
RnD Project

Effects of SmartNIC-acceleration
on RAMCloud
By Shashank Tomar

INTRODUCTION

In this project we aim to analyse the RAMCloud storage system, which provides

low-latency access to a large durable datastore for large-scale datacenter applications

and identify key components of the RAMCloud system that can be offloaded to

SmartNICs in order to improve its performance.

First, we break down RAMCloud into logical subsystems and identify the components

which will benefit the most from SmartNIC acceleration. Then we develop an

approximate model of RAMCloud’s consistency mechanism and show the effects of

offloading this mechanism to a SmartNIC and the potential latency reductions that can be

achieved using DPDK and mTCP. Finally, we present a RAMCloud packet identifier that

can be offloaded to SmartNICs and identify various classes of RAMCloud RPCs and can

serve as the starting point for further offloads. We conclude this report by providing

further lines of inquiry that could prove to be fruitful.

TABLE OF CONTENTS

INTRODUCTION 1

TABLE OF CONTENTS 2

BACKGROUND - RAMCLOUD 3
Data Model 4

Server Architecture 5

Storage System 6

Durable Writes 7

Kernel Bypass and Polling 8

Transports 8

Thread Structure 9

Crash Recovery 11

Control Plane 11

SMARTNIC ACCELERATION 12
Network Function Virtualization 12

SmartNICs 12

Why is RAMCloud ideal for SmartNIC-acceleration? 12

RAMCLOUD COMPONENTS SUITABLE FOR SMARTNIC OFFLOAD 13
Rejection Rule Check 13

Replication RPC Generation 13

Dispatch-Worker Thread Architecture 14

Consensus Protocol 14

Fast Failure Detection 14

OFFLOAD EXPERIMENTS 15
Developing an approximate model of RAMCloud’s atomic operations 15

The Setup 16

Implementation 16

Results 17

Analysis 18

Analysing the Code 18

PACKET IDENTIFIER 20
Hardware-based Countermeasures 21

EXTENSIONS 22
Part-B : PoC Code Documentation 22

BACKGROUND - RAMCLOUD

RAMCloud is a general-purpose distributed storage system that keeps all data in DRAM

at all times. RAMCloud combines three overall attributes: low latency, large scale, and

durability. When used with state-of-the-art networking, RAMCloud offers exceptionally

low latency for remote access. To achieve low latency, RAMCloud stores all data in

DRAM at all times. To support large capacities (1PB or more), it aggregates the memories

of thousands of servers into a single coherent key-value store. RAMCloud ensures the

durability of DRAM-based data by keeping backup copies on secondary storage. It uses

a uniform log structured mechanism to manage both DRAM and secondary storage,

which results in high performance and efficient memory usage. RAMCloud uses a

polling-based approach to communication, bypassing the kernel to communicate directly

with NICs.

For RAMCloud to achieve its latency goals, it requires a high-performance networking

substrate with the following properties:

1. Low latency: Small packets can be delivered round-trip in less than 10μs between

arbitrary machines in a datacenter containing at least 100,000 servers.

2. High bandwidth: Each server has a network connection that runs at 10Gb/sec or

higher.

3. Full bisection bandwidth: The network has sufficient bandwidth at all levels to

support continuous transmission by all machines simultaneously without internal

congestion of the network.

Since the latency for simple reads and writes is dominated by the network hardware

(refer to the following table) and most of the latency budget for a RAMCloud RPC is

consumed by the network or by communication with the NIC, the system is a prime

candidate for SmartNIC acceleration.

1

1 "The RAMCloud Storage System | ACM Transactions on Computer"
https://dl.acm.org/doi/10.1145/2806887. Accessed 24 May. 2021.

https://dl.acm.org/doi/10.1145/2806887

Data Model

Data in RAMCloud is divided into tables, each of which is identified by a unique textual

name and a unique 64-bit identifier. A table contains any number of objects, each of

which contains the following information:

● A variable-length key, up to 64KB, which must be unique within its table.

● A variable-length value, up to 1MB.

● A 64-bit version number. When an object is written, RAMCloud guarantees that its

new version number will be higher than any previous version number used for the

same object (this property holds even if an object is deleted and then recreated).

RAMCloud also provides two atomic operations, conditionalWrite and increment, which

can be used to synchronize concurrent accesses to data. For example, a single object

can be read and updated atomically by reading the object (which returns its current

version number), computing a new value for the object, and invoking conditionalWrite to

overwrite the object only if it still has the same version returned by the read.

Atomic Operations provided by RAMCloud

Unlike various other large-scale storage systems, RAMCloud provides a strong

consistency guarantee. Moreover, RAMCloud’s goal is to offer linearizability, which

means that the system behaves as if each operation executes exactly once, atomically, at

some point between when the client initiates the operation and when it receives a

response. In order to implement for certain classes of operations, RAMCloud uses RPC

wrappers to store state information for each RPC in the header itself.

Server Architecture

RAMCloud is a software package that runs on a collection of commodity servers. A

RAMCloud cluster consists of a collection of storage servers managed by a single

coordinator; client applications access RAMCloud data over a datacenter network using

a thin library layer. RAMCloud supports clusters of 10-10,000+ servers.

Each storage server contains two components:

1. A master module manages the DRAM of the server to store RAMCloud data, and it

handles read and write requests from clients.

2. A backup module uses local disk or flash memory to store copies of data owned

by masters on other servers.

The information in tables is divided among masters in units of tablets. If a table is small, it

consists of a single tablet and the entire table will be stored on one master. Large tables

are divided into multiple tablets on different masters using hash partitioning: each key is

hashed into a 64-bit value, and a single tablet contains the objects in one table whose

key hashes fall in a given range. This approach tends to distribute the objects in a given

table uniformly and randomly across its tablets.

RAMCloud cluster architecture2

The coordinator manages the cluster configuration, which consists primarily of metadata

describing the current servers in the cluster, the current tables, and the assignment of

tablets to servers. The coordinator is also responsible for managing recovery of crashed

2 "The RAMCloud Storage System - ACM Digital Library." The RAMCloud Storage System. Accessed 26
May. 2021.

https://dl.acm.org/doi/pdf/10.1145/2806887#page=8

storage servers. At any given time, there is a single active coordinator, but there may be

multiple standby coordinators, each of which is prepared to take over if the active

coordinator crashes. The active coordinator stores the cluster configuration information

on an external storage system that is slower than RAMCloud but highly fault tolerant. The

standby coordinators use the external storage system to detect failures of the active

coordinator, choose a new active coordinator, and recover the configuration information

For a single coordinator to manage a large cluster without becoming a performance

bottleneck, it must not be involved in high-frequency operations such as those that read

and write RAMCloud objects. Hence, each client library maintains a cache of

configuration information for recently accessed tables, which allows it to identify the

appropriate server for a read or write request without involving the coordinator. Clients

only contact the coordinator to load the cache on the first access to a table. If a client’s

cached configuration information becomes stale because data has moved, the client

library discovers this when it makes a request to a server that no longer stores the

desired information. At that time, it flushes the configuration information for that table

from its cache and fetches up-to-date information from the coordinator.

Storage System

RAMCloud uses a unified log-structured approach for managing data both in memory

and on secondary storage. This allows backup copies to be made efficiently so that

RAMCloud can provide the durability of replicated disk and the low latency of DRAM.

Each master manages an append-only log in which it stores all objects in its assigned

tablets. The log is the only storage for object data; a single log structure is used both for

primary copies in memory and backup copies on secondary storage.

The log for each master is divided into 8MB segments and log segments occupy almost

all of the master’s memory. New information is appended to the head segment while

segments other than the head are immutable. Each segment is replicated on the

secondary storage of a configurable number of backups (typically three). In addition to

the log, the only other major data structure on a master is a hash table, which contains

one entry for each live object stored on the master. During read requests, the hash table

allows the master to determine quickly whether there exists an object corresponding to a

particular table identifier and key and, if so, find its entry in the log.

The data structures present in the DRAM of a RAMCloud master

The master chooses a different set of backups at random for each segment; over time, its

replicas tend to spread across all of the backups in the cluster. Segment replicas are

never read during normal operation; they are only read if the master that wrote them

crashes, at which time they are read in their entirety.

Durable Writes

RAMCloud provides durability and availability using a primary-backup approach to

replication. It keeps a single (primary) copy of each object in DRAM, with multiple backup

copies on secondary storage.

When a master receives a write request from a client, it appends a new entry for the

object to its head log segment, creates a hash table entry for the object (or updates an

existing entry), and then replicates the log entry synchronously in parallel to the backups

storing the head segment. During replication, each backup appends the entry to a replica

of the head segment buffered in its memory and initiates an I/O operation to write the

new data to secondary storage; it responds to the master without waiting for the I/O to

complete. When the master has received replies from all backups, it responds to the

client. The buffer space on each backup is freed once the segment has been closed

(meaning that a new head segment has been chosen and this segment is now

immutable) and the buffer contents have been written to secondary storage.

This approach has two attractive properties:

● First, writes complete without waiting for I/O to secondary storage.

● Second, backups use secondary storage bandwidth efficiently: under heavy write

load, they will aggregate many small objects into a single large block for I/O

However, the buffers create potential durability problems. RAMCloud promises clients

that objects are durable at the time a write returns. To honor this promise, the data

buffered in backups’ main memories must survive power failures; otherwise, a datacenter

power failure could destroy all copies of a newly written object. RAMCloud currently

assumes that servers can continue operating for a short period after an impending power

failure is detected so that buffered data can be flushed to secondary storage. The

amount of data buffered on each backup is small (not more than a few tens of

megabytes), so only a few hundred milliseconds are needed to write it safely to

secondary storage.

Kernel Bypass and Polling

RAMCloud avoids the overheads associated with kernel calls and interrupts by

communicating directly with the NIC to send and receive packets, as well as by using a

polling approach to wait for incoming packets.

Kernel bypass means that an application need not issue kernel calls to send and receive

packets. Instead, NIC device registers are memory mapped into the address space of the

application, so the application can communicate directly with the NIC. RAMCloud

implements kernel bypass using DPDK.

Moreover, RAMCloud uses polling (busy waiting) to wait for events. For example, when a

client thread is waiting for a response to an RPC request, it does not sleep; instead, it

repeatedly polls the NIC to check for the arrival of the response. RAMCloud servers also

use a polling approach to wait for incoming requests: even when there are no requests

for it to service, a server will consume one core for polling so that it can respond quickly

when a request arrives.

Transports

Low-level networking support in RAMCloud is implemented using a collection of

transport classes. Each transport supports a different approach to network

communication, but all of the transports implement a common API for higher-level

software. The transport interface plays an important role in RAMCloud because it permits

experimentation with a variety of networking technologies without any changes to

software above the transport level.

RAMCloud contains three built-in transports:

1. InfRcTransport: Uses Infiniband reliably connected queue pairs, which provide

reliable in-order messages. InfRcTransport takes advantage of the kernel bypass

features of Infiniband NICs. It is currently RAMCloud’s fastest transport and is used

in most of our performance measurements.

2. FastTransport: Given an underlying driver that can send and receive unreliable

datagrams, FastTransport implements a custom protocol for reliable delivery.

RAMCloud currently has drivers that use kernel bypass to send and receive UDP

packets, Infiniband unreliable datagrams, and raw Ethernet packets, as well as a

driver that uses the kernel to send and receive UDP packets. The name for this

transport is unfortunate, as it is not yet as fast as InfRcTransport.

3. TcpTransport: Uses standard TCP sockets implemented by the Linux kernel.

TcpTransport does not use kernel bypass, so it has about 50 to 100 μs higher

latency than InfRcTransport.

We use TcpTransport in our experiments with RAMCloud.

Thread Structure

The threading architecture used for a server has a significant impact on both latency and

throughput. The best way to optimize latency is to use a single thread for handling all

requests. This approach eliminates synchronization between threads, and it also

eliminates cache misses required to move data between cores in a multithreaded

environment. Hence, we use a single thread in our experiments.

However, the single-threaded model does not allow for heartbeat messages in the case

of long-running RPCs. Therefore, RAMCloud switched to a multithreaded approach. RPCs

are handled by a single dispatch thread and a collection of worker threads (see the

following figure). The dispatch thread handles all network communication, including

incoming requests and outgoing responses. When a complete RPC message has been

received by the dispatch thread, it selects a worker thread and hands off the request for

processing. The worker thread handles the request, generates a response message, and

then returns the response to the dispatch thread for transmission. Transport code

(including communication with the NIC) executes only in the dispatch thread, so no

internal synchronization is needed for transports.

RAMCloud Threading Architecture

Communication between the dispatch thread and the network is driven by synchronous

polling and implements functionality roughly equivalent to the interrupt handlers of an

operating system. Communication between the dispatch thread and worker threads is

also handled by polling a private control block associated with the thread to minimize

latency. When a worker thread finishes handling an RPC and becomes idle, it

continuously polls a private control block associated with the thread. The number of

polling worker threads automatically adjusts to the server’s load.

During long idle periods, all worker threads will block, leaving only the dispatch thread

consuming CPU time. The multithreaded approach allows multiple requests to be

serviced simultaneously. This improves throughput in general and also allows ping

requests to be handled while a long-running RPC is in process.

The dispatch thread implements a reservation system, based on the opcodes of RPCs,

that limits the number of threads that can be working simultaneously on any given class

of RPCs. This ensures that there will always be a worker thread available to handle

short-running RPCs such as ping requests. It also prevents distributed deadlocks: for

example, without the reservation system, all threads in a group of servers could be

assigned to process incoming write requests, leaving no threads to process replication

requests that occur as part of the writes.

The multithreaded approach requires two thread handoffs for each request which

increase the latency for simple reads in comparison to a single-threaded approach. The

cost of a thread handoff takes two forms:

● The first is the direct cost of transferring a message pointer from one thread to

another.

● In addition, there are several data structures that are shared between the dispatch

and worker threads, such as the request and response messages; thread handoffs

result in extra cache misses to transfer these structures from core to core.

Crash Recovery

RAMCloud provides high availability by reconstructing lost data quickly after crashes

(typically 1 to 2 seconds) rather than keeping redundant copies online in DRAM. It

implements fast crash recovery by scattering backup data across the entire cluster and

using hundreds of servers working concurrently to recover data from secondary storage.

During normal operation, each master scatters its backup replicas evenly across all

backups in the cluster. During crash recovery, the backups retrieve this data and send it

to a collection of recovery masters, which replay log entries to incorporate the crashed

master’s objects into their own logs. Each recovery master receives only log entries for

the tablets that it has been assigned.

Control Plane

A schematic diagram of RAMCloud’s control plane is given below:

SMARTNIC ACCELERATION

Network Function Virtualization

Network Function Virtualization enables data center operators to realize various

networking functions (e.g.firewall, load balancer, IDS) as virtual appliances running on top

of commodity server hardware, instead of having dedicated hardware appliances to

perform these functions.

SmartNICs

Traditional NICs do not provide any programmability to create a new packet processing

function or to chain the functions selectively on certain flows. A Smart Network Interface

Card (SmartNIC) is a NIC equipped with a fully-programmable, system-on-chip multi-core

processor on which a full-fledged operating system can execute any arbitrary packet

processing functions. With a much higher level of flexibility and programmability, these

SmartNICs can offload almost any packet processing function and are being used in data

centers to offload networking functions from host processors thereby making these

processors available for tenant applications. Modern SmartNICs have fully

programmable, energy-efficient, multi-core processors that can be designed to

dynamically offload custom-built packet processing functions from the host.3

We use Mellanox SmartNICs running Ubuntu 20.04 for our experiments.

Why is RAMCloud ideal for SmartNIC-acceleration?

In the case of a read of a small object chosen at random from a large table in RAMCloud,

the network accounts for almost all of the latency - 3.2μs out of the 4.8μs total time was

spent in the network or communicating between the CPU and NIC. And the most

significant cost attributable to RAMCloud code comes from the interactions between the

dispatch and worker threads: these account for about 10% of the total latency for reads.4

The analysis for writes is very similar. Hence, it is clear that RAMCloud can attain large

performance gains and reduce latency by reducing the time spent in the network and in

NIC-CPU communication.

4 "The RAMCloud Storage System | ACM Transactions on Computer"
https://dl.acm.org/doi/10.1145/2806887. Accessed 27 May. 2021.

3 "Unifying Host and Smart NIC Offload for Flexible Packet ... - WISR."
https://wisr.cs.wisc.edu/papers/p506-le.pdf. Accessed 27 May. 2021.

https://dl.acm.org/doi/10.1145/2806887
https://wisr.cs.wisc.edu/papers/p506-le.pdf

RAMCLOUD COMPONENTS SUITABLE FOR SMARTNIC
OFFLOAD

Rejection Rule Check

We can maintain a cache of the version numbers recently created/updated RAMCloud

objects in the SmartNIC and respond to operations that carry rejection rules from the

SmartNIC itself. For example, atomic operations in which the object’s version number

must match with the one provided in the request can be handled as follows:

1. In case of a version number mismatch, the failure response can be generated at

the SmartNIC itself without involving the master.

2. In case the version number matches or does not exist in the cache, the request is

redirected to the master.

This offload will be particularly useful in the case of high contention for the same objects

by a large number of clients and also when the master is running other compute

intensive tasks and cannot spare the cycles for rejection rule checks. And hence this

partial offload can be adaptively switched on or off using code that does not lie in the

datapath.

Replication RPC Generation

Most of the total time for the write RPC was spent replicating the new data to three

backups (7μs out of a total of 13.4μs). The replication RPCs incurred high overheads on

the master (about 0.5μs to send each RPC and another 0.5μs to process the response)

and most of this is due to NIC interactions. We can reduce this time significantly by

offloading replication to a SmartNIC.

We can initiate the replication process by sending replication RPCs as soon as a write

RPC reaches the SmartNIC and passes the rejection rules stored in the SmartNIC’s

cache. This allows us to write to the master’s DRAM and send out replication RPCs

simultaneously instead of serially and reduce latency by avoiding a situation that is

similar to the convoy effect in process scheduling. The latency reduction should increase

with an increase in packet size since we can start writing to both the master and the

backup’s DRAM parallely. Moreover, we can generate the response for the client at the

SmartNIC itself instead of going through the master in order to further optimise the

offload. However, we must exercise caution in order to not break RAMCloud’s crash

recovery mechanism with this offload. Moreover, server lists and their associated data

must reside on the SmartNIC for it to be able to identify the correct backup servers with

RAMCloud’s ‘randomisation with refinement’ algorithm.

Dispatch-Worker Thread Architecture

The overhead for thread switches is a significant issue and the overheads associated

with a dispatch thread could potentially be eliminated by demultiplexing incoming

requests to a pool of threads using a SmartNIC. This could also reduce the NIC

communication overhead further reducing the overall system latency. However, the

offload must support a reservation system (based on the opcode of the RPC) to prevent

distributed deadlocks.

Consensus Protocol

RAMCloud uses the RAFT consensus protocol in order to identify the cluster leader,

manage leader election and store configuration information that must survive leader

crashes. This consensus system is amenable to SmartNIC offload and can potentially5

reduce delays arising from the leader election process.

Fast Failure Detection

In order to recover quickly after crashes, RAMCloud must detect crashes quickly (within a

few hundred milliseconds). RAMCloud does so using a randomized ping mechanism. At

regular intervals (currently 100ms), each storage server chooses another server in the

cluster at random and sends it a ping RPC. If that RPC times out (a few tens of

milliseconds), then the server notifies the coordinator of a potential problem. The

coordinator attempts its own ping to give the suspicious server a second chance, and if

that also times out, then the coordinator declares the server dead and initiates recovery.

This mechanism can be offloaded to the SmartNIC in order to further speed up failure

detection and subsequent recovery and hence improve availability since RAMCloud

provides high availability by reconstructing lost data quickly after crashes (typically 1 to 2

seconds) rather than keeping redundant copies.

5 "Raft - Stanford University." https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14.pdf. Accessed 27
May. 2021.

https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14.pdf

OFFLOAD EXPERIMENTS

Developing an approximate model of RAMCloud’s atomic operations

If an executed instruction causes an exception, diverting the control flow to an exception handler,

the subsequent instruction must not be executed. Thus, in this example, we cannot access the

array in theory, as the exception immediately traps to the kernel and terminates the application.

However, due to the out-of-order execution, the CPU might have already executed the following

instructions as there is no dependency on the instruction triggering the exception. Due to the

exception, the instructions executed out of order are not retired and, thus, never have

architectural effects (the register and memory contents are never committed). Although the

instructions executed out of order do not have any visible architectural effect, they have

microarchitectural side effects. During the out-of-order execution, the referenced memory is

fetched into a register and also stored in the cache. The cached memory contents are kept in the

cache. We can leverage a microarchitectural side-channel attack such as Flush+Reload, which

detects whether a specific memory location is cached, to make this microarchitectural state

visible.

Based on the value of data in this example, a different part of the cache is accessed when

executing the memory access out of order. As data is multiplied by 4096, data accesses to the

userspace array are scattered over the array with a distance of 4 KB, which is the page size of the

OS (assuming an 1 B data type for userspace array). Thus, there is an injective mapping from the

value of data to a memory page, i.e., different values for data never result in an access to the

same page. Consequently, if a cache line of a page is cached, we know the value of data. The

spreading over pages eliminates false positives due to the prefetcher, as the prefetcher cannot

access data across page boundaries.

The Setup

Implementation

The full Meltdown attack consists of two building blocks. The first building block of Meltdown is to

make the CPU execute one or more instructions that would never occur in the executed path.

Such an instruction, which is executed out of order and leaving measurable side effects, is called

a transient instruction. Furthermore, any sequence of instructions containing at least one

transient instruction is called a transient instruction sequence. In order to leverage transient

instructions for an attack, the transient instruction sequence must utilize a secret value that an

attacker wants to leak. The second building block of Meltdown is to transfer the

microarchitectural side effect of the transient instruction sequence to an architectural state to

further process the leaked secret.

Results

The first building block of Meltdown is the execution of transient instructions. Transient

instructions occur all the time, as the CPU continuously runs ahead of the current instruction to

minimize the experienced latency and, thus, to maximize the performance. Transient instructions

introduce an exploitable side channel if their operation depends on a secret value. We focus on

addresses that are mapped within the attacker’s process, i.e., the user-accessible user space

addresses as well as the user-inaccessible kernel space addresses. Accessing user-inaccessible

pages, such as kernel pages, triggers an exception which generally terminates the application. If

the attacker targets a secret at a user-inaccessible address, the attacker has to cope with this

exception. There are two approaches to handle this:

Fork-and-Crash: A trivial approach is to fork the attacking application before accessing the

invalid memory location that terminates the process and only access the invalid memory location

in the child process. The CPU executes the transient instruction sequence in the child process

before crashing. The parent process can then recover the secret by observing the

microarchitectural state, e.g., through a side-channel.

Exception handling: It is also possible to install a signal handler that is executed when a certain

exception occurs, e.g., a segmentation fault. This allows the attacker to issue the instruction

sequence and prevent the application from crashing, reducing the overhead as no new process

has to be created.

Exception suppression: An alternative approach to deal with exceptions is to prevent them from

being raised in the first place. Intel's Transactional Synchronization Extensions (TSX) defines the

concept of transaction, which is a sequence of instructions that execute atomically, that is, either

all of the instructions in a transaction are executed, or none of them is. If an instruction within the

transaction fails, already executed instructions are reverted, but no exception is raised. By

wrapping the code in such a TSX transaction, the exception is suppressed. Yet, the

microarchitectural effects of transient execution are still visible. Because suppressing the

exception is significantly faster than trapping into the kernel for handling the exception, and

continuing afterwards, this results in a higher channel capacity.

A graphic depicting the flaw that leads to Meltdown. Source :

https://spectrum.ieee.org/computing/hardware/how-the-spectre-and-meltdown-hacks-really-worked

Analysis

The second building block of Meltdown is the transfer of the microarchitectural state, which was

changed by the transient instruction sequence, into an architectural state. The transient

instruction sequence can be seen as the sending end of a microarchitectural covert channel. The

receiving end of the covert channel receives the microarchitectural state change and deduces

the secret from the state. Note that the receiver is not part of the transient instruction sequence

and can be a different thread or even a different process e.g., the parent process in the

fork-and-crash approach. Since the Flush+Reload attack takes much longer (typically several

hundred cycles) than the transient instruction sequence, transmitting a single bit at once is more

efficient than transmitting bytes. Also, the covert channel is not limited to microarchitectural

states which rely on the cache. Any microarchitectural state which can be influenced by an

instruction (sequence) and is observable through a side channel can be used to build the sending

end of a covert channel.

Analysing the Code

The crux of the Meltdown Code. Source : https://meltdownattack.com/meltdown.pdf

Meltdown consists of 3 steps:

Step 1: The content of an attacker-chosen memory location, which is inaccessible to the attacker,

is loaded into a register.

Step 2: A transient instruction accesses a cache line based on the secret content of the register.

Step 3: The attacker uses Flush+Reload to determine the accessed cache line and hence the

secret stored at the chosen memory location.

By repeating these steps for different memory locations, the attacker can dump the kernel

memory, including the entire physical memory. A line-by-line analysis follows:

Step 1: In line 4, the byte value located at the target kernel address, stored in the RCX register, is

loaded into the least significant byte of the RAX register represented by AL. The MOV instruction

is fetched by the core, decoded into µOPs, allocated, and sent to the reorder buffer. There,

architectural registers (e.g., RAX and RCX in the code) are mapped to underlying physical

registers enabling out-of-order execution. Trying to utilize the pipeline as much as possible,

subsequent instructions (lines 5-7) are already decoded and allocated as µOPs as well. The µOPs

are further sent to the reservation station holding the µOPs while they wait to be executed by the

corresponding execution unit. The execution of a µOP can be delayed if execution units are

already used to their corresponding capacity, or operand values have not been computed yet.

When the kernel address is loaded in line 4, it is likely that the CPU already issued the

subsequent instructions as part of the out-of-order execution, and that their corresponding µOPs

wait in the reservation station for the content of the kernel address to arrive. As soon as the

fetched data is observed on the common data bus, the µOPs can begin their execution. When the

µOPs finish their execution, they retire in order, and, thus, their results are committed to the

architectural state. During the retirement, any interrupts and exceptions that occurred during the

execution of the instruction are handled. Thus, if the MOV instruction that loads the kernel

address is retired, the exception is registered, and the pipeline is flushed to eliminate all results of

subsequent instructions which were executed out of order. However, there is a race condition

between raising this exception and our attack step 2.

Step 2: The instruction sequence from step 1 which is executed out of order has to be chosen in

a way that it becomes a transient instruction sequence. If this transient instruction sequence is

executed before the MOV instruction is retired (i.e., raises the exception), and it performs

computations based on the secret, it can be utilized to transmit the secret to the attacker by

encoding the secret into the microarchitectural cache state. We allocate a probe array in memory

and ensure that no part of this array is cached. To transmit the secret, the transient instruction

sequence contains an indirect memory access to an address which is computed based on the

secret (inaccessible) value. In line 5 of the code, the secret value is multiplied by the page size,

i.e., 4 KB. The multiplication of the secret ensures that accesses to the array have a large spatial

distance to each other. This prevents the hardware prefetcher from loading adjacent memory

locations into the cache as well. Here, we read a single byte at once. Hence, our probe array is

256×4096 bytes, assuming 4 KB pages. Note that in the out-of-order execution we have a

noise-bias towards register value ‘0’. However, for this reason, we introduce a retry-logic into the

transient instruction sequence. In case we read a ‘0’, we try to reread the secret. In line 7, the

multiplied secret is added to the base address of the probe array, forming the target address of

the covert channel. This address is read to cache the corresponding cache line. The address will

be loaded into the L1 data cache of the requesting core and, due to the inclusiveness, also the L3

cache where it can be read from other cores. Consequently, our transient instruction sequence

affects the cache state based on the secret value that was read in step 1.

Step 3: Now, the attacker recovers the secret value by leveraging a microarchitectural

side-channel attack (i.e., the receiving end of a microarchitectural covert channel) that transfers

the cache state back into an architectural state. When the transient instruction sequence is

executed, exactly one cache line of the probe array is cached. The position of the cached cache

line within the probe array depends only on the secret. Thus, the attacker iterates over all 256

pages of the probe array and measures the access time for every first cache line (i.e., offset) on

the page. The number of the page containing the cached cache line corresponds directly to the

secret value.

PACKET IDENTIFIER

To mount Meltdown, the adversary needs the ability to execute code on a vulnerable machine.

Executing code can be achieved through various means, including hosting in cloud services, apps in

mobile phones, and JavaScript code in websites. Meltdown has a devastating effect on the security of

affected systems. First, exploiting a hardware vulnerability means the attack does not depend on

specific vulnerabilities in the software. Thus, the attack is generic and, at the time of discovery,

affected all existing versions of all major operating systems. Second, because the attack only depends

on the hardware, traditional software-based protections, such as cryptography, operating system

authorization mechanisms, or antivirus software, are powerless to stop the attack. Hence, mitigation

of the attack is essential.

Variants of Meltdown.

Source : https://arxiv.org/pdf/1811.05441.pdf

Hardware-based Countermeasures
Meltdown bypasses the hardware-enforced isolation of security domains. There is no software

vulnerability involved in Meltdown. Meltdown is some form of race condition between the fetch of

a memory address and the corresponding permission check for this address. Serializing the

permission check and the register fetch can prevent Meltdown, as the memory address is never

fetched if the permission check fails. However, this involves a significant overhead to every

memory fetch, as the memory fetch has to stall until the permission check is completed. A more

realistic solution would be to introduce a hard split of user space and kernel space. This could be

enabled optionally by modern kernels using a new hard-split bit in a CPU control register, e.g.,

CR4. If the hard-split bit is set, the kernel has to reside in the upper half of the address space, and

the user space has to reside in the lower half of the address space. With this hard split, a memory

fetch can immediately identify whether such a fetch of the destination would violate a security

boundary, as the privilege level can be directly derived from the virtual address without any

further lookups. We expect the performance impacts of such a solution to be minimal.

Software-based Countermeasures
As existing hardware is not as easy to patch, there is a need for software workarounds until new

hardware can be deployed. One possible solution is KAISER, a kernel modification to not have

the kernel mapped in the user space. This modification was intended to prevent side-channel

attacks breaking KASLR. However, it also prevents Meltdown, as it ensures that there is no valid

mapping to kernel space or physical memory available in user space. The Linux kernel uses KPTI

(Kernel page-table isolation) to mitigate Meltdown, KPTI is based on KAISER.

KPTI mitigates the vulnerability by separating user-space and kernel-space page tables entirely.

One set of page tables includes both kernel-space and user-space addresses same as before,

but it is only used when the system is running in kernel mode. The second set of page tables for

use in user mode contains a copy of user-space and a minimal set of kernel-space mappings that

provides the information needed to enter or exit system calls, interrupts and exceptions.

EXTENSIONS

Part-B : PoC Code Documentation

In this section, I’ll annotate relevant parts of the PoC code (https://github.com/IAIK/meltdown)

secret.c

libkdump_config_t config;

config = libkdump_get_autoconfig();

libkdump_init(config);

https://github.com/IAIK/meltdown

Lines 19 -21 set the hyperparameters of the code like the cache_miss_threshold, measurements

and the retries. We can see this by looking at the definition of the struct in libkdump.h :

typedef struct {

size_t cache_miss_threshold; /**< Cache miss threshold in cycles for Flush+Reload */

libkdump_fault_handling_t fault_handling; /**< Type of fault handling (TSX or signal

handler) */

int measurements; /**< Number of measurements to perform for one address */

int accept_after; /**< How many measurements must be the same to accept the read

value */

int load_threads; /**< Number of threads which are started to increase the chance of

reading from inaccessible addresses */

libkdump_load_t load_type; /**< Function the load threads should execute */

int retries; /**< Number of Meltdown retries for an address */

size_t physical_offset; /**< Address of the physical direct map */

} libkdump_config_t;

Then we move on to line 29 :

size_t paddr = libkdump_virt_to_phys((size_t)secret);

This line converts the virtual address used by the process to store the secret string into a physical

address (just like the MMU) which will be used by the meltdown code.

Lines 38-45 keep the string in cache, which increases performance by helping us win the race

condition between the attack code and the exception:

while (1) {

// keep string cached for better results

volatile size_t dummy = 0, i;

for (i = 0; i < len; i++) {

dummy += secret[i];

}

sched_yield();

}

physical_reader.c

From the beginning of the main function (line 7) till line 22, we utilise the commandline input to

set the direct physical offset of kernel memory, configure the hyperparameters and convert the

input physical address into a virtual address.

Then from line 28-33, we proceed to perform the meltdown attack using the function

libkdump_read() to read the secret string character-by-character and print it.

while (1) {

int value = libkdump_read(vaddr);

printf("%c", value);

fflush(stdout);

vaddr++;

}

libkdump.c

We’ll begin by analyzing the function libkdump_read() and in trying to understand the code of

libkdump_read(), we will understand various functions like libkdump_read_tsx(), xbegin(),

flush_reload(), libkdump_read_signal_handler() and the main meltdown assembly code.

In lines 529-534:

phys = addr;

char res_stat[256];

int i, j, r;

for (i = 0; i < 256; i++)

res_stat[i] = 0;

We initialise the array res_stat which is used to statistically choose the best possible character to

output after performing the meltdown attack later in this function.

In lines 538-545:

for (i = 0; i < config.measurements; i++) {

if (config.fault_handling == TSX) {

r = libkdump_read_tsx();

} else {

r = libkdump_read_signal_handler();

}

res_stat[r]++;

}

These are the lines where we perform the bulk of the work, depending on the configuration of

the system we choose the method of dealing with the exception. If the system supports TSX

(Intel’s proprietary transaction control mechanism) we call libkdump_read_tsx(), otherwise we use

signal handling to deal with exceptions and call libkdump_read_signal_handler(). Now, let’s

analyse libkdump_read_tsx() in more detail.

libkdump_read_tsx()

In the first few lines, we set the number of retries based on the hyperparameters and use an

#ifdef to confirm that TSX is enabled.

Then in lines 483-487:

while (retries--) {

if (xbegin() == _XBEGIN_STARTED) {

MELTDOWN;

xend();

}

Before we run the Meltdown attack we call xbegin() which is just a C wrapper for the assembly

procedure xbegin, which begins a code transaction using Intel’s TSX technology. This rolls back

the entire block within xbegin and xend if an exception arises during the execution of that block

and does so quickly, which allows the flush+reload part of the attack to read the hot cache values

more effectively.

Now, we’ll analyse the code of MELTDOWN, the definition is at lines 112-114:

#ifndef MELTDOWN

#define MELTDOWN meltdown_nonull

#endif

We can define MELTDOWN to be meltdown, meltdown_nonull and meltdown_fast. Now, we’ll

look at these 3 in greater detail. But before their definitions we have:

#ifdef __x86_64__

and

#else /* __i386__ */

Since meltdown, meltdown_nonull and meltdown_fast are implemented using assembly code,

their definitions depend on the architecture and the names of registers and commands are

slightly different in both cases, but we’ll proceed with the x86-64 case, since the logic is identical.

In lines 46-55, we define meltdown:

asm volatile("1:\n" \

"movq (%%rsi), %%rsi\n" \

"movzx (%%rcx), %%rax\n" \

"shl $12, %%rax\n" \

"jz 1b\n" \

"movq (%%rbx,%%rax,1), %%rbx\n" \

: \

: "c"(phys), "b"(mem), "S"(0) \

: "rax");

We have the main meltdown attack. The command asm is used to run inline assembly in C, while

the keyword volatile ensures that the compiler doesn’t optimise the raw assembly code. The

syntax of the (extended) asm command is

asm (Assembly Instruction // The assembly command to run

: Output Operands // The output registers/memory locations

[: InputOperands // The input registers/memory locations and mappings to variables

[: Clobbers]]) // Here we tell the compiler that we have modified these registers and

// they no longer contain compiler set values

A %% prefix denotes a register while a $ prefix denotes an immediate value in gcc asm syntax.

The "1:\n" defines an address that we can jump to with the jump instruction, this is similar to

the MIPS syntax as taught in CS305

"movq (%%rsi), %%rsi\n" : In this line we set the value of rsi (register source index) to zero

("S"(0) in the input operands part)

"movzx (%%rcx), %%rax\n" : In this line we move the secret value stored in register c

("c"(phys)) to register a, this corresponds to line 4 of the

author’s code

"shl $12, %%rax\n"

In this line we shift the value stored in register a left by 12 bits, that is we multiply this value by

4096 (the page size = 4KB), in order to access values of the main array which are at a page’s

distance to avoid incorrect hits due to the prefetcher(the prefetcher doesn’t fetch lines across

page boundaries)

"jz 1b\n"

In this line, we jump back to "1:\n", if the value in register a is zero. This is to correct for the

inherent bias towards ‘0’, which might be because the memory load to register c is masked out

by a failed permission check, or because a speculated value of ‘0’ is loaded as the data of the

stalled load is not available yet. Hence, measuring cache line ‘0’ is omitted and in case there is no

cache hit on any other cache line, the value can be assumed to be ‘0’. This loop is terminated

either by reading a non-zero value or by the raised exception of the invalid memory access. This

slows the code down, but generally improves accuracy.

"movq (%%rbx,%%rax,1), %%rbx\n"

In this line, we touch the array so that only 1 line is cached, we make this microarchitectural

information visible using flush+reload later. The syntax of the moery location we access is

(%%rbx,%%rax,1), which translates to : (value in %%rbx) + (value in %%rax) * (1), where the 1

denotes the width of the data type. Here it is 1 byte, since we’re using a char array.

In lines 58-66 we define meltdown_nonull, which is the same as meltdown, except we don’t zero

out the rsi register, which works a lot better on some machines (but not at all on others).

In lines 69-75 we define meltdown_fast, which is the same as meltdown_nonull, except we

remove the part of the code that loops if the output value is zero, this speeds up the code at the

cost of accuracy.

Now, we move back to libkdump_read_tsx():

libkdump_read_tsx()

In lines 489-500:

int i;

for (i = 0; i < 256; i++) {

if (flush_reload(mem + i * 4096)) {

if (i >= 1) {

return i;

}

}

sched_yield();

}

sched_yield();

}

#endif

return 0;

We perform the flush+reload attack to access the line touched by the meltdown code and return

the character of the secret string through the covert channel. The function flush_reload() returns

an integer which denotes the ASCII value of the secret character (and depends on the line

touched by the meltdown code). We return this value or zero. The case of ‘0’ is handled

separately for reasons explained above. Now, we explain the flush+reload attack.

flush_reload()

In lines 185-196:

start = rdtsc();

maccess(ptr);

end = rdtsc();

flush(ptr);

if (end - start < config.cache_miss_threshold) {

return 1;

}

return 0;

We store the timestamp before accessing the line of memory in start by using the rdtsc() function,

which internally uses variants of the rdtsc assembly command (ReaD TimeStamp Counter), then

we access the memory at ptr using maccess, and then we store the timestamp immediately after

it in end.

Then depending on the time difference between end and start, we gauge whether the cache line

is hot (i.e. was accessed by the meltdown code) or not by comparing end - start to a

hyperparameter (config.cache_miss_threshold) and correspondingly return a ‘1’ or a ‘0’.

The case of libkdump_read_signal_handler() is very similar to the case of libkdump_read_tsx(),

the only salient point being the use of the setjmp function in a standard idiom to transfer control

and restore the current environment and registers after calling longjmp in the signal handler.

Now, we return to analysing the libkdump_read() function.

libkdump_read()

In lines 538-546:

for (i = 0; i < config.measurements; i++) {

if (config.fault_handling == TSX) {

r = libkdump_read_tsx();

} else {

r = libkdump_read_signal_handler();

}

res_stat[r]++;

}

int max_v = 0, max_i = 0;

We found the value of the secret character by executing the meltdown attack and stored it in r.

We perform the attack config.measurements times for each character in the secret string and

increment the value in the res_stat array correspondingly.

Now, finally in lines 557-563:

for (i = 1; i < 256; i++) {

if (res_stat[i] > max_v && res_stat[i] >= config.accept_after) {

max_v = res_stat[i];

max_i = i;

}

}

return max_i;

We choose the maximum value in the res_stat array and return that character as the most likely

character of the string, hence concluding 1 iteration of the code.

