RDMA
write primitives to design a low-latency and scalable
RPC for metadata operations (in Section 3.3.1). It also
redesigns the distributed transaction to reduce the consis-
tency overhead, by collecting data from remote servers
for local logging and then dispatching them to remote
sides (in Section 3.3.2).

3.2 High-Throughput Data 1/0

Octopus introduces a shared persistent memory pool to
reduce data copies for higher bandwidth, and actively
performs I/Os in clients to rebalance server and network
overheads for higher throughput.

3.2.1 Shared Persistent Memory Pool

In a system with extremely fast NVM and RDMA,
memory copies account for a large portion of overhead
in an I/O request. In existing distributed file systems,
a distributed file system is commonly layered on top of
local file systems. For a read or write request, a data
object is duplicated to multiple locations in memory,
such as kernel buffer (mbuf in TCP/IP stack), user buffer
(for storing distributed data objects as local files), kernel

Client Server

| User Space Buffer | | User Space Buffer |

T 4 H 4
L 2 L
message | mbuf | | mbuf | message | page
pool pool cache
.1 '
L I
PoNc T ne 4] Fsimage |
[— o ___ I 8
<--- GlusterFS Crail — Octopus

Figure 4: Data Copies in a Remote I/O Request

page cache (for local file system cache), and file system
image in persistent memory (for file storage in a local
file system in NVM). As the GlusterFS example shown
in Figure 4, a remote I/O request requires the fetched data
to be copied seven times including in memory and NIC
(network interface controller) for final access.

Recent local persistent file systems (like PMFS [14]
and EXT4-DAX [4]) directly access persistent memory
storage without going through kernel page cache, but it
does not solve problems in the distributed file systems
cases. With direct access of these persistent memory file
systems, only page cache is bypassed, and a distributed
file system still requires data to be copied six times.

Octopus introduces the shared persistent memory pool
by exporting the data area of the file system image in
each server for sharing. The shared pool design not only
removes the stacked file system design, but also enables
direct remote access to file system images without any
caching. Octopus directly manages data distribution and
layout of each server, and does not rely on a local file
system. Direct data management without stacking file
systems is also taken in Crail [9], a recent RDMA-aware
distributed file system built from scratch. Compared to
stacked file system designs like GlusterFS, data copies in
Octopus and Crail do not need to go through user space
buffer in the server side, as shown in Figure 4.

Octopus also provides a global view of data layout
with the shared pool enabled by RDMA. In a data server
in Octopus, the data area in the non-volatile memory is
registered with ibv_reg_mr when the data server joins,
which allows the remote direct access to file system
images. Hence, Octopus removes the use of a message
pool or a mbuf in the server side, which are used for
preparing file system data for network transfers. As
such, Octopus requires data to be copied only four times
for a remote I/O request, as shown in Figure 4. By
reducing memory copies in non-volatile memories, data
I/O performance is significantly improved, especially for
large 1/Os that incur fewer metadata operations.

3.2.2 Client-Active Data I/0

For data I/0, it is common to complete a request within
one network round-trip. Figure 5(a) shows a read exam-
ple. The client issues a read request to the server, and
the server prepares data and sends it back to the client.

776 2017 USENIX Annual Technical Conference

USENIX Association

Client 1 Client 2 Client 3 Server

NIC CPU MEM
IS Rdad “/homfe/a”

Client 1 Client 2 Client 3 Server
NIC CPU MEM

4 Repd “/hom¢/a” _—

- Read “

I
I
I
I
|
ad “/horhejc’
H
'
I
I
'
|
1
i

D Lookup file data. -Send address.

(b) Client-Active Data I/O

D Lookup file data. - Send data.

(a) Server-Active Data 1/0

Figure 5: Comparison of Server-Active and Client-
Active Modes

Similarly, a write request can also complete with one
round-trip. This is called Server-Active Mode. While
this mode works well for slow Ethernet, we find that
the server is always in high utilization and becomes a
bottleneck when new hardware is equipped.

In remote I/Os, the throughput is bounded by the lower
one between the network and server throughput. In our
cluster, we achieve 5 million network IOPS for 1KB
writes, but have to spend around 2us (i.e., 0.5 million) for
data locating even without data processing. The server
processing capacity becomes the bottleneck for small
I/0Os when RDMA is equipped.

In Octopus, we propose client-active mode to improve
server throughput by sacrificing the network perfor-
mance when performing small size I/Os. As shown in
Figure 5(b), in the first step, a client in Octopus sends a
read or write request to the server. In the second step, the
server sends back the metadata information to the client.
Both the two steps are executed for metadata exchange
using the self-identified metadata RPC which will be
discussed next. In the third step, the client reads or
writes file data with the returned metadata information,
and directly accesses data using RDMA read and write
commands. Since RDMA read and write are one-sided
operations, which access remote data without participa-
tion of CPUs in remote servers, the server in Octopus has
higher processing capacity. By doing so, a rebalance is
made between the server and network overheads. With
introduced limited round-trips, server load is offloaded
to clients, resulting in higher throughput for concurrent
requests.

Besides, Octopus uses the per-file read-write lock to
serialize the concurrent RDMA-based data accesses. The
lock service is based on a combination of GCC (GNU
Compiler Collection) and RDMA atomic primitives. To
read or write file data, the locking operation is executed
by the server locally using GCC atomic instructions. The
unlock operation is executed remotely by the client with
RDMA atomic verbs after data I/Os. Note that seri-

alizability between GCC and RDMA atomic primitives
is not guaranteed due to lack of atomicity between the
CPU and the NIC [10, 41, 19]. In Octopus, GCC and
RDMA atomic instructions are respectively used in the
locking and unlocking phases. This isolation prevents
the competition between the CPU and the NIC, and thus
ensures correctness of parallel accesses.

3.3 Low-Latency Metadata Access

RDMA provides microsecond level access latencies for
remote data access. To explore this benefit in the file
system level, Octopus refactors the metadata RPC and
distributed transaction by incorporating RDMA write
and atomic primitives.

3.3.1 Self-Identified Metadata RPC

RPCs are used in Octopus for metadata operations. Both
message and memory semantic commands can be uti-
lized to implement RPCs.

(1) Message-based RPC. In the message-based RPC,
arecv request is firstly assigned with a memory address,
and then initialized in the remote side before the send
request. Each time an RDMA send arrives, an RDMA
recv is consumed. Message-base RPC has relatively
high latency and low throughput. send/recv in UD
(Unreliable Datagram) mode provides higher through-
put [20], but is not suitable for distributed file systems
due to its unreliable connections.

(2) Memory-based RPC. RDMA read/write have
lower latency than send/recv. Unfortunately, these
commands are one-sided, and remote server is unin-
volved. To timely process these requests, the server side
needs to scan the message buffers repeatedly to discover
new requests. This causes high CPU overhead. Even
worse, when the number of clients increased, the server
side needs to scan more message buffers, and this in turn
increases the processing latency.

To gain benefits of both sides, we propose the self-
identified metadata RPC. Self-identified metadata RPC
attaches the sender’s identifier with the RDMA write
request using the RDMA write with_imm command.
write_with_imm is different from RDMA write in two
aspects: (1) it is able to carry an immediate field in the
message, and (2) it notifies remote side immediately,
but RDMA write does not. With the first difference,
we attach the client’s identifier in the immediate data
field including both a node_id and an offset of the
client’s receive buffer. For the second difference, RDMA
write_with_imm consumes one receive request from the
remote queue pair (QP), and thus gets immediately pro-
cessing after the request arrives. The identifier attached
in the immediate field helps the server to direct locate the
new message without scanning the whole buffer. After

USENIX Association

2017 USENIX Annual Technical Conference 777

Coordinator Coordinator

[[LogBegn] ___.-»
Pr,/"dP-REQ

Participant Participant

-~~GOLLECT-REQ

¥] ¥ i Local Lock

Local Lock |} Local Lock |} Local Lock

[togBegn] i [LogBegn] | Collect
Transaction |! Transaction |! - WriteSet
Execution |} Execution |} WﬁIT;E SeT

["Log Context | | ["Log Context | |

[Log Commit/] | [Log Commil/] '

Abort ' Abort !

Local
Transaction
Execution

ELog Context]

VOTE—VE§{NQ_

=
REMOTE UNLOCK

[Lag Commlt/]
Abort

Distributed Log
(b)

Collect-Dispatch Approach

C J

Local Log

(a) Traditional 2PC Approach
Figure 6: Distributed Transaction

processing, the server uses RDMA write to return data
back to the specified address of offset in the client of
node_id. Compared to buffer scanning, this immediate
notification dramatically lowers down the CPU overhead
when there are a lot of client requests. As such, the self-
identified metadata RPC provides low-latency and scal-
able RPCs than send/recv and read/write approaches.

3.3.2 Collect-Dispatch Transaction

A single file system operation, like mkdir, mknod, rmnod
and rmdir in Octopus, performs updates to multiple
servers. Distributed transactions are needed to provide
concurrency control for simultaneous requests and crash
consistency for the atomicity of updates across servers.
The two-phase commit (2PC) protocol is usually used to
ensure consistency. However, 2PC incurs high overhead
due to its distributed logging and coordination for both
locks and log persistence. As shown in Figure 6(a),
both locking and logging are required in coordinator
and participants, and complex network round-trips are
needed for negotiation for log persistence ordering.
Octopus designs a new distributed transaction protocol
named Collect-Dispatch Transaction leveraging RDMA
primitives. The key idea lies in two aspects, respectively
in crash consistency and concurrency control. One is
local logging with remote in-place update for crash
consistency. As shown in Figure 6(b), in collect phase,
Octopus collects the read and write sets from partici-
pants, and performs local transaction execution and local
logging in the coordinator. Since participants do not need
to keep logging, there is no need for complex negotiation
for log persistence between coordinator and participants,
thereby reducing protocol overheads. For the dispatch
phase, the coordinator spreads the updated write set

to the participants using RDMA write and releases
the corresponding lock with RDMA atomic primitives,
without the involvements of the participants.

The other is a combination of GCC and RDMA
locking for concurrency control, which is the same as
the lock design in the data I/Os in Section 3.2.2. In
collect-dispatch transactions, locks are added locally
using the GCC compare_and_swap command in both
coordinator and participants. For the unlock operations,
the coordinator releases the local lock using the GCC
compare_and_swap command but the remote lock in
each participant using the RDMA compare_and_swap
command. The RDMA unlock operations do not involve
the CPU processing of participants, and thus simplify the
unlock phase.

As a whole, collect-dispatch requires one RPC, one
RDMA write, and one RDMA atomic operation, and
2PC requires two RPCs. Collect-Dispatch still has lower
overhead, because (1) RPC has higher latency than an
RDMA write/atomic primitive, (2) RDMA write/atomic
primitive does not involve CPU processing of remote
side. Thus, we conclude collect-dispatch is efficient,
as it not only removes complex negotiations for log
persistence ordering across servers, but reduces costly
RPC and CPU processing overheads.

Consistency Discussions. In persistent memory sys-
tems, data cache in the CPU cache needs to be flushed
to the memory timely and ordered to provide crash
consistency [11, 26, 33, 25, 14, 32]. In Octopus, meta-
data consistency is guaranteed by the collect-dispatch
transaction, which uses c1flush to flush data from the
CPU cache to the memory to force persistence of the
log. While the collect-dispatch transaction can be used
to provide data consistency, data I/Os are not wrapped
in a transaction in current Octopus implementation for
efficiency. We expect that RDMA will have more ef-
ficient remote flush operations that could benefit data
consistency, such as novel I/O flows like RDMA read
for remote durability [12], new proposed commands
like RDMA commit [39], or new designs that leverage
availability for crash consistency [45]. We leave efficient
data consistency for future work.

4 Evaluation

In this section, we evaluate Octopus’s overall data
and metadata performance, then the benefits from each
mechanism design, and finally its performance for big
data applications.

4.1 Experimental Setup

Evaluation Platform. In the evaluation, we run Octopus
on servers with large memory. Each server is equipped

778 2017 USENIX Annual Technical Conference

USENIX Association

with 384GB DRAM and two 2.5GHz Intel Xeon E5-
2680 v3 processors, and each processor has 24 cores.
Clients run on different servers. Each client server has
16GB DRAM and one Intel Xeon E2620 processor. All
these servers are connected with a Mellanox SX1012
switch using CX353A ConnectX-3 FDR HCAs (which
support 56 Gbps over InfiniBand and 40GigE). All of
them are installed with Fedora 23.

Evaluated File Systems. Table 1 lists the distributed
file system (DFSs) for comparison. All these file systems
are deployed in memory of the same cluster. For existing
DFSs that require local file systems, we build local
file systems on DRAM with pmem driver and DAX [5]
supported in ext4. The EXT4-DAX [4] is optimized
for NVM which bypasses the page cache and reduces
memory copies. Octopus manages its storage space on
the emulated persistent memory using shared memory
(SHM) of Linux in each server. These file systems are al-
located with 20GB for file system storage at each server.
For the network part, all distributed file systems run
on RDMA directly. Specifically, memGluster supports
using RDMA protocol for communication between glus-
terfs clients and glusterfs bricks. NVFES is an optimized
version of HDFS which exploits the advantages of byte-
addressability of NVM and RDMA. Crail is a recent
open-source DFS from IBM, and it relies on DaRPC [37]
for RDMA optimization and reserves huge pages as
transfer cache for bandwidth improvement.

Table 1: Evaluated File Systems

GlusterFS runs on memory, and GlusterFS is a
widely-used DFS that has no centralized metadata
services and is now a part of Redhat

a version of HDFS that is optimized with both
RDMA and NVM

an in-memory RDMA-optimized DFS built with
DaRPC [37]

memHDEFS [35] HDFS runs on memory, and HDFS is a widely-
used DFS for big data processing

an in-memory file system for big data processing

memGluster

NVFS [16]

Crail [9]

Alluxio[23]

Workloads. In our evaluation, we compare Octopus
with memGluster, NVFS and Crail for metadata and
read-write performance, and compare it with NVFS and
Alluxio for big data benchmarks. We use mdtest for
metadata evaluation, fio for read/write evaluation, and
an in-house read/write tool based on openMPI for ag-
gregated I/O performance. For big data evaluation, we
replace HDFS by adding Octopus plugin under Hadoop.
We use three package-in MapReduce benchmarks in
Hadoop, i.e., TestDFSIO, Teragen, and Wordcount, for
evaluation.

4.2 Overall Performance

To evaluate Octopus, we first compare its overall perfor-
mance with memGluster, NVFS and Crail. All these file

Vistoragd——INetwork___|Software S [//Storage—INetwork__JFile System

S (% ©
;1(00 73us 6.7us 2., 6088MB/3
E & -g o 5629MB/s
S @
& 60 85 % 84 % B0
g 40 %
200 || £
E = 5 5
So0

Getattr Readdir Write Read

(a)
Figure 7: Latency Breakdown and Bandw1dth Utilization

systems are running in the memory level with RDMA-
enabled InfiniBand network. In this evaluation, we first
compare Octopus’s latency and bandwidth to the raw
network’s and storage’s latency and bandwidth, and then
compare Octopus’s metadata and data performance to
other file systems.

4.2.1 Latency and Bandwidth Breakdown

Figure 7 shows both single round-trip latency and band-
width breakdown for Octopus. From the figures, we have
two observations.

(1) The software latency is dramatically reduced to
6us (around 85% of the total latency) in Octopus, from
323us (over 99%) in memGluster, as shown in Fig-
ure 7(a). For the memGluster on the emerging non-
volatile memory and RDMA hardwares, the file system
layer has a latency that is several orders larger than
that of storage or network. The software consumes the
overwhelmed part, and becomes a new bottleneck of the
whole storage system. In contrast, Octopus is effective in
reducing the software latency by redesigning the data and
metadata mechanisms with RDMA. The software latency
in Octopus is in the same order with the hardware.

(2) Octopus achieves read/write bandwidth that ap-
proaches the raw network bandwidth, as shown in Fig-
ure 7(b). The raw storage and network bandwidths
respectively are 6509MB/s (with single-thread mem-
cpy) and 6350MB/s. Octopus achieves a read/write
(6088/5629M B/ s) bandwidth that is 95.9%/88.6% of the
network bandwidth. In conclusion, Octopus effectively
exploits the hardware bandwidth.

4.2.2 Metadata Performance

Figure 8 shows the file systems’ performance in terms
of metadata IOPS with different metadata operations by
varying the number of data servers. From the figure, we
make two observations.

(1) Octopus has the highest metadata IOPS among
all evaluated file systems in general. memGluster and
NVFS provide metadata IOPS in the order of 10*. Crail
provides metadata IOPS in the order of 10° owing to
DaRPC, a high performance RDMA-based RPC. Com-
paratively, Octopus provides metadata IOPS in the order
of 10°, which is two orders higher than memGluster
and NVES. Octopus achieves the highest throughput

USENIX Association

2017 USENIX Annual Technical Conference 779

g —5-GlusterFS-©-NVFS—A— Crail —H-GlusterFS-O-NVFS-A—Crail | , [-5-GlusterFS-O-NVFS/A—Crail
S —7—Crail-PolH@—Octopus 1000] ~7~Crail-Pol-@-Octopus —7—Crail-PolH@—Octopus
* 10004
‘\g”- 100 1000/
S 1004
et 10
>
2 1001
5 10 o 8—F8§ 1
[
e 1 2 3. 4 1 2 3 4 1 2 3 4 5
Number of Clients Number of Clients Number of Clients
= (a) Mknod (b) Mkdir (c) Readdir
$10000] -F—GlusterFS-5-NVFSZ—Crail| 1000] —-5—GlusterFS-©-NVFS-A—Crail —H-GlusterFS-S-NVFS—ZA—Crail
= —7—Crail-PolH@—Octopus —7—Crail-PolH@—Octopus —7—Crail-Pol-@—Octopus
" 10001 e,
®
S 1000/ %
= 1004
3 Mﬂ\a 100 o—o ©
ey
s e—8—8 88| o
£ 100 P G— 1 B—6—p5 85 g
. 12 3 4 1 2 3 4 5 1 2 3 4 5
Number of Clients Number of Clients Number of Clients
(d) Getattr (e) Rmnod (f) Rmdir

Figure 8: Metadata Throughput

except for rmdir and rmnod when there is only one data
server. Crail is slightly better in this case, because it is
deployed with RdmaDataNode mode without transaction
guarantee. Generally, Octopus achieves high throughput
in processing metadata requests, which mainly owes to
the self-identified RPC and collect-dispatch transaction
that promise extremely low latency and high throughput.

(2) Octopus achieves much better scalability than the
other evaluated file systems. NVFS and Crail are de-
signed with single metadata server, and achieve constant
metadata throughput. Even with one metadata server,
Octopus achieves better throughput than these two file
systems in most cases. memGluster achieves the worst
throughput, for GlusterFS is designed to run on hard
disks and the software layer is inefficient in exploring the
high performance of NVM and RDMA, which has been
illustrated in Section 2.2. Besides, memGluster stacks its
data management layer on top of the local file system in
each server to process metadata requests, and this also
limits the throughput. Comparatively, Octopus has the
best scalability. For all evaluated metadata operations,
Octopus’s IOPS is improved by 3.6 to 5.4 times when
the number of servers is increased from 1 to 5.

4.2.3 Read/Write Performance

Figure 9 shows the file systems’ performance in terms
of concurrent read/write throughput with multiple clients
by varying the read/write sizes. From figure 9, we can
see that, with small read/write sizes, Octopus achieves
much higher throughput than other file systems (750
Kops/s and 1 Mops/s for writes and reads respectively).
This benefit mainly comes from the client-active data I/O
and self-identified RPC mechanisms. NVFS achieves
relatively high throughput when read/write size is set
to 1KB, for its buffer manager prefetches data to boost

§ —&— GlusterFS [1200 —&— GlusterFS
< 750 ——NVFS —S—NVFS

» —A— Crail —A— Crail

%_ 500 —e— Octopus | 800 —&— Octopus

g 250 400

2

o

£ 0 T 7 6 ”
= %o o Ty Uy RN (2 o "o Oy 74—@9‘%4—@%

(a) Write
Figure 9: Data I/O Throughput (Multiple Clients)

(b) Read

—E—CGlusterFS——NVFS—A—Crail
—%—Crail-Pol—@—Octopus

—&— GlusterFS—6—NVFS—A—Crail
—%— Crail-Pol—€—Octopus

/&’40000 10000
)
= 1000
L
T
2 100
e}
c
©
m 10 104 xf
1K 4K 16K 64K 256K 1MB 1K 4K 16K 64K 256K 1MB
(a) Write (b) Read

Figure 10: Data I/O Bandwidth (Single Client)

performance. But it drops rapidly when the I/O size
grows, which is mainly restricted by the performance of
RPC efficiency. Crail has lower throughput than NVFS
when I/O size is small, but it achieves throughput close
to Octopus when I/O size grows. memGluster has the
worst throughput and only achieves 100 Kops/s.

Figure 10 shows the read/write bandwidth achieved
by a single client with different read/write sizes. As
shown in the figure, Octopus significantly outperforms
existing DFSs in terms of read or write bandwidth. When
the 1/0 size is set to 1MB, the read/write bandwidths in
NVFS and memGluster are around only 1000MB/s and
1500MB/s, respectively. Crail reaches a bandwidth of
4000MB/s, which only occupies 63% of the raw network
bandwidth. In contrast, Octopus can achieve bandwidth
close to that of the raw InfiniBand network (6088MB/s
and 5629MB/s with IMB I/O size for read and write re-
spectively), which is mainly because of reduced memory
copies by using a shared persistent memory pool.

780 2017 USENIX Annual Technical Conference

USENIX Association

4.3 Evaluation of Data Mechanisms
4.3.1 Effects of Reducing Data Copies

Octopus improves data transfer bandwidth by reducing
memory copies. To verify the effect of reducing data
copies, we implement a version of Octopus which add
an extra copy at client side, and we refer to it as Oc-
topus+copy. As shown in Figure 11, when I/O size
is set to IMB, Octopus+copy achieves nearly the same
bandwidth as Crail (around 4000MB/s). However, when
the extra data copy is removed, Octopus can provide
6000MB/s of bandwidth that is written or read by a
single client, 23% of extra bandwidth gained. When the
I/0O size is small, Octopus+copy still surpasses Crail with
higher bandwidth, owing to closely coupled RDMA and
file system mechanism designs to be evaluated next.

—10000 10000

w

B/!

1000 1000

Bandwidth (M
)
o

—&— Crail 100 —8— Crail
—A— Octopus+copy| —A— Octopus+copy|
10 —@— Octopus 10 —&— Octopus
1K 4K 16K 64K256K1MB 1K 4K 16K 64K256K1MB
(a) Write (b) Read

Figure 11: Effects of Reducing Data Copies

4.3.2 Effects of Client-Active Data I/0

We then compare the IOPS of data I/O in client-active
and server-active modes that are mentioned in Section 3.
Figure 12 shows the read/write throughput of both client-
active and server-active modes of Octopus by varying
read/write sizes. Crail’s performance is also given for
reference. We observe that the client-active mode has
higher data throughput than the server-active mode for
small read/write sizes. Both modes have close through-
put for read/write sizes that are larger than 16KB. When
the read/write sizes are smaller than 16KB, the client-
active mode has higher data throughput by 193% for
writes and 27.2% for reads on average. Even the client-
active mode consists more network round-trips, it is more
efficient to offload workloads to clients from servers
when the read/write size is small, in order to improve
the data throughput. Client-active mode improves write
throughput more obviously than read throughput, be-
cause the server side has higher overhead for writes than
reads in server-active mode. In server-active mode, after
the server side reads data from the client using RDMA
read when processing client’s write operation, it has to
check the completion of this operation, which is time-
consuming. But for client’s read operations, server side
never checks the completion message, and provides rela-
tively higher throughput. In all, we conclude that client-
active mode has higher bandwidth than the commonly-
used server-active mode.

1000

—8— Crail
—6— Server-Active
—&— Client-Active

—8— Crail 1200
800 —6— Server-Active

—&— Client-Active | 900
600
400 600

200 300

Throughput (kops/s)

ey ey oy Sy oy My Mo e Yoty Sty sy,
(a) Write (b) Read

Figure 12: Client-Active Data I/O Performance
4.4 Evaluation of Metadata Mechanisms

4.4.1 Effects of Self-Identified Metadata RPC

We first compare raw RPC performance with different
usage of RDMA primitives to evaluate the effects of self-
identified metadata RPC. We then compare Octopus with
existing file systems on metadata latencies.

Figure 13(a) shows the raw RPC throughput us-
ing three RPC implementations (i.e., message-based,
memory-based, and self-identified, without message
batch) along with DaRPC by varying the I/O sizes.
DaRPC used in Crail is designed based on RDMA
send/recv, and it achieves the lowest throughput,
2.4Mops/s with an /O size of 16 bytes. Its performance
may be limited by the Java implementation in its jVerbs
interface. We also implement a message-based RPC
that uses RDMA send/recv verbs, and it achieves a
throughput of 3.87Mops/s at most. This throughput is
limited by the raw performance of RDMA send/recv.
For the memory-based RPCs that use RDMA write
verbs, as taken in FaRM [13], we compare the perfor-
mance by setting the maximum number of client threads
to 20 and 100. As observed, the throughput is the
highest (i.e., 5.4Mops/s) when the maximum number
of client threads is 20. However, it decreases quickly
to 3.46Mops/s when the maximum number of client
threads is 100. This shows the inefficiency in processing
and notification in the memory-based RPCs when there
are a large number of client threads. Our proposed self-
identified RPC, which carry on client identifiers with
the RDMA write_with_imm verbs, keeps constant high
throughput for an average of 5.4Mops/s, without being
affected by the number of client threads. Similarly, we
also measure the latency of each RPC (in Figure 13(b)),
among which self-identified RPC keeps relative low la-
tency. As such, self-identified RPCs provide scalable and
low-latency accesses, which is suitable for distributed
storage systems to support a large number of client
requests.

Figure 14 shows metadata latencies of Octopus along
with other file systems. As shown in the figure, Octopus
achieves the lowest metadata latencies among all the
evaluated file systems for all evaluated metadata oper-
ations (i.e., 7.3us and 6.7us respectively for getattr

USENIX Association

2017 USENIX Annual Technical Conference 781

& B Write-20Cli - & - Write-100CHi| @
% [A—Send/Recv - £\ -Crail ;6
S 6@ Self-Identified g
= o)
= Es 4
3

24 o
S o
=] 2
<]

c2 %
= 4

S

16B 64B 128B256B512B 1KB 9”%2 f/[e 108 e"d//? Cra,, 1o,
(a)
Figure 13: Raw RPC Performance

tifje, o

and readdir), which are close to the InfiniBand network
latency for most cases. With the self-identified metadata
RPC, Octopus can support low-latency metadata opera-
tions even without client cache. Crail uses DaRPC for
inter-server communication. However, Crail’s metadata
(e.g., mkdir and mknod) latencies are much higher than
raw DaRPC’s latency. This possibly is because Crail is
implemented on the inefficient HDFS framework, or it
registers memory temporarily for message communica-
tion, which is time-consuming. NVFS and memGluster
suffer the similar problem of heavy file system designs
as Crail, and thus have relatively higher latency.

GlusterFS /7] NVFS Y] Crail
3 Crail-Poll |l Octopus

5139 32258

381 2% 243.8 263.1 217.5

Mknod Readdir Getattr Rmnod Rmdir
Figure 14: Metadata Latency

y (us)

[N

o
o
=3

Normalized Latenc
o

Mkdir

4.4.2 Effects of Collect-Dispatch Transaction

To evaluate the effects of the collect-dispatch transaction
in Octopus, we also implement a transaction system
based on 2PC for comparison. Figure 15(a) exhibits the
latencies of these two transaction mechanisms. Collect-
dispatch reduces latency by up to 37%. This is because
2PC involves two RPCs to exchange messages from
remote servers, while collect-dispatch only needs one
RPC and two one-sided RDMA commands to finish the
transaction. Although the number of messages is in-
creased, the total latency drops. RPC protocol needs the
involvements of both local and remote nodes, and a lot
of side information (e.g., hash computing, and message
discovery) needs to be processed at this time. Thus,
RPC latency (around Sus) is much higher than one-sided
RDMA primitives (less than lus). From figure 15(b) we
can see that, transaction based on collect-dispatch im-
proves throughput by up to 79%. On one hand, collect-
dispatch only writes logs locally, significantly reducing
logging overhead. On the other hand, collect-dispatch
decreases the total number of RPC when processing
transactions, which reduces the involvements of remote
CPUs and thereby improves performance.

40 @ [_J2PC
— 2180 Il Collect-Dispatch
(2] 30 o
2 <
> =120
220 3
S0 g 60
=
[~

0 0
Mkdir Mknod Rmnod Rmdir Mkdir Mknod Rmnod Rmdir

(a)
Figure 15: Collect-Dispatch Transaction Performance

4.5 Evaluation using Big Data Applications

In addition, we compare Octopus with distributed file
systems that are used in big data framework. We con-
figure Hadoop with different distributed file systems -
memHDFS, Alluxio, NVFS, Crail and Octopus. In
this section, we compare both read/write bandwidth and
application performance.

Read/Write Bandwidth. Figure 16(a) compares the
read/write bandwidths of above-mentioned file systems
using TestDFSIO by setting the read/write size to 256KB.
Octopus and Crail show much higher bandwidth than tra-
ditional file systems. Octopus achieves 2689MB/s and
2499MB/s for write and read operations respectively,
and Crail achieves 2424MB/s and 2215MB/s respec-
tively. Note that they have lower bandwidths than the re-
sults in fio. The reason is that we connect Octopus/Crail
with Hadoop plugin using JNI (Java Native Interface),
which restricts the bandwidth. In contrast, memHDES,
Alluxio and NVFS show lower bandwidth than Octopus
and Crail. memHDFS has the lowest bandwidth, for the
heavy HDFS software design that is for hard disks and
traditional Ethernet. Alluxio and NVES are optimized to
run on DRAM, and thus provide higher bandwidth than
memHDFS. But they are still slower than Octopus. Thus,
we conclude the general-purpose Octopus can also be
integrated into existing big data framework and provide
better performance than existing file systems.

:memHDF@Auuxio@NVFs@ [ImemHDFS//Alluxid<=INVFS &

Crail Octopus

iy
N

©

o

on Time
ey
o

fo2}
o

N
o

Wordcount Execution Time

Teragen Executi

Teragen Wordcount

Write Read

Figure 16: Big Data Evaluation

Big Data Application Performance. Figure 16(b)
shows the application performance for different file sys-
tems. Octopus consumes the least time to finish all
evaluated applications. Among all the evaluated file
systems, memHDFS generally has the highest run time,
i.e., 11.7s for Teragen and 82s for Wordcount. For the
Teragen workload, the run time in Alluxio, NVFS, Crail
and Octopus is 11.0s, 10.0s, 11.4s and 8.8s, respectively.

782 2017 USENIX Annual Technical Conference

USENIX Association

For the Wordcount workload, the run time in Alluxio,
NVES, Crail and Octopus is 69.5s, 65.9s, 62.5s and
57.1s, respectively. We conclude that our proposed
general-purpose Octopus can even provide better perfor-
mance for big data applications than existing dedicated
file systems.

5 Related Work

Persistent Memory File Systems: In addition to file
systems that are built for flash memory [17, 28, 27, 22,
441, a number of local file systems have been built from
scratch to exploit both byte-addressability and persis-
tence benefits of non-volatile memory [11, 14, 42, 32,
43]. BPFS [11] is a file system for persistent memory that
directly manages non-volatile memory in a tree structure,
and provides atomic data persistence using short-circuit
shadow paging. PMFS [14] proposed by Intel also
enables direct persistent memory access from applica-
tions by removing file system page cache with memory
mapped I0. Similar to BPFS and PMFS, SCMFS [42]
is a file system for persistent memory which leverages
the virtual memory management of the operating system.
Fine-grained management is further studied in recent
NOVA [43] and HiNFS [32] to make software more
efficient. The Linux kernel community also starts to
support persistent memory by introducing DAX (Direct
Access) to existing file systems, e.g., EXT4-DAX [4].
The efficient software design concept in these local file
systems, including removing duplicated memory copies,
is further studied in Octopus distributed file system to
make remote accesses more efficient.

General RDMA Optimizations: RDMA provides
high performance but requires careful tuning. Recent
study [19] offers guidelines on how to use RDMA verbs
efficiently from a low-level perspective such as in PCle
and NIC. Cell [30] dynamically balances CPU consump-
tion and network overhead using RDMA primitives in
a distributed B-tree store. PASTE [15] proposes direct
NIC DMA to persistent memory to avoid data copies,
for a joint optimization between network and data stores.
FaSST [20] proposes to use UD (Unreliable Datagram)
for RPC implementation when using send/recv, in or-
der to improve scalability. RDMA has also been used
to optimize distributed protocols, like shared memory
access [13], replication [45], in-memory transaction [41],
and lock mechanism [31]. RDMA optimizations have
brought benefits to computer systems, and this motivates
us to start rethinking the file system design with RDMA.

RDMA Optimizations in Key-Value Stores: RDMA
features have been adopted in several key-value stores
to improve performance [29, 18, 13, 40]. MICA [24]
bypasses the kernel and uses a lightweight networking
stack to improve data access performance in key-value

stores. Pilaf [29] optimizes the get operation using mul-
tiple RDMA read commands at the client side, which
offloads hash calculation burden from remote servers to
clients, improving system performance. HERD [18] im-
plements both ger and put operations using the combina-
tion of RDMA write and UD send, in order to achieve
high throughput. HydraDB [40] is a versatile key-value
middleware that achieves data replication to guarantee
fault-tolerance and awareness for NUMA architecture,
and adds client-side cache to accelerate the get opera-
tion. While RDMA techniques lead to evolutions in the
designs of key-value stores, its impact on file system
designs is still under-exploited.

RDMA Optimizations in Distributed File Systems:
Existing distributed file systems have tried to support
RDMA network by substituting their communication
modules [1, 3, 6]. Ceph over Accelio [3] is a project un-
der development to support RDMA in Ceph. Accelio [2]
is an RDMA-based asynchronous messaging and RPC
middleware designed to improve message performance
and CPU parallelism. Alluxio [23] in Spark (formerly
named Tachyon) is transplanted to run on top of RDMA
by Mellanox [6]. It faces the same problem as Ceph on
RDMA. NVEFS [16] is an optimized version of HDFS
that combines both NVM and RDMA technologies. Due
to heavy software design in HDFS, NVFES hardly exploits
the high performance of NVM and RDMA. Crail [9]
is a recently developed distributed file system built on
DaRPC [37]. DaRPC is an RDMA-based RPC that
tightly integrates the RPC message processing and net-
work processing, which provides both high throughput
and low latency. However, their internal file system
mechanisms remain the same. In comparison, our pro-
posed Octopus revisits the file system mechanisms with
RDMA features, instead of introducing RDMA only to
the communication module.

6 Conclusion

The efficiency of the file system design becomes an im-
portant design issue for storage systems that are equipped
with high-speed NVM and RDMA hardware. Both the
two emerging hardware technologies not only improve
hardware performance, but also push back the soft-
ware evolution. In this paper, we propose a distributed
memory file system, Octopus, which has its internal
file system mechanisms closely coupled with RDMA
features. Octopus simplifies the data management layer
by reducing memory copies, and rebalances network and
server loads with active I/Os in clients. It also redesigns
the metadata RPC and the distributed transaction by
using RDMA primitives. Evaluations show that Octopus
effectively explores hardware benefits, and significantly
outperforms existing distributed file systems.

USENIX Association

2017 USENIX Annual Technical Conference 783

Acknowledgments

We thank our shepherd Michio Honda and anonymous

reviewers for their feedbacks and suggestions.

We

also thank Weijian Xu for his contribution in the early
prototype of Octopus. This work is supported by the
National Natural Science Foundation of China (Grant

No.

61502266, 61433008, 61232003), the Beijing Mu-

nicipal Science and Technology Commission of China
(Grant No. D151100000815003), and the China Post-
doctoral Science Foundation (Grant No. 2016T90094,

2015M580098).

Youyou Lu is also supported by the

Young Elite Scientists Sponsorship Program of China
Association for Science and Technology (CAST).

References

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

GlusterFS on RDMA. "https://gluster.readthedocs.io

/en/latest/AdministratorGuide/RDMATransport/".
Accelio. "http://www.accelio.org", 2013.

Ceph over Accelio. "https://www.cohortfs.com/ceph-o
ver-accelio", 2014.

Support ext4 on NV-DIMM:s.
/588218", 2014.

"https://lwn.net/Articles

Supporting filesystems in persistent memory.
net/Articles/610174", 2014.

Alluxio on RDMA. "https://community.mellanox.com
/docs/D0OC-2128", 2015.

"https://lwn.

Introducing Intel Optane technology - bringing 3D
XPoint memory to storage and memory products.
"https://newsroom.intel.com/press-kits/introd

ucing-intel-optane-technology-bringing-3d-xpoin
t-memory-to-storage-and-memory-products/", 2016.

SAP HANA, in-memory computing and real time analyt-
ics. "http://go.sap.com/product/technology-platf
orm/hana.html", 2016.

Crail: A Fast Multi-tiered Distributed Direct Access File System.
https://github.com/zrlio/crail, 2017.

ASSOCIATION, I. T., ET AL. InfiniBand Architecture Specifica-
tion: Release 1.3. InfiniBand Trade Association, 2009.

CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK, E., LEE,
B., BURGER, D., AND COETZEE, D. Better I/O through byte-
addressable, persistent memory. In Proceedings of the 22nd ACM
SIGOPS Symposium on Operating Systems Principles (SOSP)
(New York, NY, USA, 2009), ACM, pp. 133-146.

DouGLAS, C. RDMA with PMEM: software mechanisms for
enabling access to remote persistent memory. http://www.sn
ia.org/sites/default/files/SDC15_presentations/
persistant_mem/ChetDouglas_RDMA_with_PM.pdf, 2015.

DRAGOJEVIé, A., NARAYANAN, D., CASTRO, M., AND HOD-
SON, O. Farm: fast remote memory. In /1th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14)
(2014), pp. 401-414.

DULLOOR, S. R., KUMAR, S., KESHAVAMURTHY, A., LANTZ,
P., REDDY, D., SANKARAN, R., AND JACKSON, J. System
software for persistent memory. In Proceedings of the Ninth
European Conference on Computer Systems (EuroSys) (New
York, NY, USA, 2014), ACM, pp. 15:1-15:15.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

HONDA, M., EGGERT, L., AND SANTRY, D. Paste: Network
stacks must integrate with nvmm abstractions. In Proceedings
of the 15th ACM Workshop on Hot Topics in Networks (2016),
ACM, pp. 183-189.

IsLAM, N. S., WASI-UR RAHMAN, M., LU, X., AND PANDA,
D. K. High performance design for hdfs with byte-addressability
of nvm and rdma. In Proceedings of the 2016 International
Conference on Supercomputing (2016), ACM, p. 8.

JOSEPHSON, W. K., BONGO, L. A., FLYNN, D., AND LI, K.
DES: A file system for virtualized flash storage. In Proceedings
of the 8th USENIX Conference on File and Storage Technologies
(FAST) (Berkeley, CA, 2010), USENIX.

KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using
rdma efficiently for key-value services. In SIGCOMM (2014).

KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Design
guidelines for high performance rdma systems. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16) (2016).

KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Fasst:
fast, scalable and simple distributed transactions with two-sided
(rdma) datagram rpcs. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16) (2016), USENIX
Association, pp. 185-201.

LEE, B. C., IPEK, E., MUTLU, O., AND BURGER, D. Ar-
chitecting phase change memory as a scalable dram alternative.
In Proceedings of the 36th annual International Symposium on
Computer Architecture (ISCA) (New York, NY, USA, 2009),
ACM, pp. 2-13.

LEE, C., SiM, D., HWANG, J., AND CHO, S. F2FS: A
new file system for flash storage. In Proceedings of the 13th
USENIX Conference on File and Storage Technologies (FAST)
(Santa Clara, CA, Feb. 2015), USENIX.

L1, H., GHODSI, A., ZAHARIA, M., SHENKER, S., AND
STOICA, I. Tachyon: Reliable, memory speed storage for cluster
computing frameworks. In Proceedings of the ACM Symposium
on Cloud Computing (2014).

LiM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M.
Mica: A holistic approach to fast in-memory key-value storage.
management 15, 32 (2014), 36.

Lu, Y., SHU, J., AND SUN, L. Blurred persistence in transac-
tional persistent memory. In Proceedings of the 31st Conference
on Massive Storage Systems and Technologies (MSST) (2015),
IEEE, pp. 1-13.

Lu, Y., SHu, J., SUN, L., AND MUTLU, O. Loose-ordering
consistency for persistent memory. In Proceedings of the IEEE
32nd International Conference on Computer Design (ICCD)
(2014), IEEE.

Lu, Y., SHU, J., AND WANG, W. ReconFS: A reconstructable
file system on flash storage. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST) (Berkeley,
CA, 2014), USENIX, pp. 75-88.

Lu, Y., SHU, J., AND ZHENG, W. Extending the lifetime of
flash-based storage through reducing write amplification from
file systems. In Proceedings of the 11th USENIX Conference
on File and Storage Technologies (FAST) (Berkeley, CA, 2013),
USENIX.

MITCHELL, C., GENG, Y., AND L1, J. Using one-sided rdma
reads to build a fast, cpu-efficient key-value store. In Presented as
part of the 2013 USENIX Annual Technical Conference (USENIX
ATC 13) (2013), pp. 103-114.

MITCHELL, C., MONTGOMERY, K., NELSON, L., SEN, S.,
AND LI, J. Balancing cpu and network in the cell distributed
b-tree store. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16) (2016).

784

2017 USENIX Annual Technical Conference

USENIX Association

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

NARRAVULA, S., MARNIDALA, A., VISHNU, A,
VAIDYANATHAN, K., AND PANDA, D. K. High performance
distributed lock management services using network-based
remote atomic operations. In Seventh IEEE International
Symposium on Cluster Computing and the Grid (CCGrid’07)
(2007), IEEE, pp. 583-590.

Ou, J., SHU, J., AND LU, Y. A high performance file system
for non-volatile main memory. In Proceedings of the Eleventh
European Conference on Computer Systems (2016), ACM, p. 12.

PELLEY, S., CHEN, P. M., AND WENISCH, T. F. Memory
persistency. In Proceedings of the 41st ACM/IEEE International
Symposium on Computer Architecture (ISCA) (2014), pp. 265—
276.

QURESHI, M. K., SRINIVASAN, V., AND RIVERS, J. A.
Scalable high performance main memory system using phase-
change memory technology. In Proceedings of the 36th annual
International Symposium on Computer Architecture (ISCA) (New
York, NY, USA, 2009), ACM, pp. 24-33.

SHVACHKO, K., KUANG, H., RADIA, S., AND CHANSLER, R.
The hadoop distributed file system. In IEEE 26th symposium
on mass storage systems and technologies (MSST) (2010), IEEE,
pp. 1-10.

STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., AND
WILLIAMS, R. S. The missing memristor found. nature 453,
7191 (2008), 80-83.

STUEDI, P., TRIVEDI, A., METZLER, B., AND PFEFFERLE, J.
DaRPC: Data center rpc. In Proceedings of the ACM Symposium
on Cloud Computing (SoCC) (2014), ACM, pp. 1-13.

SWANSON, S., AND CAULFIELD, A. M. Refactor, reduce,
recycle: Restructuring the i/o stack for the future of storage.
Computer 46, 8 (2013), 52-59.

TALPEY, T. Remote Access to ultra-low-latency storage.
http://www.snia.org/sites/default/files/SDC15_pr
esentations/persistant_mem/Talpey-Remote_Access
_Storage.pdf, 2015.

WANG, Y., ZHANG, L., TAN, J., LI, M., GAO, Y., GUERIN,
X., MENG, X., AND MENG, S. Hydradb: a resilient rdma-
driven key-value middleware for in-memory cluster computing.
In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis (2015),
ACM, p. 22.

WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast
in-memory transaction processing using rdma and htm. In Pro-
ceedings of the 25th Symposium on Operating Systems Principles
(2015), ACM, pp. 87-104.

Wu, X., AND REDDY, A. L. N. SCMFS: A file system for
storage class memory. In Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, Storage
and Analysis (SC) (New York, NY, USA, 2011), ACM, pp. 39:1-
39:11.

XU, J., AND SWANSON, S. Nova: a log-structured file system
for hybrid volatile/non-volatile main memories. In /4th USENIX
Conference on File and Storage Technologies (FAST 16) (2016),
pp. 323-338.

ZHANG, J., SHU, J., AND LU, Y. Parafs: A log-structured file
system to exploit the internal parallelism of flash devices. In 2016
USENIX Annual Technical Conference (USENIX ATC 16) (2016).

ZHANG, Y., YANG, J., MEMARIPOUR, A., AND SWANSON,
S. Mojim: A reliable and highly-available non-volatile memory
system. In Proceedings of the Twentieth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2015), ASPLOS 15,
ACM, pp. 3-18.

[46] ZHOU, P., ZHAO, B., YANG, J., AND ZHANG, Y. A durable

and energy efficient main memory using phase change memory
technology. In Proceedings of the 36th annual International
Symposium on Computer Architecture (ISCA) (New York, NY,
USA, 2009), ACM, pp. 14-23.

USENIX Association

2017 USENIX Annual Technical Conference 785

