usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Orion: A Distributed File System for Non-Volatile
Main Memory and RDMA-Capable Networks

Jian Yang, Joseph lIzraelevitz, and Steven Swanson, UC San Diego

https://www.usenix.org/conference/fast19/presentation/yang

This paper is included in the Proceedings of the

17th USENIX Conference on File and Storage Technologies (FAST '19).
February 25-28, 2019 « Boston, MA, USA
978-1-939133-09-0

Open access to the Proceedings of the
17th USENIX Conference on File and
Storage Technologies (FAST '19)

is sponsored by

M NetApp’

|||H|[|f

'.:IIIIIIIILJIIIH

Orion: A Distributed File System for Non-Volatile Main Memories
and RDMA-Capable Networks

Jian Yang

Joseph Izraelevitz

Steven Swanson

UC San Diego
{jianyang, jizraelevitz, swanson} @eng.ucsd.edu

Abstract

High-performance, byte-addressable non-volatile main mem-
ories (NVMMs) force system designers to rethink trade-
offs throughout the system stack, often leading to dramatic
changes in system architecture. Conventional distributed file
systems are a prime example. When faster NVMM replaces
block-based storage, the dramatic improvement in storage per-
formance makes networking and software overhead a critical
bottleneck.

In this paper, we present Orion, a distributed file system
for NVMM-based storage. By taking a clean slate design
and leveraging the characteristics of NVMM and high-speed,
RDMA-based networking, Orion provides high-performance
metadata and data access while maintaining the byte address-
ability of NVMM. Our evaluation shows Orion achieves per-
formance comparable to local NVMM file systems and out-
performs existing distributed file systems by a large margin.

1 Introduction

In a distributed file system designed for block-based devices,
media performance is almost the sole determiner of perfor-
mance on the data path. The glacial performance of disks
(both hard and solid state) compared to the rest of the stor-
age stack incentivizes complex optimizations (e.g., queuing,
striping, and batching) around disk accesses. It also saves
designers from needing to apply similarly aggressive opti-
mizations to network efficiency, CPU utilization, and locality,
while pushing them toward software architectures that are
easy to develop and maintain, despite the (generally irrele-
vant) resulting software overheads.

The appearance of fast non-volatile memories (e.g., Intel’s
3D XPoint DIMMs [28]]) on the processor’s memory bus
will offer an abrupt and dramatic increase in storage system
performance, providing performance characteristics compa-
rable to DRAM and vastly faster than either hard drives or
SSDs. These non-volatile main memories (NVMM) upend
the traditional design constraints of distributed file systems.

For an NVMM-based distributed file system, media access
performance is no longer the major determiner of perfor-
mance. Instead, network performance, software overhead,

and data placement all play central roles. Furthermore, since
NVMM is byte-addressable, block-based interfaces are no
longer a constraint. Consequently, old distributed file systems
squander NVMM performance — the previously negligible
inefficiencies quickly become the dominant source of delay.

This paper presents Orion, a distributed file system de-
signed from the ground up for NVMM and Remote Direct
Memory Access (RDMA) networks. While other distributed
systems [41}/55] have integrated NVMMs, Orion is the first
distributed file system to systematically optimize for NVMMs
throughout its design. As a result, Orion diverges from block-
based designs in novel ways.

Orion focuses on several areas where traditional distributed
file systems fall short when naively adapted to NVMMs. We
describe them below.

Use of RDMA Orion targets systems connected with an
RDMA-capable network. It uses RDMA whenever possible
to accelerate both metadata and data accesses. Some existing
distributed storage systems use RDMA as a fast transport
layer for data access [10}/18}62,/63}/71] but do not integrate it
deeply into their design. Other systems [41,/55]] adapt RDMA
more extensively but provide object storage with customized
interfaces that are incompatible with file system features such
as unrestricted directories and file extents, symbolic links and
file attributes.

Orion is the first full-featured file system that integrates
RDMA deeply into all aspects of its design. Aggressive use
of RDMA means the CPU is not involved in many transfers,
lowering CPU load and improving scalability for handling in-
coming requests. In particular, pairing RDMA with NVMMs
allows nodes to directly access remote storage without any
target-side software overheads.

Software Overhead Software overhead in distributed files
system has not traditionally been a critical concern. As such,
most distributed file systems have used two-layer designs that
divide the network and storage layers into separate modules.

USENIX Association

17th USENIX Conference on File and Storage Technologies 221

nilanjan
Highlight

Read Latency Bandwidth GB/s
512B Read Write
DRAM 80 ns 60 30
NVMM 300 ns 8 2
RDMA NIC 3 us 5 (40 Gbps)
NVMe SSD 70 us 32 1.3

Table 1: Characteristics of memory and network devices
‘We measure the fisrt 3 lines on Intel Sandy Bridge-EP plat-
form with a Mellanox ConnectX-4 RNIC and an Intel DC
P3600 SSD. NVMM numbers are estimated based on assump-
tions made in [[75].

Two-layer designs trade efficiency for ease of implementa-
tion. Designers can build a user-level daemon that stitches
together off-the-shelf networking packages and a local file
system into a distributed file system. While expedient, this
approach results in duplicated metadata, excessive copying,
unnecessary event handling, and places user-space protection
barriers on the critical path.

Orion merges the network and storage functions into a sin-
gle, kernel-resident layer optimized for RDMA and NVMM
that handles data, metadata, and network access. This deci-
sion allows Orion to explore new mechanisms to simplify
operations and scale performance.

Locality RDMA is fast, but it is still several times slower
than local access to NVMMs (Table [T). Consequently, the
location of stored data is a key performance concern for
Orion. This concern is an important difference between Orion
and traditional block-based designs that generally distin-
guish between client nodes and a pool of centralized storage
nodes [[18}53]]. Pooling makes sense for block devices, since
access latency is determined by storage, rather than network
latency, and a pool of storage nodes simplifies system admin-
istration. However, the speed of NVMMs makes a storage
pool inefficient, so Orion optimizes for locality. To encourage
local accesses, Orion migrates durable data to the client when-
ever possible and uses a novel delegated allocation scheme to
efficiently manage free space.

Our evaluation shows that Orion outperforms existing dis-
tributed file systems by a large margin. Relative to local
NVMM filesystems, it provides comparable application-level
performance when running applications on a single client.
For parallel workloads, Orion shows good scalability: perfor-
mance on an 8-client cluster is between 4.1 x and 7.9 x higher
than running on a single node.

The rest of the paper is organized as follows. We discuss
the opportunities and challenges of building a distributed file
system utilizing NVMM and RDMA in Section 2] Section[3]
gives an overview of Orion’s architecture. We describe the de-
sign decisions we made to implement high-performance meta-
data access and data access in Sections {] and [5| respectively.

Section [6l evaluates these mechanisms. We cover related work
in Section [7land conclude in Section

2 Background and Motivation

Orion is a file system designed for distributed shared NVMM
and RDMA. This section gives some background on NVMM
and RDMA and highlights the opportunities these technolo-
gies provide. Then, it discusses the inefficiencies inherent in
running existing distributed file systems on NVMM.

2.1 Non-Volatile Main Memory

NVMM is comprised of nonvolatile DIMMs (NVDIMMs)
attached to a CPU’s memory bus alongside traditional DRAM
DIMMs. Battery-backed NVDIMM-N modules are commer-
cially available from multiple vendors [46]], and Intel’s 3DX-
Point memory [28]] is expected to debut shortly. Other tech-
nologies such as spin-torque transfer RAM (STT-RAM) [45]],
ReRAM [27]] are in active research and development.

NVMMs appear as contiguous, persistent ranges of phys-
ical memory addresses [52f]. Instead of using block-based
interface, file systems can issue load and store instructions
to NVMMs directly. NVMM file systems provide this ability
via direct access (or “DAX’’), which allows read and write
system calls to bypass the page cache.

Researchers and companies have developed several file sys-
tems designed specifically for NVMM [15}21}25,73L[74].
Other developers have adapted existing file systems to
NVMM by adding DAX support [141[70]]. In either case, the
file system must account for the 8-byte atomicity guaran-
tees that NVMMs provide (compared to sector atomicity for
disks). They also must take care to ensure crash consistency
by carefully ordering updates to NVMMs using cache flush
and memory barrier instructions.

2.2 RDMA Networking

Orion leverages RDMA to provide low latency metadata and
data accesses. RDMA allows a node to perform one-sided
read/write operations from/to memory on a remote node in
addition to two-sided send/recv operations. Both user- and
kernel-level applications can directly issue remote DMA re-
quests (called verbs) on pre-registered memory regions (MRs).
One-sided requests bypass CPU on the remote host, while
two-sided requests require the CPU to handle them.

An RDMA NIC (RNIC) is capable of handling MRs regis-
tered on both virtual and physical address ranges. For MRs
on virtual addresses, the RDMA hardware needs to translate
from virtual addresses to DMA addresses on incoming pack-
ets. RNICs use a hardware pin-down cache [65] to accelerate
lookups. Orion uses physically addressed DMA MRs, which
do not require address translation on the RNIC, avoiding

222 17th USENIX Conference on File and Storage Technologies

USENIX Association

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

the possibility of pin-down cache misses on large NVMM
regions.

Software initiates RDMA requests by posting work queue
entries (WQE) onto a pair of send/recv queues (a queue pair
or “QP”), and polling for their completion from the comple-
tion queue (CQ). On completing a request, the RNIC signals
completion by posting a completion queue entry (CQE).

A send/recv operation requires both the sender and receiver
to post requests to their respective send and receive queues
that include the source and destination buffer addresses. For
one-sided transfers, the receiver grants the sender access to a
memory region through a shared, secret 32-bit “rkey.” When
the receiver RNIC processes an inbound one-sided request
with a matching rkey, it issues DMAs directly to its local
memory without notifying the host CPU.

Orion employs RDMA as a fast transport layer, and its
design accounts for several idiosyncrasies of RDMA:

Inbound verbs are cheaper Inbound verbs, including recv
and incoming one-sided read/write, incur lower overhead for
the target, so a single node can handle many more inbound
requests than it can initiate itself [59]]. Orion’s mechanisms
for accessing data and synchronizing metadata across clients
both exploit this asymmetry to improve scalability.

RDMA accesses are slower than local accesses RDMA
accesses are fast but still slower than local accesses. By com-
bining the data measured on DRAM and the methodology
introduced in a previous study [75]], we estimate the one-sided
RDMA NVMM read latency to be ~9x higher than local
NVMM read latency for 64 B accesses, and ~20x higher for
4 KB accesses.

RDMA favors short transfers RNICs implement most of
the RDMA protocol in hardware. Compared to transfer proto-
cols like TCP/IP, transfer size is more important to transfer
latency for RDMA because sending smaller packets involves
fewer PCle transactions [35]]. Also, modern RDMA hardware
can inline small messages along with WQE headers, further
reducing latency. To exploit these characteristics, Orion ag-
gressively minimizes the size of the transfers it makes.

RDMA is not persistence-aware Current RDMA hard-
ware does not guarantee persistence for one-sided RDMA
writes to NVMM. Providing this guarantee generally re-
quires an extra network round-trip or CPU involvement for
cache flushes [22], though a proposed [60] RDMA “commit”
verb would provide this capability. As this support is not yet
available, Orion ensures persistence by CPU involvement (see

Section[5.3).

3 Design Overview

Orion is a distributed file system built for the performance
characteristics of NVMM and RDMA networking. NVMM’s
low latency and byte-addressability fundamentally alter the

MDS
_|Metadata Access ________________—T_ ______ T T date/Sync_________
Internal Client External Client Internal Client

ORAN G e G e §dtaS) e e

| Data Access _ | Local RW™Data eplication Remole R\~ ——Data replicatiorr”iLocal RW

i Data Store Data Store i
Pooled NVMM| i | data || | [data] ; é [[data | ||| data |
KRepIication groupj

Figure 1: Orion cluster organization An Orion cluster con-
sists of a metadata server, clients and data stores.

relationship among memory, storage, and network, motivat-
ing Orion to use a clean-slate approach to combine the file
system and networking into a single layer. Orion achieves the
following design goals:

e Scalable performance with low software overhead:
Scalability and low-latency are essential for Orion to
fully exploit the performance of NVMM. Orion achieves
this goal by unifying file system functions and network
operations and by accessing data structures on NVMM
directly through RDMA.

o Efficient network usage on metadata updates: Orion
caches file system data structures on clients. A client can
apply file operations locally and only send the changes
to the metadata server over the network.

e Metadata and data consistency: Orion uses a log-
structured design to maintain file system consistency
at low cost. Orion allows read parallelism but serializes
updates for file system data structures across the cluster.
It relies on atomically updated inode logs to guarantee
metadata and data consistency and uses a new coordina-
tion scheme called client arbitration to resolve conflicts.

o DAX support in a distributed file system: DAX-style
(direct load/store) access is a key benefit of NVMMs.
Orion allows clients to access data in its local NVMM
just as it could access a DAX-enabled local NVMM file
system.

o Repeated access become local access: Orion exploits
locality by migrating data to where writes occur and
making data caching an integral part of the file system
design. The log-structured design reduces the cost of
maintaining cache coherence.

o Reliability and data persistence: Orion supports meta-
data and data replication for better reliability and avail-
ability. The replication protocol also guarantees data
persistency.

The remainder of this section provides an overview of the
Orion software stack, including its hardware and software
organization. The following sections provide details of how
Orion manages metadata (Sectiond)) and provides access to
data (Section[3).

USENIX Association

17th USENIX Conference on File and Storage Technologies 223

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

MDS VFS
inode log [inodes |
L — R
201 | Gentries;
Sync %@g&/\
Fetch inode & log \ Update

External Client

I inodes |

rd

,,,,,,,,,

-

|

— ____GlobalPage Address!

iData Store
|

[] data |
‘A Read

Figure 2: Orion software organization Orion exposes as a
log-structured file system across MDS and clients. Clients
maintain local copies of inode metadata and sync with the
MDS, and access data at remote data stores or local NVMM
directly.

3.1 Cluster Organization

An Orion cluster consists of a metadata server (MDS), several
data stores (DSs) organized in replication groups, and clients
all connected via an RDMA network. Figure |1| shows the
architecture of an Orion cluster and illustrates these roles.

The MDS manages metadata. It establishes an RDMA
connection to each of the clients. Clients can propagate local
changes to the MDS and retrieve updates made by other
clients.

Orion allows clients to manage and access a global, shared
pool of NVMMs. Data for a file can reside at a single DS or
span multiple DSs. A client can access a remote DS using
one-sided RDMA and its local NVMMs using load and store
instructions.

Internal clients have local NVMM that Orion manages.
Internal clients also act as a DSs for other clients. External
clients do not have local NVMM, so they can access data on
DSs but cannot store data themselves.

Orion supports replication of both metadata and data. The
MDS can run as a high-availability pair consisting of a pri-
mary server and a mirror using Mojim [76]-style replica-
tion. Mojim provides low latency replication for NVMM by
maintaining a single replica and only making updates at the
primary.

Orion organizes DSs into replication groups, and the DSs
in the group have identical data layouts. Orion uses broadcast
replication for data.

3.2 Software Organization

Orion’s software runs on the clients and the MDS. It exposes
a normal POSIX interface and consists of kernel modules that
manage file and metadata in NVMM and handle communi-
cation between the MDS and clients. Running in the kernel

avoids the frequent context switches, copies, and kernel/user
crossing that conventional two-layer distributed file systems
designs require.

The file system in Orion inherits some design elements
from NOVA [73l[74]], a log-structured POSIX-compliant local
NVMM file system. Orion adopts NOVA’s highly-optimized
mechanisms for managing file data and metadata in NVMM.
Specifically, Orion’s local file system layout, inode log data
structure, and radix trees for indexing file data in DRAM
are inherited from NOVA, with necessary changes to make
metadata accessible and meaningful across nodes. Figure 2]
shows the overall software organization of the Orion file
system.

An Orion inode contains pointers to the head and tail of a
metadata log stored in a linked list of NVMM pages. A log’s
entries record all modifications to the file and hold pointers to
the file’s data blocks. Orion uses the log to build virtual file
system (VFS) inodes in DRAM along with indices that map
file offsets to data blocks. The MDS contains the metadata
structures of the whole file system including authoritative
inodes and their logs. Each client maintains a local copy of
each inode and its logs for the files it has opened.

Copying the logs to the clients simplifies and accelerates
metadata management. A client can recover all metadata of
a file by walking through the log. Also, clients can apply
a log entry locally in response to a file system request and
then propagate it to the MDS. A client can also tell whether
an inode is up-to-date by comparing the local and remote
log tail. An up-to-date log should be equivalent on both the
client and the MDS, and this invariant is the basis for our
metadata coherency protocol. Because MDS inode log entries
are immutable except during garbage collection and logs are
append-only, logs are amenable to direct copying via RDMA
reads (see Section).

Orion distributes data across DSs (including the internal
clients) and replicates the data within replication groups. To
locate data among these nodes, Orion uses global page ad-
dresses (GPAs) to identify pages. Clients use a GPA to locate
both the replication group and data for a page. For data reads,
clients can read from any node within a replication group
using the global address. For data updates, Orion performs
a copy-on-write on the data block and appends a log entry
reflecting the change in metadata (e.g., write offset, size, and
the address to the new data block). For internal clients, the
copy-on-write migrates the block into the local NVMM if
space is available.

An Orion client also maintains a client-side data cache.
The cache, combined with the copy-on-write mechanism, lets
Orion exploit and enhance data locality. Rather than relying
on the operating system’s generic page cache, Orion manages
DRAM as a customized cache that allows it to access cached
pages using GPAs without a layer of indirection. This also
simplifies cache coherence.

224 17th USENIX Conference on File and Storage Technologies

USENIX Association

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

nilanjan
Highlight

4 Metadata Management

Since metadata updates are often on an application’s critical
path, a distributed file system must handle metadata requests
quickly. Orion’s MDS manages all metadata updates and
holds the authoritative, persistent copy of metadata. Clients
cache metadata locally as they access and update files, and
they must propagate changes to both the MDS and other
clients to maintain coherence.

Below, we describe how Orion’s metadata system meets
both these performance and correctness goals using a combi-
nation of communication mechanisms, latency optimizations,
and a novel arbitration scheme to avoid locking.

4.1 Metadata Communication

The MDS orchestrates metadata communication in Orion, and
all authoritative metadata updates occur there. Clients do not
exchange metadata. Instead, an Orion client communicates
with the MDS to fetch file metadata, commit changes and
apply changes committed by other clients.

Clients communicate with the MDS using three methods
depending on the complexity of the operation they need to
perform: (1) direct RDMA reads, (2) speculative and highly-
optimized log commits, and (3) acknowledged remote proce-
dure calls (RPCs).

These three methods span a range of options from simple/-
lightweight (direct RDMA reads) to complex/heavyweight
(RPC). We use RDMA reads from the MDS whenever possi-
ble because they do not require CPU intervention, maximizing
MDS scalability.

Below, we describe each of these mechanisms in detail
followed by an example. Then, we describe several additional
optimizations Orion applies to make metadata updates more
efficient.

RDMA reads Clients use one-sided RDMA reads to pull
metadata from the MDS when needed, for instance, on file
open. Orion uses wide pointers that contain a pointer to the
client’s local copy of the metadata as well as a GPA that points
to the same data on the MDS. A client can walk through its
local log by following the local pointers, or fetch the log
pages from the MDS using the GPAs.

The clients can access the inode and log for a file using
RDMA reads since NVMM is byte addressable. These ac-
cesses bypass the MDS CPU, which improves scalability.

Log commits Clients use log commits to update metadata
for a file. The client first performs file operations locally by
appending a log entry to the local copy of the inode log. Then
it forwards the entry to the MDS and waits for completion.
Log commits use RDMA sends. Log entries usually fit in
two cache lines, so the RDMA NIC can send them as inlined
messages, further reducing latencies. Once it receives the
acknowledgment for the send, the client updates its local log

Client
Inode table: Q/_M ® M Header VFS|
Inode: [| <r_addr,1_head,1 tajlj'} Trvers Q> |
e o
Inode log: :U [] l—*l \| | |
| = AN
:I @I Committed @ \ :
MDS Il i =
/! I Committed _ _ _ _ _ mm.
::® v ol ®
Inode log: || T [| :
I ! (@)
Inode: [<addr, r_héad,unused, > e
Inode table: == @ VES

open() :@ [Client] send a RPC ® [MDS] process the RPC
® [MDS] RDMA_Write to inode & first log page () [Client] RDMA_Read more pages
setattr() :® [Client] append, send a log entry, update |_tail

(® [MDS] memcpy & update r_tail @ [MDS] Update VFS

Figure 3: Orion metadata communication Orion maintains
metadata structures such as inode logs on both MDS and
clients. A client commit file system updates through Log
Commits and RPCs.

tail, completing the operation. Orion allows multiple clients
to commit log entries of a single inode without distributed
locking using a mechanism called client arbitration that can
resolve inconsistencies between inode logs on the clients

(Section[d.3).

Remote procedure calls Orion uses synchronous remote
procedure calls (RPCs) for metadata accesses that involve
multiple inodes as well as operations that affect other clients
(e.g., afile write with O_APPEND flag).

Orion RPCs use a send verb and an RDMA write. An RPC
message contains an opcode along with metadata updates
and/or log entries that the MDS needs to apply atomically.
The MDS performs the procedure call and responds via one-
sided RDMA write or message send depending on the opcode.
The client blocks until the response arrives.

Example Figure[|illustrates metadata communication. For
open () (an RPC-based metadata update), the client allo-
cates space for the inode and log, and issues an RPC @ The
MDS handles the RPC @ and responds by writing the inode
along with the first log page using RDMA @ The client uses
RDMA to read more pages if needed and builds VFS data
structures (4).

For a setattr () request (a log commit based metadata
update), the client creates a local entry with the update and
issues a log commit @ It then updates its local tail pointer
atomically after it has sent the log commit. Upon receiving
the log entry, the MDS appends the log entry, updates the log
tail @ and updates the corresponding data structure in VFS

RDMA Optimizations Orion avoids data copying within

USENIX Association

17th USENIX Conference on File and Storage Technologies 225

nilanjan
Highlight

Client —MDS
NetThreads

FS Threads

= g

_ﬂi uAppend inode Iog !
| Enqueue (ino%4) | —— Tindate VES AR |
”“Rmease bt | [[3aghae TES/ORAM)
CQ RDMA_ buf 7777777777777777 TaskQ —

DLog commit Iinode log DRPC DPendmg WRs [“{Current task

Figure 4: MDS request handling The MDS handles client
requests in two stages: First, networking threads handle
RDMA completion queue entries (CQEs) and dispatch them
to file system threads. Next, file system threads handle RPCs
and update the VFS.

a node whenever possible. Both client-initiated RDMA reads
and MDS-initiated RDMA writes (e.g., in response to an
RPC) target client file system data structures directly. Addi-
tionally, log entries in Orion contain extra space (shown as
message headers in Figure [3)) to accommodate headers used
for networking. Aside from the DMA that the RNIC performs,
the client copies metadata at most once (to avoid concurrent
updates to the same inode) during a file operation.

Orion also uses relative pointers in file system data struc-
tures to leverage the linear addressing in kernel memory man-
agement. NVMM on a node appears as contiguous memory
regions in both kernel virtual and physical address spaces.
Orion can create either type of address by adding the relative
pointer to the appropriate base address. Relative pointers are
also meaningful across power failures.

4.2 Minimizing Commit Latency

The latency of request handling, especially for log commits,
is critical for the I/O performance of the whole cluster. Orion
uses dedicated threads to handle per-client receive queues as
well as file system updates. Figure] shows the MDS request
handling process.

For each client, the MDS registers a small (256 KB) portion
of NVMM as a communication buffer. The MDS handles
incoming requests in two stages: A network thread polls
the RDMA completion queues (CQs) for work requests on
pre-posted RDMA buffers and dispatches the requests to file
system threads. As an optimization, the MDS prioritizes log
commits by allowing network threads to append log entries
directly. Then, a file system thread handles the requests by
updating file system structures in DRAM for a log commit
or serving the requests for an RPC. Each file system thread
maintains a FIFO containing pointers to updated log entries
or RDMA buffers holding RPC requests.

For a log commit, a network thread reads the inode number,
appends the entry by issuing non-temporal moves and then
atomically updates the tail pointer. At this point, other clients
can read the committed entry and apply it to their local copy

Timeline Log commit IEIRDMA Read Append Log I:I Update DRAM Handle RPC

Logs [o[if 2] [o Q] 2 | [0 [T 1]

Client B Sendl H @ I\ RPC -
AV AVRY .
D ‘

Client B

cQ ! 1

toenta] (B[] HIET]
inode log 0 | 1 |2|3| |0|1|2 3] |0| 71

MDS i

Client A
i i i-w i _

|oi1|z|3||0|1| 3 [
(b)

inode log

(C)

Figure 5: Metadata consistency in Orion The inode log
on Client A is consistent after (a) updating the log entry
committed by another client using RDMA reads, (c) issuing
an RPC, and (b) rebuilding the log on conflicts.

of the inode log. The network thread then releases the recv
buffer by posting a recv verb, allowing its reuse. Finally, it
dispatches the task for updating in-DRAM data structures to
a file system thread based on the inode number.

For RPCs, the network thread dispatches the request di-
rectly to a file system thread. Each thread processes requests
to a subset of inodes to ensure better locality and less con-
tention for locks. The file system threads use lightweight
journals for RPCs involving inodes that belong to multiple
file system threads.

File system threads perform garbage collection (GC) when
the number of “dead” entries in a log becomes too large.
Orion rebuilds the inode log by copying live entries to new
log pages. It then updates the log pointers and increases the
version number. Orion makes this update atomic by packing
the version number and tail pointer into 64 bits. The thread
frees stale log pages after a delay, allowing ongoing RDMA
reads to complete. Currently we set the maximal size of file
writes in a log entry to be 512 MB.

4.3 Client Arbitration

Orion allows multiple clients to commit log entries to a sin-
gle inode at the same time using a mechanism called client
arbitration rather than distributed locking. Client arbitration
builds on the following observations:

1. Handling an inbound RDMA read is much cheaper than
sending an outbound write. In our experiments, a single
host can serve over 15 M inbound reads per second but
only 1.9 M outbound writes per second.

2. For the MDS, CPU time is precious. Having the MDS ini-
tiate messages to maintain consistency will reduce Orion
performance significantly.

3. Log append operations are lightweight: each one takes
around just 500 CPU cycles.

A client commits a log entry by issuing a send verb and

226 17th USENIX Conference on File and Storage Technologies

USENIX Association

polling for its completion. The MDS appends log commits
based on arrival order and updates log tails atomically. A
client can determine whether a local inode is up-to-date by
comparing the log length of its local copy of the log and the
authoritative copy at the MDS. Clients can check the length
of an inode’s log by retrieving its tail pointer with an RDMA
read.

The client issues these reads in the background when han-
dling an I/O request. If another client has modified the log,
the client detects the mismatch and fetches the new log entries
using additional RDMA reads and retries.

If the MDS has committed multiple log entries in a different
order due to concurrent accesses, the client blocks the current
request and finds the last log entry that is in sync with the
MDS, it then fetches all following log entries from the MDS,
rebuilds its in-DRAM structures, and re-executes the user
request.

Figure [shows the three different cases of concurrent ac-
cesses to a single inode. In (a), the client A can append the
log entry #2 from client B by extending its inode log. In (b),
the client A misses the log entry #2 committed by client B,
so it will rebuild the inode log on the next request. In (c),
the MDS will execute concurrent RPCs to the same inode
sequentially, and the client will see the updated log tail in the
RPC acknowledgment.

A rebuild occurs when all of the following occur at the
same time: (1) two or more clients access the same file at
the same time and one of the accesses is log commit, (2) one
client issues two log commits consecutively, and (3) the MDS
accepts the log commit from another client after the client
RDMA reads the inode tail but before the MDS accepts the
second log commit.

In our experience this situation happens very rarely, be-
cause the “window of vulnerability” — the time required to
perform a log append on the MDS - is short. That said, Orion
lets applications identify files that are likely targets of inten-
sive sharing via an 1oct 1. Orion uses RPCs for all updates
to these inodes in order to avoid rebuilds.

5 Data Management

Orion pools NVMM spread across internal clients and data
stores. A client can allocate and access data either locally (if
the data are local) or remotely via one-sided RDMA. Clients
use local caches and migration during copy-on-write opera-
tions to reduce the number of remote accesses.

5.1 Delegated Allocation

To avoid allocating data on the critical path, Orion uses a
distributed, two-stage memory allocation scheme.

The MDS keeps a bitmap of all the pages Orion manages.
Clients request large chunks of storage space from the MDS
via an RPC. The client can then autonomously allocate space

DS-A DS-B DS-C

0 5 0 0 3
|||||||||!|||| 5
Client *@) @/
Inode: _ 7 | blocktree:
T N Pid (per-égode)
Inode log: | [$,6[[8,2] c,3 || 00 ®@
W T et Q00O
@\ file_write entrieb
\@ my_chunks:
Data$: ML [[[[] % i —
MDS : @
Inode: ¢ [WTTO
......... @ | ¢
inode log: [TRELBATIEE | | o T’

INIT :@®[MDS] Assign chunk (DS-C) to client (my_chunks)

open() :@®@|Client] Build inode block_tree from inode log

read() :®|[Client] Alloc from DRAM cache and RDMA_Read from DS-B

write() : @ [Client] Alloc from my_chunks ~ ®[Client] memcpy_nt to NVMM
® [Client] Commit log entry @ [MDS] Append log entry

Figure 6: Orion data communication Orion allows clients
manage and access data independently.

within those chunks. This design frees the MDS from manag-
ing fine-grain data blocks, and allows clients to allocate pages
with low overhead.

The MDS allocates internal clients chunks of its local
NVMM when possible since local writes are faster. As a
result, most of their writes go to local NVMM.

5.2 Data Access

To read file data, a client either communicates with the DS
using one-sided RDMA or accesses its local NVMM via DAX
(if it is an internal client and the data is local). Remote reads
use one-sided RDMA reads to retrieve existing file data and
place it in local DRAM pages that serve as a cache for future
reads.

Remote writes can also be one-sided because allocation
occurs at the client. Once the transfer is complete, the client
issues a log commit to the MDS.

Figure [§| demonstrates Orion’s data access mechanisms. A
client can request a block chunk from the MDS via an RPC
@. When the client opens a file, it builds a radix tree for
fast lookup from file offsets to log entries @ When handling
a read () request, the client reads from the DS (DS-B) to
its local DRAM and update the corresponding log entry @
Forawrite () request, it allocates from its local chunk @
and issues memcpy_nt () and sfence to ensure that the
data reaches its local NVMM (DS-C) @ Then a log entry
containing information such as the GPA and size is committed
to the MDS @ Finally, the MDS appends the log entry @

USENIX Association

17th USENIX Conference on File and Storage Technologies 227

5.3 Data Persistence

Orion always ensures that metadata is consistent, but, like
many file systems, it can relax the consistency requirement
on data based on user preferences and the availability of
replication.

The essence of Orion’s data consistency guarantee is the
extent to which the MDS delays the log commit for a file
update. For a weak consistency guarantee, an external client
can forward a speculative log commit to the MDS before its
remote file update has completed at a DS. This consistency
level is comparable to the write-back mode in ext4 and can
result in corrupted data pages but maintains metadata integrity.
For strong data consistency that is comparable to NOVA and
the data journaling mode in ext4, Orion can delay the log
commit until after the file update is persistent at multiple DSs
in the replication group.

Achieving strong consistency over RDMA is hard because
RDMA hardware does not provide a standard mechanism to
force writes into remote NVMM. For strongly consistent data
updates, our algorithm is as follows.

A client that wishes to make a consistent file update uses
copy-on-write to allocate new pages on all nodes in the appro-
priate replica group, then uses RDMA writes to update the
pages. In parallel, the client issues a speculative log commit
to the MDS for the update.

DSs within the replica group detect the RDMA writes to
new pages using an RDMA trick: when clients use RDMA
writes on the new pages, they include the page’s global ad-
dress as an immediate value that travels to the target in the
RDMA packet header. This value appears in the target NIC’s
completion queue, so the DS can detect modifications to its
pages. For each updated page, the DS forces the page into
NVMM and sends an acknowledgment via a small RDMA
write to the MDS, which processes the client’s log commit
once it reads a sufficient number of acknowledgments in its
DRAM.

5.4 Fault Tolerance

The high performance and density of NVMM makes the
cost of rebuilding a node much higher than recovering it.
Consequently, Orion makes its best effort to recover the node
after detecting an error. If the node can recover (e.g., after a
power failure and most software bugs), it can rejoin the Orion
cluster and recover to a consistent state quickly. For NVMM
media errors, module failures, or data-corrupting bugs, Orion
rebuilds the node using the data and metadata from other
replicas. It uses relative pointers and global page addresses to
ensure metadata in NVMM remain meaningful across power
failures.

In the metadata subsystem, for MDS failures, Orion builds
a Mojim-like [76] high-availability pair consisting of a pri-
mary MDS and a mirror. All metadata updates flow to the
primary MDS, which propagates the changes to the mirror.

When the primary fails, the mirror takes over and journals all
the incoming requests while the primary recovers.

In the data subsystem, for DS failures, the DS journals
the immediate values of incoming RDMA write requests in
a circular buffer. A failed DS can recover by obtaining the
pages committed during its downtime from a peer DS in the
same replication group. When there are failed nodes in a
replication group, the rest of the nodes work in the strong
data consistency mode introduced in Section [5.3]to ensure
successful recovery in the event of further failures.

6 Evaluation

In this section, we evaluate the performance of Orion by
comparing it to existing distributed file systems as well as
local file systems. We answer the following questions:

e How does Orion’s one-layer design affect its perfor-
mance compared to existing two-layer distributed file
systems?

e How much overhead does managing distributed data and
metadata add compared to running a local NVMM file
system?

e How does configuring Orion for different levels of relia-
bility affect performance?

e How scalable is Orion’s MDS?

We describe the experimental setup and then evaluate Orion
with micro- and macrobenchmarks. Then we measure the
impact of data replication and the ability to scale over parallel
workloads.

6.1 Experimental Setup

We run Orion on a cluster with 10 nodes configured to emulate
persistent memory with DRAM. Each node has two quad-core
Intel Xeon (Westmere-EP) CPUs with 48 GB of DRAM, with
32 GB configured as an emulated pmem device. Each node
has an RDMA NIC (Mellanox ConnectX-2 40 Gbps HCA)
running in Infiniband mode and connects to an Infiniband
switch (QLogic 12300). We disabled the Direct Cache Access
feature on DSs. To demonstrate the impact to co-located
applications, we use a dedicated core for issuing and handling
RDMA requests on each client.

We build our Orion prototype on the Linux 4.10 kernel with
the RDMA verb kernel modules from Mellanox OFED [42].
The file system in Orion reuses code from NOVA but adds
~8K lines of code to support distributed functionalities and
data structures. The networking module in Orion is built from
scratch and comprises another ~8K lines of code.

We compare Orion with three distributed file systems
Ceph [69], Gluster [19], and Octopus [41] running on the
same RDMA network. We also compare Orion to ext4
mounted on a remote iSCSI target hosting a ramdisk us-
ing iSCSI Extension over RDMA (iSER) [[12]] (denoted by
Ext4/iSER), which provides the client with private access to

228 17th USENIX Conference on File and Storage Technologies

USENIX Association

(a) MDS update latency

(b) Orion Compared to DFSs
581/417 932

(c) Orion Compared to Local FSs

§10 100 30

S 8 80 -

b 20

S 61 60

€

£ 44 40 - AL

> 0 M 10-

g

el I il [
S O N . 0 , . . LA VN el o L | ! ! ; !

RTT RPC Log create mkdir unlink rmdir read write create mkdir unlink rmdir read write
commit 4 KB 4 KB 4KB 4KB
=3 Orion-IC A Octopus [Gluster E=3 Orion-IC CZ3 NOVA
E= Orion-EC =] Ceph 2 Ext4/iSER E= Orion-EC 3 Ext4-DAX

Figure 7: Average latency of Orion metadata and data operations Orion is built on low-latency communication primitive
(a). These lead to basic file operation latencies that are better than existing remote-access storage system (b) and within a small

factor of local NVMM file systems (c).

a remote block device. Finally, we compare our system with
two local DAX file systems: NOVA [73/74] and ext4 in DAX
mode (ext4-DAX).

6.2 Microbenchmarks

We begin by measuring the networking latency of log com-
mits and RPCs. Figure[7|a) shows the latency of a log commit
and an RPC compared to the network round trip time (RTT)
using two sends verbs. Our evaluation platform has a net-
work round trip time of 7.96 us. The latency of issuing an
Orion RPC request and obtaining the response is 8.5 us. Log
commits have much lower latency since the client waits until
receiving the acknowledgment of an RDMA send work re-
quest, which takes less than half of the network round trip
time: they complete in less than 2 us.

Figure[7[b) shows the metadata operation latency on Orion
and other distributed file systems. We evaluated basic file sys-
tem metadata operations such as create, mkdir, unlink,
rmdir as well as reading and writing random 4 KB data
using FIO [6]. Latencies for Ceph and Gluster are between
34% and 443% higher than Orion.

Octopus performs better than Orion on mkdir, unlink
and rmdir, because Octopus uses a simplified file system
model: it maintains all files and directories in a per-server
hash table indexed by their full path names and it assigns
a fixed number of file extents and directory entries to each
file and directory. This simplification means it cannot handle
large files or directories.

Ext4/iSER outperforms Orion on some metadata opera-
tions because it considers metadata updates complete once
they enter the block queue. In contrast, NVMM-aware sys-
tems (such as Orion or Octopus) report the full latency for
persistent metadata updates. The 4 KB read and write mea-
surements in the figure give a better measure of I/O latency —
Orion outperforms Ext4/iSER configuration by between 4.9 x

< 1952 MB/s 4523 MB/s 6791 MB/s 30.3 Kop/sp

> 1.0 -—= - A1

= I

. 0.81

£ (

& 0.6 A

a] N

ey 0.4 1

2 i < D

= 02 4

= \ D

0.0 T T t

varmail fileserver webserver mongodb

=3 Orion-IC 71 Ceph [EXT4/iSER [EZ0 Ext4-DAX

== Orion-EC =1 Gluster [A NOVA

Figure 8: Application performance on Orion The graph is
normalized to NOVA, and the annotations give NOVA’s per-
formance. For write-intensive workloads, Orion outperforms
Ceph and Gluster by a wide margin.

and 10.9x.

For file reads and writes, Orion has the lowest latency
among all the distributed file systems we tested. For internal
clients (Orion-IC), Orion’s 4 KB read latency is 3.6 us and
4 KB write latency of 5.8 us. For external clients (Orion-
EC), the write latency is 7.9 us and read latency is similar
to internal clients because of client-side caching. For cache
misses, read latency is 7.9 us.

We compare Orion to NOVA and Ext4-DAX in Figure[7|c).
For metadata operations, Orion sends an RPC to the MDS on
the critical path, increasing latency by between 98% to 196%
compared to NOVA and between 31% and 106% compared
to Ext4-DAX. If we deduct the networking round trip latency,
Orion increases software overheads by 41%.

6.3 Macrobenchmarks

We use three Filebench [64] workloads (varmail, fileserver
and webserver) as well as MongoDB [4]] running YCSB’s [|16]

USENIX Association

17th USENIX Conference on File and Storage Technologies 229

Avg. File | R/W Append
Workload | 'y cads | Files | Size Size Size
varmail 8 30K 16 KB 1 MB 16 KB
fileserver 8 10K | 128 KB 1 MB 16 KB
webserver 8 50K 64 KB 1 MB 8 KB
mongodb 12 YCSB-A, RecordCount=1M, OpCount=10M

Table 2: Application workload characteristics This table
includes the configurations for three filebench workloads and
the properties of YCSB-A.

Workload A (50% read/50% update) to evaluate Orion. Ta-
ble[2ldescribes the workload characteristics. We could not run
these workloads on Octopus because it limits the directory
entries and the number of file extents, and it ran out of mem-
ory when we increased those limits to meet the workloads’
requirements.

Figure [shows the performance of Orion internal and ex-
ternal clients along with other file systems. For filebench
workloads, Orion outperforms Gluster and Ceph by a large
margin (up to 40x). We observe that the high synchroniza-
tion cost in Ceph and Gluster makes them only suitable for
workloads with high queue depths, which are less likely on
NVMM because media access latency is low. For MongoDB,
Orion outperforms other distributed file systems by a smaller
margin because of the less intensive I/O activities.

Although Ext4/iSER does not support sharing, file sys-
tem synchronization (e.g., £sync ()) is expensive because
it flushes the block queue over RDMA. Orion outperforms
Ext4/iSER in most workloads, especially for those that re-
quire frequent synchronization, such as varmail (with 4.5x
higher throughput). For webserver, a read-intensive workload,
Ext4/iSER performs better than local Ext4-DAX and Orion
because it uses the buffer cache to hold most of the data and
does not flush writes to storage.

Orion achieves an average of 73% of NOVA'’s throughput.
It also outperforms Ext4-DAX on metadata and I/O intensive
workloads such as varmail and filebench. For Webserver, a
read-intensive workload, Orion is slower because it needs to
communicate with the MDS.

The performance gap between external clients and inter-
nal clients is small in our experiments, especially for write
requests. This is because our hardware does not support the
optimized cache flush instructions that Intel plans to add in
the near future [51]]. Internal clients persist local writes using
clflush or non-temporal memory copy with fences; both
of which are expensive [[76].

6.4 Metadata and Data Replication

Figure 0] shows the performance impact of metadata and data
replication. We compare the performance of a single internal
client (IC), a single external client (EC), an internal client
with one and two replicas (IC+1R, +2R), and an internal client

~ 15
2
S £ 1.00 A
] @
. >
g 10 5 0751
] 3
£ <, 0.50
> 5 S
= S 0.25 A
0 =
8
0 t 0.00 t } 1
4K randwrite varmail fileserver webserver
X1 IC [EC [IC+1R [=1 +2R [+2R+M

Figure 9: Orion data replication performance Updating a
remote replica adds significantly to random write latency, but
the impact on overall benchmark performance is small.

with two replicas and MDS replication (+2R+M). For a 4 KB
write, it takes an internal client 12.1 us to complete with our
strongest reliability scheme (+2R+M), which is 2.1 x longer
than internal client and 1.5 longer than an external client.
For filebench workloads, overall performance decreases by
between 2.3% and 15.4%.

6.5 MDS Scalability

Orion uses a single MDS with a read-only mirror to avoid the
overhead of synchronizing metadata updates across multiple
nodes. However, using a single MDS raises scalability con-
cerns. In this section, we run an MDS paired with 8 internal
clients to evaluate the system under heavy metadata traffic.

We measure MDS performance scalability by stressing
it with different types of requests: client initiated inbound
RDMA reads, log commits, and RPCs. Figuremeasures
throughput for the MDS handling concurrent requests from
different numbers of clients. For inbound RDMA reads (a),
each client posts RDMA reads for an 8-byte field, simulating
reading the log tail pointers of inodes. In (b) the client sends
64-byte log commits spread across 10,000 inodes. In (c) the
clients send 64-byte RPCs and the MDS responds with 32-
byte acknowledgments. Each RPC targets one of the 10,000
inodes. Finally, in (d) we use FIO to perform 4 KB random
writes from each client to private file.

Inbound RDMA reads have the best performance and scale
well: with eight clients, the MDS performs 13.8 M RDMA
reads per second — 7.2 the single-client performance. For
log commits, peak throughput is 2.5 M operations per sec-
ond with eight clients — 4.1 x the performance for a single
client. Log commit scalability is lower because the MDS must
perform the log append in software. The MDS can perform
772 K RPCs per second with seven clients (6.2 x more than
a single). Adding an eighth does not improve performance
due to contention among threads polling CQEs and threads
handling RPCs. The FIO write test shows good scalability —
7.9 x improvement with eight threads. Orion matches NOVA
performance with two clients and out-performs NOVA by

230 17th USENIX Conference on File and Storage Technologies

USENIX Association

(@) MDS inbound RDMA (8B)
0

(b) Log commit (64B)

(c) RPC (64B / 32B) (d) FIO 4K randwrite

- 1500
a =@-— Orion
9 2000 1 600 - 750 4 == NovA
= 10000 1
2 1000 400 A 500 A
2 i
5000 A
S 200 - 2501 =8 e
c
l_ 0 T T T T T T T T O T T T T T T T T 0 T T T T T T T T O T T T T T T T T
1 2345¢6 78 1 2345¢6 738 123456 78 1 2345¢6 738
Clients # Clients # Clients # Clients

Figure 10: Orion metadata scalability for MDS metadata operations and FIO 4K randwrite Orion exhibits good scalability
with rising node counts for inbound 8 B RDMA reads (a), 64 B log commits (b), RPCs (c), and random writes (d).

4.1x on eight clients.

Orion is expected to have good scaling under these condi-
tions. Similar to other RDMA based studies, Orion is suitable
to be deployed on networks with high bisectional bandwidth
and predictable end-to-end latency, such as rack-scale com-
puters [[17,39]. In these scenarios, the single MDS design is
not a bottleneck in terms of NVMM storage, CPU utilization,
or networking utilization. Orion metadata consumes less than
3% space compared to actual file data in our experiments.
Additionally, metadata communication is written in tight rou-
tines running on dedicated cores, where most of the messages
fit within two cache lines. Previous works [7,40] show similar
designs can achieve high throughput with a single server.

In contrast, several existing distributed file systems [8L|19,
30,|69]] target data-center scale applications, and use mech-
anisms designed for these conditions. In general, Orion’s
design is orthogonal to the mechanisms used in these systems,
such as client side hashing [[19]] and partitioning [[69]], which
could be integrated into Orion as future work. On the other
hand, we expect there may be other scalability issues such
as RDMA connection management and RNIC resource con-
tention that need to be addressed to allow further scaling for
Orion. We leave this exploration as future work.

7 Related work

Orion combines ideas from NVMM file systems, distributed
file systems, distributed shared memory, user level file sys-
tems with trusted services, and recent work on how to best
utilize RDMA. Below, we place Orion in context relative to
key related work in each of these areas.

NVMM file systems Emerging NVMM technologies have
inspired researchers to build a menagerie NVMM-specific file
systems. Orion extends many ideas and implementation de-
tails from NOVA [73l74] to the distributed domain, especially
in how Orion stores and updates metadata. Orion also relies on
key insights developed in earlier systems [[15421425168)70,72].

Distributed file systems There are two common ways to
provide distributed file accesses: the first is to deploy a Clus-

tered File System (CFS) [|8}/11,20,26131,54] running on block
devices exposed via a storage area network (SAN) protocol
like iSCSI [|53]], Fiber Channel or NVMe Over Fabrics [|18]].
They use RDMA to accelerate the data path [[12,/18l[61] and
they can accelerate data transfers using zero-copy techniques
while preserving the block-based interface.

The second is to build a Distributed File System (DFS) [8,
9|19 30L|37,/38L147,/57,/57,/69] that uses local file systems
running on a set of servers to create a single, shared file system
image. They consist of servers acting in dedicated roles and
communicating using customized protocols to store metadata
and data. Some distributed file systems use RDMA as a drop-
in replacement of existing networking protocols [[10[186371]
while preserving the local file system logic.

Their diversity reflects the many competing design goals
they target. They vary in the interfaces they provide, the
consistency guarantees they make, and the applications and
deployment scenarios they target. However, these systems
target hard drives and SSDs and include optimizations such
as queuing striping and DRAM caching. Orion adds to this
diversity by rethinking how a full-featured distributed file
system can fully exploit the characteristics of NVMM and
RDMA.

Octopus [41] is a distributed file system built for RDMA
and NVMM. Compared to Orion, its design has several limi-
tations. First, Octopus assumes a simplifed file system model
and uses a static hash table to organize file system meta-
data and data, which preventing it from running complex
workloads. Second, Octopus uses client-side partitioning.
This design restricts access locality: as the number of peers
increases, common file system tasks such as traversing a direc-
tory become expensive. Orion migrates data to local NVMM
to improve locality. Finally, Octopus does not provide provi-
sions for replication of either data or metadata, so it cannot
tolerate node failures.

Trusted file system services Another research trend is to
decouple file system control plane and data plane, and build
userspace file systems [36}48,/68] with trusted services to
reduce the number of syscalls. Orion MDS plays a similar
role as the trusted service. However, Orion heavily leverages

USENIX Association

17th USENIX Conference on File and Storage Technologies 231

kernel file system mechanisms, as well as the linear address-
ing of kernel virtual addresses and DMA addresses. In order
to support DAX accesses, extending a uerspace file system
to a distributed setting must deal with issues such as large
page tables, sharing and protection across processes and page
faults, which are all not RDMA friendly.

Distributed shared memory There has been extensive
research on distributed shared memory (DSM) systems [44,
491 |50]], and several of them have considered the problem
of distributed, shared persistent memory [29,/55//56]. DSM
systems expose a simpler interface than a file system, so the
designers have made more aggressive optimizations in many
cases. However, that makes adapting existing software to use
them more challenging.

Hotpot [55] is a distributed shared persistent memory sys-
tem that allows applications to commit fine-grained objects
on memory mapped NVMM files. It is built on a customized
interface, requiring application modification. Hotpot uses a
multi-stage commit protocol for consistency, while Orion
uses client-side updates to ensure file system consistency.

Mojim [76] provides fine-grained replication on NVMM,
and Orion uses this technique to implement metadata replica-
tion.

RDMA -optimized applications Many existing works ex-
plore how RDMA can accelerate data center applications,
such as key-value stores [23}|33,43]], distributed transaction
systems [[13,24,/34]], distributed memory allocators 5,23}
66,67 and RPC implementations [35}/58]]. There are several
projects using RDMA protocols targeting to accelerate exist-
ing distributed storages [3}32] or work as a middle layer [[1}2].
Orion differs from these systems in that it handles network re-
quests directly within file systems routines, and uses RDMA
to fully exploit NVMM’s byte-addressability.

8 Conclusion

We have described and implemented Orion, a file system for
distributed NVMM and RDMA networks. By combining file
system functions and network operations into a single layer,
Orion provides low latency metadata accesses and allows
clients to access their local NVMMs directly while accepting
remote accesses. Our evaluation shows that Orion outper-
forms existing NVMM file systems by a wide margin, and it
scales well over multiple clients on parallel workloads.

Acknowledgments

The authors would like to thank our shepherd Florentina
Popovici, and the anonymous reviewers for their insight-
ful comments and suggestions. We thank members of Non-
Volatile Systems Lab for their input. The work described in
this paper is supported by a gift from Huawei.

References

[1] Accelio - Open-Source 10, Message, and RPC Acceleration Library.
https://github.com/accelio/accelio.

[2] Alluxio - Open Source Memory Speed Virtual Distributed Storage.
https://www.alluxio.org/.

[3] Crail: A fast multi-tiered distributed direct access file system. https:
//github.com/zrlio/crail.

[4

[S] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,
Jayneel Gandhi, Stanko Novakovi¢, Arun Ramanathan, Pratap Sub-
rahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian,
and Michael Wei. Remote regions: a simple abstraction for remote
memory. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18), pages 775-787, Boston, MA, 2018.

[6] Jens Axboe. Flexible I/O Tester. https://github.com/axboe/fiol

[7] Mahesh Balakrishnan, Dahlia Malkhi, John D Davis, Vijayan Prab-
hakaran, Michael Wei, and Ted Wobber. Corfu: A distributed shared
log. ACM Transactions on Computer Systems (TOCS), 31(4):10, 2013.

[8] Peter J Braam. The Lustre storage architecture, 2004.
9

=

MongoDB Community. fhttps://www.mongodb.com/community.

—

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild
Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng
Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal
Khatri, Andrew Edwards, Vaman Bedekar, Shane Mainali, Rafay Ab-
basi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq,
Deepali Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin
McNett, Sriram Sankaran, Kavitha Manivannan, and Leonidas Rigas.
Windows Azure Storage: a highly available cloud storage service with
strong consistency. In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles, pages 143—-157. ACM, 2011.

[10] Brent Callaghan, Theresa Lingutla-Raj, Alex Chiu, Peter Staubach,
and Omer Asad. NFS over RDMA. In Proceedings of the ACM SIG-
COMM workshop on Network-1/0 convergence: experience, lessons,
implications, pages 196-208. ACM, 2003.

[11] Philip H Carns, Walter B Ligon III, Robert B Ross, Rajeev Thakur,
et al. PVFS: A parallel file system for Linux clusters. In Proceedings of
the 4th annual Linux showcase and conference, pages 391-430, 2000.

[12] Mallikarjun Chadalapaka, Hemal Shah, Uri Elzur, Patricia Thaler,
and Michael Ko. A Study of iSCSI Extensions for RDMA (iSER).
In Proceedings of the ACM SIGCOMM Workshop on Network-1/O
Convergence: Experience, Lessons, Implications, NICELI *03, pages
209-219. ACM, 2003.

[13] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen.
Fast and general distributed transactions using RDMA and HTM. In
Proceedings of the Eleventh European Conference on Computer Sys-
tems, page 26. ACM, 2016.

[14] Dave Chinner. xfs: DAX support. https:/Iwn.net/Articles/635514/.
Accessed 2019-01-05.

[15] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. Better I/0 through
byte-addressable, persistent memory. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, SOSP *09,
pages 133-146, 2009.

[16] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with YCSB.
In Proceedings of the 1st ACM symposium on Cloud computing, pages
143-154. ACM, 2010.

[17] Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian Kash. R2¢2: A
network stack for rack-scale computers. In ACM SIGCOMM Computer
Communication Review, volume 45, pages 551-564. ACM, 2015.

[18] Patrice Couvert. High speed IO processor for NVMe over fabric
(NVMeoF). Flash Memory Summit, 2016.

232 17th USENIX Conference on File and Storage Technologies

USENIX Association

https://github.com/accelio/accelio
https://www.alluxio.org/
https://github.com/zrlio/crail
https://github.com/zrlio/crail
https://www.mongodb.com/community
https://github.com/axboe/fio
https://lwn.net/Articles/635514/

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

Alex Davies and Alessandro Orsaria. Scale out with GlusterFS. Linux
Journal, 2013(235):1, 2013.

Matt DeBergalis, Peter Corbett, Steve Kleiman, Arthur Lent, Dave
Noveck, Tom Talpey, and Mark Wittle. The Direct Access File System.
In Proceedings of the 2nd USENIX Conference on File and Storage
Technologies, FAST 03, pages 175-188, Berkeley, CA, USA, 2003.
USENIX Association.

Mingkai Dong and Haibo Chen. Soft updates made simple and fast on
non-volatile memory. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17). USENIX Association, Santa Clara, CA, pages 719—
731, 2017.

Chet Douglas. RDMA with PMEM, Software mecha-
nisms for enabling access to remote persistent memory.
http://www.snia.org/sites/default/files/SDC15 _presentations/
persistant_mem/ChetDouglas_RDMA _with_PM.pdf. Accessed
2019-01-05.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Orion Hodson, and
Miguel Castro. FaRM: Fast remote memory. In Proceedings of the
11th USENIX Conference on Networked Systems Design and Imple-
mentation, pages 401-414, 2014.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Edmund B. Nightin-
gale, Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel
Castro. No compromises: Distributed transactions with consistency,
availability, and performance. In Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP "15, pages 54-70. ACM, 2015.

Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System
Software for Persistent Memory. In Proceedings of the Ninth European
Conference on Computer Systems, EuroSys *14, pages 15:1-15:15.
ACM, 2014.

Chandramohan A Thekkath Edward K. Lee. Petal: Distributed Virtual
Disks. ASPLOS VII, pages 1-9, 1996.

R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui,
J. Javanifard, K. Tedrow, T. Tsushima, Y. Shibahara, and G. Hush. A
16Gb ReRAM with 200MB/s write and 1GB/s read in 27nm technology.
In Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2014 IEEE International, pages 338-339, Feb 2014.

Mike Ferron-Jones. A New Breakthrough in Persistent Mem-
ory Gets Its First Public Demo. https://itpeernetwork.intel.com/
new-breakthrough-persistent-memory-first-public-demo/. Accessed
2019-01-05.

Jodo Garcia, Paulo Ferreira, and Paulo Guedes. The PerDiS FS: A trans-
actional file system for a distributed persistent store. In Proceedings of
the 8th ACM SIGOPS European workshop on Support for composing
distributed applications, pages 189-194. ACM, 1998.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google
File System. In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, SOSP ’03, pages 29-43. ACM, 2003.

Garth A. Gibson, David F. Nagle, Khalil Amiri, Fay W. Chang, Eu-
gene M. Feinberg, Howard Gobioff, Chen Lee, Berend Ozceri, Erik
Riedel, David Rochberg, and Jim Zelenka. File server scaling with
network-attached secure disks. In ACM SIGMETRICS Performance
Evaluation Review, volume 25, pages 272-284. ACM, 1997.

Nusrat Sharmin Islam, Md Wasi-ur Rahman, Xiaoyi Lu, and Dha-
baleswar K Panda. High performance design for HDFS with byte-
addressability of NVM and RDMA. In Proceedings of the 2016 Inter-
national Conference on Supercomputing, page 8. ACM, 2016.

Anuj Kalia, Michael Kaminsky, and David G Andersen. Using RDMA
efficiently for key-value services. In ACM SIGCOMM Computer Com-
munication Review, volume 44, pages 295-306. ACM, 2014.

Anuj Kalia, Michael Kaminsky, and David G Andersen. FaSST: Fast,
Scalable and Simple Distributed Transactions with Two-Sided (RDMA)
Datagram RPCs. In OSDI, volume 16, pages 185-201, 2016.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Anuj Kalia Michael Kaminsky and David G Andersen. Design guide-
lines for high performance RDMA systems. In 2016 USENIX Annual
Technical Conference, page 437, 2016.

Sudarsun Kannan, Andrea C Arpaci-Dusseau, Remzi H Arpaci-
Dusseau, Yuangang Wang, Jun Xu, and Gopinath Palani. Designing a
true direct-access file system with DevFS. In 16th USENIX Conference
on File and Storage Technologies, page 241, 2018.

John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski,
Patrick Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea,
Hakim Weatherspoon, Westley Weimer, Chris Wells, and Ben Zhao.
OceanStore: An Architecture for Global-scale Persistent Storage. 2000.

Edward K. Lee, Chandramohan A. Thekkath, and Timothy Mann.
Frangipani: A Scalable Distributed File System. In Proceedings of the
sixteenth ACM symposium on Operating systems principles - SOSP
’97, volume 31, pages 224-237. ACM Press, 1997.

Sergey Legtchenko, Nicholas Chen, Daniel Cletheroe, Antony IT Row-
stron, Hugh Williams, and Xiaohan Zhao. Xfabric: A reconfigurable
in-rack network for rack-scale computers. In NSDI, volume 16, pages
15-29, 2016.

Sheng Li, Hyeontaek Lim, Victor W Lee, Jung Ho Ahn, Anuj Kalia,
Michael Kaminsky, David G Andersen, O Seongil, Sukhan Lee, and
Pradeep Dubey. Architecting to achieve a billion requests per sec-
ond throughput on a single key-value store server platform. In ACM
SIGARCH Computer Architecture News, volume 43, pages 476-488.
ACM, 2015.

Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octopus: an RDMA-
enabled distributed persistent memory file system. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages 773-785, 2017.

Mellanox. Mellanox OFED for Linux User Manual, 2017.

Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using One-Sided
RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store. In
USENIX Annual Technical Conference, pages 103—114,2013.

Bill Nitzberg and Virginia Lo. Distributed shared memory: A survey
of issues and algorithms. Computer, 24(8):52—60, 1991.

H. Noguchi, K. Ikegami, K. Kushida, K. Abe, S. Itai, S. Takaya, N. Shi-
momura, J. Ito, A. Kawasumi, H. Hara, and S. Fujita. A 3.3ns-access-
time 71.2uW/MHz 1Mb embedded STT-MRAM using physically elim-
inated read-disturb scheme and normally-off memory architecture. In
Solid-State Circuits Conference (ISSCC), 2015 IEEE International,
pages 1-3, Feb 2015.

Colby Parkinson. NVDIMM-N: Where are we now? https://www
micron.com/about/blogs/2017/august/nvdimm-n- where- are- we-now.,
Accessed 2019-01-05.

Swapnil Patil and Garth A Gibson. Scale and Concurrency of GIGA+:
File System Directories with Millions of Files. In FAST, volume 11,
pages 13-13, 2011.

Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug Woos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The
operating system is the control plane. ACM Transactions on Computer
Systems (TOCS), 33(4):11, 2016.

Jelica Protic, Milo Tomasevic, and Veljko Milutinovic. A survey
of distributed shared memory systems. In System Sciences, 1995.
Proceedings of the Twenty-Eighth Hawaii International Conference on,
volume 1, pages 74—84. IEEE, 1995.

Jelica Protic, Milo Tomasevic, and Veljko Milutinovic. Distributed
shared memory: Concepts and systems. IEEE Parallel & Distributed
Technology: Systems & Applications, 4(2):63-71, 1996.

Andy Rudoff. Processor Support for NVM Programming. http://www.
snia.org/sites/default/files/AndyRudoff_Processor_Support_-NVM.pdf,
Accessed 2019-01-05.

Arthur Sainio. NVDIMM: Changes are Here So Whats Next. In-
Memory Computing Summit, 2016.

USENIX Association

17th USENIX Conference on File and Storage Technologies 233

http://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/ChetDouglas_RDMA_with_PM.pdf
http://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/ChetDouglas_RDMA_with_PM.pdf
https://itpeernetwork.intel.com/new-breakthrough- persistent-memory-first-public-demo/
https://itpeernetwork.intel.com/new-breakthrough- persistent-memory-first-public-demo/
https://www.micron.com/about/blogs/2017/august/nvdimm-n-where-are-we-now
https://www.micron.com/about/blogs/2017/august/nvdimm-n-where-are-we-now
http://www.snia.org/sites/default/files/AndyRudoff_Processor_Support_NVM.pdf
http://www.snia.org/sites/default/files/AndyRudoff_Processor_Support_NVM.pdf

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64

[65]

[66]

[67]

[68]

[69]

[70]

Julian Satran, Kalman Meth, C Sapuntzakis, M Chadalapaka, and
E Zeidner. Internet small computer systems interface (iSCSI), 2004.

Frank Schmuck and Roger Haskin. GPFS: A Shared-Disk File System
for Large Computing Clusters. Proceedings of the First USENIX
Conference on File and Storage Technologies, pages 231-244, 2002.

Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Distributed shared
persistent memory. In Proceedings of the 2017 Symposium on Cloud
Computing, pages 323-337. ACM, 2017.

Marc Shapiro and Paulo Ferreira. Larchant-RDOSS: a distributed
shared persistent memory and its garbage collector. In International
Workshop on Distributed Algorithms, pages 198-214. Springer, 1995.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The hadoop distributed file system. In Mass storage systems
and technologies (MSST), 2010 IEEE 26th symposium on, pages 1-10.
Teee, 2010.

Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and Jonas Pfefferle.
DaRPC: Data center RPC. In Proceedings of the ACM Symposium on
Cloud Computing, pages 1-13. ACM, 2014.

Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu Guo, and Yong-
wei Wu. RFP: When RPC is Faster Than Server-Bypass with RDMA.
In Proceedings of the Twelfth European Conference on Computer Sys-
tems, EuroSys *17, pages 1-15. ACM, 2017.

Talpey and Pinkerton. RDMA Durable Write Commit. https://tools
ietf.org/html/draft-talpey-rdma-commit-00. Accessed 2019-01-05.

T Talpey and G Kamer. High Performance File Serving With SMB3
and RDMA via SMB Direct. In Storage Developers Conference, 2012.

Haodong Tang, Jian Zhang, and Fred Zhang. Accelerating Ceph with
RDMA and NVMeoF. In /4th Annual OpenFabrics Alliance (OFA)
Workshop, 2018.

Wittawat Tantisiriroj, Seung Woo Son, Swapnil Patil, Samuel J Lang,
Garth Gibson, and Robert B Ross. On the duality of data-intensive
file system design: reconciling HDFS and PVFS. In Proceedings
of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, page 67. ACM, 2011.

Vasily Tarasov, Erez Zadok, and Spencer Shepler. Filebench: A flexible
framework for file system benchmarking. USENIX; login, 41, 2016.

Hiroshi Tezuka, Francis O’Carroll, Atsushi Hori, and Yutaka Ishikawa.
Pin-down cache: A virtual memory management technique for zero-
copy communication. In Parallel Processing Symposium, 1998. IPP-
S/SPDP 1998. Proceedings of the First Merged International... and
Symposium on Parallel and Distributed Processing 1998, pages 308—
314. IEEE, 1998.

Animesh Trivedi, Patrick Stuedi, Bernard Metzler, Clemens Lutz, Mar-
tin Schmatz, and Thomas R Gross. Rstore: A direct-access DRAM-
based data store. In Distributed Computing Systems (ICDCS), 2015
IEEE 35th International Conference on, pages 674—685. IEEE, 2015.

Shin-Yeh Tsai and Yiying Zhang. LITE: Kernel RDMA support for
datacenter applications. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 306-324. ACM, 2017.

Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M
Swift. Aerie: Flexible file-system interfaces to storage-class memory.
In Proceedings of the Ninth European Conference on Computer
Systems, page 14. ACM, 2014.

Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and
Carlos Maltzahn. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th symposium on Operating systems
design and implementation, pages 307-320. USENIX Association,
2006.

Matthew Wilcox. Add support for NV-DIMMs to Ext4. https://lwn
net/Articles/613384/. Accessed 2019-01-05.

[71]

[72]

[73]

[74]

[75]

[76]

J. Wu, P. Wyckoff, and Dhabaleswar Panda. PVFES over InfiniBand:
Design and performance evaluation. In 2003 International Conference
on Parallel Processing, 2003. Proceedings., pages 125-132. IEEE,
2003.

Xiaojian Wu and A. L. Narasimha Reddy. SCMFS: A File System
for Storage Class Memory. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’11, pages 39:1-39:11. ACM, 2011.

Jian Xu and Steven Swanson. NOVA: A Log-structured File System
for Hybrid Volatile/Non-volatile Main Memories. In /4th USENIX
Conference on File and Storage Technologies (FAST 16), pages 323—
338, Santa Clara, CA, February 2016. USENIX Association.

Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah,
Amit Borase, Tamires Brito Da Silva, Steven Swanson, and Andy
Rudoff. NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory
File System. In 26th Symposium on Operating Systems Principles
(SOSP ’17), pages 478-496, 2017.

Yiying Zhang and Steven Swanson. A study of application performance
with non-volatile main memory. In 2015 31st Symposium on Mass
Storage Systems and Technologies (MSST), pages 1-10. IEEE, 2015.

Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swan-
son. Mojim: A reliable and highly-available non-volatile memory
system. In Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’15, pages 3—-18. ACM, 2015.

234

17th USENIX Conference on File and Storage Technologies

USENIX Association

https://tools.ietf.org/html/draft-talpey-rdma-commit-00
https://tools.ietf.org/html/draft-talpey-rdma-commit-00
https://lwn.net/Articles/613384/
https://lwn.net/Articles/613384/

	Introduction
	Background and Motivation
	Non-Volatile Main Memory
	RDMA Networking

	Design Overview
	Cluster Organization
	Software Organization

	Metadata Management
	Metadata Communication
	Minimizing Commit Latency
	Client Arbitration

	Data Management
	Delegated Allocation
	Data Access
	Data Persistence
	Fault Tolerance

	Evaluation
	Experimental Setup
	Microbenchmarks
	Macrobenchmarks
	Metadata and Data Replication
	MDS Scalability

	Related work
	Conclusion

