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Chapter 1

Introduction

High performance computing (HPC) is the practice of aggregating computing resources
across systems in a way so as to deliver a consolidated performance higher than that
achievable from discrete workstations or servers. These HPC systems find usage across a
large spectrum of fields like that of engineering, science, business. It finds usage in running
distributed algorithms for climate research and weather prediction [26, 28, 27, 9|, oceanic
studies |7, 1], machine learning [20, 19, 24|, Big Data processing, bioinformatics, drug
research and modeling. For instance, during the ongoing Corona-virus pandemic, HPC
clusters and distributed systems in general has been at the forefront for searching of novel
drugs for the disease and genetic material sequencing. A typical setup for such a system
involves a distributed application or algorithm which uses a computes and storage nodes
distributed across a cluster to work on high dimensional problems.

The need for a storage system in the HPC ecosystem for storing of large datasets usually
associated with such algorithms, necessitates the presence of a large storage with extremely
low read and write latency. Today’s distributed setups have a memory storage hierarchy
that offers different characterizations in terms of performance, capacity and functionality.
Recent advances in storage and network technologies like Persistent Memory or Non-
Volatile Main Memory (NVMM), Remote Direct Memory Read (RDMA), SmartNICs has
made it possible to bring these two orthogonal issues together. For example, NVMMs
provide extremely low latencies, close to DRAM read latency, while RDMA capable NICs
allow direct access to remote system Main memories bypassing the host OS completely.

In this project, we explore design options of distributed file systems, and as a more
generic functionality of an object store, that can push the limits of latency and throughput

exploiting the heterogeneous memory-storage hierarchy.



Chapter 2
Survey of Techniques

The main components of a storage layer are (i) a metadata management unit which de-
fines how the metadata related to the data stores are managed, (ii) an optional cache
management layer for faster lookup, (iii) memory and Addressing Management to support
multiple storage technologies, (iv) a Transaction Management subsystem for consistency
guarantees, (v) a Consensus mechanism among the distributed servers and (vi) distributed
locking mechanisms for concurrent accesses. Figure 2.1 shows a high level view of the com-

ponents discussed here and their relative position in the software stack.
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Figure 2.1: High level component Diagram for a Distributed File System

Figure 2.2 illustrates a web of how different solutions address these issues. In the next
subsections, we dig deeper into each storage component and explore how challenges in

those components are addressed in the present state of the art.
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Figure 2.2: Classification of Non-volatile memory and SmartNIC based storage solutions.

2.1 Data Store Model

The Data Store Model describes the way in which data is represented complete with its
relationships and the way in which it can be accessed. Accordingly, we look at two popular
paradigms: Key-Value stores in which data is represented as independent pairs of keys and
values, and File Systems which focus on contiguous runs of data blobs, generally larger
than those associated with KV stores. We also consider data-model independent systems
which provide a set of primitives to implement any model on top. Figure 2.3 shows the

distribution of storage solutions in this space.

2.1.1 Key-Value Stores

The need for key-value stores arises predominantly from web applications which need to
store a large number of relatively small sized records [23|. Because of this, most Key-
Value stores support values which are <1MB in size, treating them as a single indivisible
chunk of data identified by a unique variable-length key [8, 5, 21, 18, 6|. Several auxiliary
structures such as version numbers [18| and counters [6] may also be associated with each
pair depending on the consistency model used.

The value is most often treated as an uninterpreted blob of bytes with no assumed
internal structure [6, 18, 8, 21, 4]. Moreover, the pairs are treated either completely

independently with no relational-model [6, 8, 21, 4] or segregated into structures like
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tables [18] or containers [13|. Accordingly, this class of object stores provide a restricted
query set mainly consisting of read, write and update of a single pair at a time. Some
systems extend this set to support querying over a range of data, leveraging batching and
caching to improve performance [18]. Another class of key-value stores known as document
stores require the data to follow a specific representation and allow for simple queries based

on stored values [5], often at the cost of speed or relaxed consistency guarantees.

2.1.2 File Systems

The File system data store model is concerned with storing large contiguous blocks of
data which are generally accessed and modified sequentially, as opposed to random accesses
common in KV stores. The data blocks are typically stored under a file like abstraction and
support hierarchical structuring. Most File Systems only support sequential read /writes,
with writes being persisted on a secondary storage device or (persistent) memory. The
sequential access property of these data stores opens up avenues for optimisation which
is generally not available to random access KV stores. In the present text we look into
Orion [30], PolarF'S [3] and FileMR [29] as background in this space.

2.1.3 Primitives

Thus far the fully-fledged data storage systems discussed are either optimised to cater to
small key-value pairs or sequential data-blocks. However, certain application needs might
not be fulfilled by these systems. In such cases it is imperative to provide low-level storage
and synchronisation primitives which can be leveraged by higher level applications to build
their own storage systems, catering to their consumer’s niche requirements. Hyperloop
[11] provides a set of such synchronisation primitives achieved by leveraging RDMA-based

read /writes to facilitate distributed transactions by userspace applications. AsymNVM



AsymNVM

_ Dynamo
FileMR T
. Fl
\ ) Globally unique atstore RAMCloud
Dynamic Range Addressing
\ Orion /

Range Based \ Hash Based Partitioning —3

Addressing
Block based \

Static Range Pastry

K

PolarES Partitioning and Addressing

Figure 2.4: Solution Web for Data Partitioning Schemes

[15] iPipe [14] discusses a similar set of primitives and outlines how they can be leverage

by various distributed data structures.

2.2 Data Partitioning

Data Partitioning refers to techniques to divide data across multiple systems, typically
to enhance scalability by distributing the service load. In Key-Value stores, key-oriented
partitioning techniques are dominant given that each key can be accessed independently.
On the other hand, File Systems usually resort to range-based partitioning schemes pre-
sumably to leverage spatial locality that comes with file access patterns as shown in Figure
24.

We describe both these sets of techniques and several of their variants below.

2.2.1 Hashing

Data can be distributed among nodes based on a hash generated from an identifier -
generally the key in KV stores, or the file’s path in a file system. These algorithms are
usually static, and hence enable fast lookup by any participating node locally. This also
obviates the need of a central manager and reduces network load. An important drawback
is that these algorithms usually do not account for dynamic changes in the query workload.
Hashing based partitioning algorithms also suffer in performance when there is movement
of data, for example to recover from node failures, as this requires re-calculation of the
hash for a significant portion of objects. A trade-off between lookup speed and hashing
overhead can be seen based on the granularity of data size hashed, with some systems
choosing to hash each key-value pair independently [8, 6, 13] and others hashing larger
chunks of related data together [18].
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Figure 2.5: Consistent Hashing: Hash Ring with Virtual Nodes

Consistent Hashing considers the range of the hashing function as a ring such that
each storage node gets assigned an arc of this ring. This arc distribution is contiguous so
that each possible hashing key is mapped to exactly one node. A key benefit of consistent
hashing is that the hashes don’t change with addition or removal of storage nodes. Further,
this ensures a relatively equal distribution of pairs amongst the nodes [10] assuming a non-
adverserial workload and universal hash functions.

To deal with heterogeneity in processing power and capacity of different nodes, virtual
nodes are used to assign non-contiguous arcs on the hash ring. Each physical node then
maps to multiple virtual nodes [6, 12]. While virtual nodes provide better distribution,
they result in a more complex metadata management and higher movement during failure
and addition of nodes; most such systems therefore limit the no. of virtual nodes allowed.
A host of other randomization techniques with refinements based on geo-location and
network latency are also used for better balancing [18].

Consistent Hashing is also used along with Distributed Hash Tables, in which data
mapping is stored in a decentralized manner |25, 22|. These generally require more than
one hop to locate data, owing to the fact that each node only contains a subset of the
routing information.

In a hyperconverged setting, where each compute node doubles as a storage node, the
responsibility of calculating the hash during the initial write is sometimes taken up by the
client itself [13]. This also opens up the opportunity to encode hints within the generated

key regarding the preferred storage location for the value and other optimisations.



2.2.2 Range-based Partitioning

A common trend observed among most storage systems has been the presence of a central
metadata management server (MDS) for address management. This puts the MDS on
the critical path for each read and write. While the read cost can be partially offset
using efficient metadata caching, writes still must go through the MDS. File systems,
due to their contiguous memory allocation, provide a unique opportunity to reduce the
write cost by optimizing block sizes. In most file based storage systems, the MDS allocates
memory chunks to the backend servers which are used to serve multiple writes. PolarFS|3|
uses chunk sizes of 10GB to minimise metadata management. These chunks are further
subdivided into smaller blocks of 64KB inside the ChunkServers. The ChunkServers store
the logical block address to physical address mapping together with a bitmap of free blocks.

FileMR|29] provides a Range Based Address translation mechanism using the Memory
mapping table of RDMA DAX. This allows FileMR to address large contiguous memory
spaces in the NVM address space and leverage extent based file system mechanisms. This
also decreases the memory required to store the address mapping and the time required
to perform lookups on the table.

Flatstore[4] on the other hand uses a Hoard-like memory allocator for logs. It divides
the NVM storage space into 4MB chunks. Based on the class of memory required this
4MB chunk can be divided into subblocks of different sizes. The type of block used, the
size of each block, and the list of free pages are stored at the start of each 4MB chunk.

The chunks are also allocated to dedicated server cores to avoid locking induced latencies.

2.3 Consistency

Nodes in a distributed system are likely to fail due to a host of issues such as power failure,
damage to hardware, and even natural disasters. This makes it important for systems to
replicate their data across multiple separated nodes for better durability. Replication
across nodes require careful use of consensus protocols to maintain a single global view of
data. Consistency models account for the effect of concurrent requests and consequently
the state of a distributed object store as viewed by clients in the presence of multiple
replicas hosting the same dataset. Figure 2.6 shows an infographic of various techniques
used to ensure consistency and node consensus.

We describe different consistency models and techniques following this categorization.

2.3.1 Strong Consistency

Orion|30] relies on a central metadata server which acts as the single source of truth for
all metadata related information. This makes it critical to the operation of the storage

system and any corruption in the data can lead to its failure. To prevent this, the MDS



AsymNVM

iPipe orion POIa;;S T Hyperloop
AsymNVM \ T Zookeeper i
& Parallel RAFT Chained
Hyperloop Storage A S e
e Guaranteed Voting Based —> iPipe

Application \ /

‘F\’(esponSIblllty —— Consistency and Consensus —> Mojim —» Orion
PolarFS

Figure 2.6: Solution Web for Consistency and Consensus Algorithms

can be made to operate in a high-availability mirrored cluster using Mojim protocol, where
the master receives all write requests which are mirrored on the replica before an ACK is
sent back, which takes over in case of a master failure. On the other hand if a Data store
fails and rejoins after sometime, it rebuilds its data store by reading the pages committed
during its absence from its peers in the replicaset.

AsymNVM][15] on the other hand uses Zookeeper as its consensus mechanism, which
uses a lease based system to detect liveness of nodes in a replicaset. A lease which is not
renewed before its expiry indicates a node failure. In case of front end failures, the backend
informs the frontend of any log inconsistencies which then re-executes the Operation log
stored on its system. However in case of a backend failure, after rebooting the backend
will reconstruct the virtual to physical system address mapping from its NVM storage and
inform the frontends of any inconsistent transactions which will then be fixed using redo
operations from the frontend.

The DAOS system[13| supports both strong and weak consistency protocols. If the
DAOS system is run with strong consistency guarantees then the storage server nodes run
RAFT protocol to replicate data amongst themselves. Even though this enables strong
consistency guarantees, it comes at the cost of increased latency and throughput overheads.

M. Liu et al[14] describes a a multi-Paxos based algorithm to run a replicate-set on a
smartNIC. While the consensus protocols discussed by Orion and AsymNVM require the
intervention of a conventional server host, iPipe’s multi-Paxos implementation bypasses
such a requirement, running exclusively on the NIC. This reduces computational load on
the server system while at the same time receives better packet latency owing to the NIC

being closer to the network.

2.3.2 Weak Consistency

Traditional stores like Dynamo [6] provide eventual consistency to achieve high availability.

This model guarantees that all the replicas will eventually converge to a consistent state.



Further, in such systems, not all replicas need to be consistent. A sloppy-quoram in which
each read and write consults R and W nodes (R+W > N, where N is the replication
factor) respectively can ensure a consistent view of the data stored. This also means that
reconciliation of different versions of the same key must be done at reads.

Raft is a common strong consistency protocol used by various distributed systems.
However, Raft is suitable for serialized write and hence can lower system throughput.
ParallelRaft [3] relaxes the log management such that when a log commit reaches a follower
node, all previous logs may not be committed. This is tolerated by delaying ACKs from the
followers until after all the previous logs in its memory has been successfully committed.
The notion of serial commit of logs in the Raft leader is also relaxed such that any log entry
can be committed, irrespective of its previous log’s status, as soon as ACKs from a majority
of previous nodes has been received. PolarFS [3] also employs a new data structure named
the look-behind buffer to bridge any possible holes in the commit log created due to out-of-
order log commits. In case of a node failure, if the difference between the leader and the
follower is only a few entries, a fast-catch-up mechanism is used where the holes between
the leader and follower nodes are filled using the look-back-buffer by directly copying them
from the leader. However in case of catastrophic failures, a full log rebuild is required.
In a similar vein, while dynamo [6] does provide merging of multiple versions of the same
key in which the versions are totally ordered, it leaves partially ordered conflicting version
reconciliation to the application

Hyperloop[11] uses a similar chain of reasoning regarding consistency management.
Since their solution is to provide primitives for higher level application development, the
authors describe a chained replication system for data replication however leaving consis-
tency maintenance to the higher level applications.

The DAOS system|[13| as already mentioned can run in either weak or strong consis-
tency mode. In cases where the client side application can withstand write losses or prefers
to replicate data themselves, the DAOS server side suspends proactive replication, with
the client becoming responsible for data replication on the target nodes. A side-effect of
client side replication is that even though it can detect node failures and prevent data loss
in case the failure happens before a write, it is possible for write losses to happen in case

of failures occurring during write replication.

2.4 Metadata Management

A general trend observed in most File system and a few KV stores is the presence of
a central metadata management unit which stores metadata regarding a data blocks like
their location in the distributed system, ownership and access control rules, access patterns
etc and acts as the single point of truth for the storage system. Clients requesting for data

blobs general perform an initial lookup on the metadata server regarding the location of
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the block before sending the actual IO request, thus putting the metadata server on the
critical path on a significant slice of 10 requests. Figure 2.7 shows an overview of various
metadata management techniques.

Orion [30] clusters consists of a Metadata Servers (MDS) and data storage units (DS).
The metadata servers run on a high-availability cluster with the servers storing the au-
thoritative copy of the operation logs. The servers also store a bitmap of free space across
the cluster. Data stores register memory needs with the MDS, which are allocated in
large chucks to avoid frequent look-ups. [3] follows a similar architecture, terming their
metadata management unit as the PolarCtrl. The PolarCtrl is tasked with maintaining
cluster membership information of Data servers called ChunkServers, maintaining vol-
ume information, creating and allocating memory chunks, synchronising metadata and
performing sanity checks to prevent data corruption. PolarCtrl uses a MySQL instance
as a metadata repository. On the other hand, [15] follows a shared model for metadata
management. The backend nodes store the metadata in hashtable based data-structure
for for fast lookup. The metadata comprises of log addresses, NVM persistent data, root
addresses of datastructures and datastructure locks held during transactions. The fron-
tend nodes cache the address translation hashmap in local memory, with a hybrid LRU
and RR based cache eviction policy. Chen et al [4] follows a similar strategy for small KV
updates, which are directly written to the OpLog along with the indexing metadata, while
a persistent storage allocator handles space allocation and storage of large Key values.
The logs are kept separated on a per-core basis to avoid locking and contentions among
cores. |[13] supports a POSIX File System like abstraction using a shim on top of their
object store API. They mitigate the need of running a central metadata server by directly
encoding metadata information inside the 128bit key generated to identify each object
stored in the DAOS system.

10
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A significant source of latency in a centralised metadata stores such as [30, 3| is the
key lookup cycle associated with every query. With rise in 1O pressure from client nodes,
the central metadata server can become the source of a bottleneck, since every 10 needs

to pass through it.

2.5 Cache Management

Network remote read writes are comparatively slower than local 10, and hence most file
systems prefer a local memory read/write. An efficient caching policy on the client system
can help improve local 1O hit-rate and in turn the storage latency and throughput. Fur-
thermore as discussed earlier, the metadata management layer is on the critical path for
most of the IOs, and can become a potential source of I0 bottleneck. However this can
also be partially mitigated with effective caching at the client nodes. Figure 2.8 illustrates
various client and server side caching techniques across solutions.

Orion[30] performs both data and metadata caching at the client node. For every
read Orion caches the metadata and the data to its local DRAM, with an LRU based
eviction policy. Clients use these local caches and migration with copy-on-write to prevent
unnecessary remote reads.

PolarF'S[3| operates in a similar manner, metadata information is cached on the Po-
larSwitch to avoid lookups on the IO critical path. The mapping tables of chunks occupy
around 640KB memory which can be easily accommodated in the main memory of the

chunk server. During a lookup, a PolarSwitch finds out the location of ChunkServer repli-

11



caset using its local metadata cache. The metadata information is synchronised by the
PolarCtrl between itself and all the PolarSwitches. This model also prevents disruption
during small outages in PolarCtrl’s availability. The ChunkServer on the other hand uses
a small 3D XPoint SSD buffer as a write cache for WAL, this improves write throughput
for the servers.

AsymNVM][15] is built on the principle of efficient batching and caching to provide
large throughput and low latency. To increase the throughput of the system, AsymNVM
uses an operation log (OpLog) to cache data from write operations. These are then
batched together and applied to the data structure enabling larger throughput for RDMA
writes. For reads, data blocks are first checked for their presence in the local cache (DRAM
based). In case of a cache miss, for cold data, the data is directly read from the Backend
store using one-sided RDMA read, however for frequently accessed data like root for a
tree, the data is swapped into the cache from the remote backend via RDMA read and
then read from the cache. AysmNVM uses a LRU and Random Replacement(RR) based
hybrid cache eviction policy, whereas a random set of pages are first selected and the least
recently used pages from the set are evicted from the cache.

DAOS|13] arranges its storage nodes in a tree-like hierarchy with sibling nodes repre-
senting shared fault levels, for example DAOS agents sharing the same motherboard will
be at the same fault level. DAOS uses incast variables to invalidate server side caches in
such a tree-like hierarchy. Each node on a cache write sends a cache invalidation trigger
to its parent which in turn invalidates the cache of its parent. Once the root is notified
on such a cache invalidation, it sends triggers to all other branches in the DAOS system.
For key-values with a size less than a pre-defined threshold, DAOS sends the data point
along with the cache invalidation RPC, while for larger KVs, target nodes directly reads
the data point from the source node using RDMA.

2.6 Transaction Management

Data integrity management, consistency and crash recovery are important parts of a data-
store. Most filesystems discussed till now provides some form of transaction management
system. The commmon method for ensuring transactions across most of these solutions
is using log based transactions and write-ahead-logs (WAL).

Orion|30] has a configurable consistency policy, where as it can weaken the consistency
guarantee by forwarding a speculative log write to the Metadata Server before a write
actually happens on the filesystem. For strong consistency however, Orion delays the
log update until after the write happens on the filesystem. To perform this over RDMA
network calls, Orion sends the global address along with the packet. This is then used by
the DS to send back an acknowledgement to the Metadata Server which then processes

the log entry.

12



Hyperloop[11] provides a group-based transaction system which works entirely via the
NIC. To provide durable writes it uses an ACK sent from the last node of a replicaset
to act as an indicator for successful write. Since an ACK is sent as soon as the data
reaches the NIC memory and not the actual host storage or memory, a 0-byte READ is
sent immediately after the WRITE request is made to force the data to be flushed from
the NIC memory. This allows the ACK to actually confirm a successful write. Hyperloop
uses this technique to provide group based write(gWRITE), flush (gFLUSH), compare
and swap(gCAS) and other primitives.

AsymNVM][15] uses two separate logs to ensure data consistency. The lower level
memory logs are generated with each write operation on the backend nodes which ensure
they are written in an all or nothing fashion. Only after the memory log has been persisted
is an ACK sent back to the frontend for the write to complete. However since singular
writes over a network is costly, IO operations are batched together on the frontend nodes.
This is done using the Operation Log. Once the log has been persisted it can be used to
replay all operations done on the datastructure and hence the actual data write to the
backend nodes can be delayed.

FlatStore[4] also similar operation log based batching techniques to enable higher net-
work throughputs. However, they observed that storing large data in the log reduces
opportunities for batching. Hence, extremely small KVs (256B) are stored directly on the
log where as larger values are stored via pointer references. To further improve batching of
logs, Flatstore performs horizontal batching of Oplogs, where each core tries to acquire a
global lock, which it then uses to batch logs across cores for final transfer to the backend.

DAOSJ[13] tags each IO operation with a 64-bit epoch based timestamp, which is a
combination a logical and physical clock. The epochs are used to serialise concurrent
writes. The DAOS transaction API allows multiple object updates to be coalesced into
a single transaction, with each update tagged with the same epoch. However, DAOS
provides no ordering guarantees among writes within the same transaction, with write
replication happening in any arbitrary order among target replicas. In case of concurrent
writes with the same epoch timestamp, DAOS provides no consistency guarantees, with

the client only being warned of such overlapped writes.

2.7 Concurrent Access and Lock Management

Consistency guarantees also require parallel or concurrent access be properly managed in
order for distributed systems to work without data corruption. This requires the need for
critical sections in a data block to be locked before a write can occur. Broadly two parallel
trends has been observed in this space, the first being that of lock based access control
where critical section data is locked via a distributed shared lock, and the second being that

of lockless accesses via contention avoidance techniques and multiversion datastructures.

13
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Figure 2.9 shows various concurrency control mechanisms in today’s state of the art.

2.7.1 Lock Based Concurrent Access

Hyperloop|11] makes use of RDMA atomic Read writes to provide locking based protocols
for higher level systems to use. They use the techniques already discussed in transaction
management to provide systems with group based locking mechanisms without involving
the CPU.

AsymNVM][15] discusses both lock based and lock-free data structures. It uses RDMA
compare and swap atomic operations as a writer lock. The lock is defined alongside the
root of the data structures. The lock is released only after all writes have been completed.
Each writes atomically increase a Sequence number(SN) twice, once at lock and once at
unlock. Reads can only occur if it can acquire a lock when the SN is odd else a backoff
policy is used. Reads also need to check if the SN is same as it was before it started to
the read to fend off data inconsistencies.

FlatStore[4] uses a global lock to prevent contention among cores when trying to ac-
quire Oplogs for horizontal batching. To reduce overheads, the leader with the lock re-
leases it as soon as it acquires the operation logs. To further reduce locking overheads,
the authors propose grouping cores belonging to the same socket for horizontal batching
considerations and by extension locking.

iPipe[14] on the other hand performs transactions bypassing the host CPU. A coordi-
nator reads the data into its memory, validates and sets a version lock. It updates its local
lock and sends the data to the other participants for replication. Once the participants

reply, the lock is released and the write is deemed successful.
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2.7.2 Lockless Concurrent Access

Orion|30] uses Client Side arbitration to avoid locking of data. It is built on the principle
that RDMA inbound reads are lighter than outbound writes, and CPU cycles are costly for
the metadata server. The MDS thus appends log commits atomically whenever a request
comes. The clients on the other hand detects any mismatch between its local copy and
the MDS log copy before issuing write requests, and updates logs accordingly. In case of
mismatch happening due to concurrent accesses, the client fetches all log entries following
a sync point, and rebuilds the log entries in its DRAM and re-executes the user requests.

The FlatStore [4] architecture mandates a private storage for each server CPU core.
Thus IO requests to CPU cores are sequentially transferred to the assigned storage node.
Thus data blocks avoid contentions from parallel accesses. This obviates the need for data
block locking during read writes.

AsymNVM |[15] discusses a lock free mechanism for concurrent access using multiver-
sion datastructures. The writer copies all affected nodes to create a new copy, updates
their pointers and inserts new data into the copied node. Finally, when all datastructure
writes are satisfied, the writer atomically changes the root of the tree to point to the new
datastructure. Since the pointer change is atomic, no crash recovery or locking is required,
since a failure will only result in the latest write being lost without leaving the system
unstable.

DAOS [13] provides optimistic concurrency control using multi-version timestamp
based concurrency ordering. This lets the DAOS system avoid any locking based con-
currency bottlenecks at the cost of providing no worse case concurrency guarantees. In
case of writes having the same epoch timestamp, the DAOS system detects such violations

and informs the client so that they can be retried.

2.8 Rounding up

We discussed a host of solutions in the distributed storage system space with regards to
different storage system components. Figure 2.12 provides a summary of the solutions we
discussed in the present report and their relative positions in the DFS problem space.
Over the solutions we discussed, some trends can be observed. RDMA has been found
to be used overwhelmingly by almost all solutions for purposes ranging from network
communications for consistency protocols, to replication and metadata and data transport,
along with a cluster of other communication protocols like SPDK, PMDK, Infiniband as
can be observed the solution web Diagram 2.10. RPC based communication protocols
have also been observed to be used considerably across multiple architectures mainly for
metadata communication and transport. On the other hand, we note a general push

for storage systems to employ byte-addressable non-volatile storages like NVMM and
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Figure 2.10: Solution web diagram of communication protocols used by distributed storage

systems

NVMe SSDs over traditional spinning disks. Recent advancement in non-volatile storages
have reduced prices considerably making such a push possible. DRAMs are being used as
caching layers in most LF'S based file systems for faster data access. We also observed some
recent development which exploits NICs for accelerating storage systems. The solution
web Diagram 2.11 captures these trends observed across solutions.

We also observed a general trend for Key-value based storages to use hashing based
addressing schemes for generating key-value storage locations, while file based storages
tend to use range based or block based addressing with a centralised metadata server
acting as an arbiter. A hash based addressing scheme provides faster random KV lookup
compared to a centralised addressing schemes but runs the risk of storage bottlenecks,
while a block based addressing scheme provides better storage loadbalancing at the risk of
the metadata server being a potential access bottleneck. The risk of the storage server and
the metadata server being a bottleneck is partially offset by client side data and metadata
caching.

On the topic of replication of data for fault tolerance, consensus amongst replicasets
and transaction and locking support for concurrent data access, we observed a large spec-
trum of technologies being used. Most of the consensus mechanisms are based on voting
based techniques, with some consensus protocols like ParallelRaft relaxing strict consis-
tency requirements by offloading some responsibilities userspace applications. Transaction
management has been overwhelmingly log based with almost all solutions with transaction

support using a log structure mechanism. While some solutions tend to avoid data struc-
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ture locking using contention free techniques like per-core request queues, multi-version
data structures, others have shown to provide distributed locking mechanisms exploiting

the atomic read/write guarantees of RDMA.
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Chapter 3
Directions for Exploration

The advent of smartNICs have opened up new exploratory avenues in distributed storage
system design. They provide specialized compute and storage at a unique position in the
network stack. Given that each component of a distributed store, — prefetching, caching,
provisioning, consistency, fault tolerance etc. — requires logic processing and state to run,
any combination of them can be offloaded in part or completely to these next-gen NICs.
This allows for a myriad of possibilities, each of which affect performance. Navigating
across all options, a careful consideration of each possibility is required to optimize for
specific criteria and requirements.

In the following sections, we first describe these technologies in detail with the aim
to understand exactly what they offer. Then, we discuss what we believe are interesting

approaches to leverage these technologies by modifying existing designs.

3.1 Benchmarking

SmartNICs are generally equipped with a significant number of general-purpose compute
cores (typically more extensive than those present on a host) on the NIC along with a
smaller scratchpad memory. This brings the storage operations closer to the network while

at the same time reducing resource requirements on the host.

3.1.1 Benchmarking capacity of smartNICs

Task offloading needs to be done with careful considerations, lest it becomes the source
of a bottleneck. As an illustration, computation cores on ASIC based NICs are generally
non-preemptive, such that tasks allocated to a CPU core will run till completion. While
this is not a cause for concern for packet processing tasks, which are generally small,
offloading a long-running task on such a CPU core can have a detrimental effect on the
NICs performance. On a similar front, the increased parallelism at the NIC comes at the

cost of reduced computational power on a per-core basis. CPU intensive tasks thus might
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perform better at the host compared to offloading to the NIC. We intend to undertake
benchmarking exercises to determine the performance of tasks chosen from a spectrum of
resource requirement profiles when offloaded to the NIC, under different runtime conditions

to define classes of workloads best suitable for offloading to the NIC.

3.1.2 Benchmarking workload performance under resource contentions

The presence of parallel cores allows us to offload multiple tasks concurrently on the NIC.
These tasks will execute in the presence of their co-tenants as well as general packet
processing workloads. This can lead to resource contentions and degraded performance
for all or a subset of workloads. A thorough understanding of smartNIC performance
is thus required to ensure optimum performance under resource contention and prevent
bottlenecks in vital pipelines like the packet processing pipeline sharing the same NIC
resources. In this regard, we intend to undertake performance benchmarks under different
resource contention and co-tenant stress scenarios.

Determination of policies for optimum performance would require an understanding of
the performance of tasks under different execution environments. We intend to exploit the

performance benchmarks we described here to form policies described in the next section.

3.2 Prototyping a Distributed File System

Our objective is to identify the most promising distribution for data, metadata, and com-
pute among the storage/compute technologies (DRAM, SSD, NVMM, smartNIC, and
CPU) and the related communication techniques (RDMA and smartNIC) to design a pro-
totype for a high-performance distributed file system. We discuss some interesting design
options that leverage the new hardware and technologies for our first prototype. Our
benchmarking exercise (§3.1) would answer some of the research questions that we ask in

this section.

3.2.1 Leveraging smartNICs for performance acceleration

We have seen the networking hardware advancements such as programmable packet parser/pipeline,
high-level of parallelism (200+ processing cores), dedicated accelerators, and onboard
memory. Figure 3.1 shows a possible storage stack. We discuss several opportunities

where smartNIC capabilities can be leveraged for performance acceleration.

Hierarchical caching

Modern smartNICs like Netronome Agilio [17], Broadcom Stingray 2] and Mellanox Blue-
field [16] have considerable memory onboard (e.g., 4 GB). We can leverage the second layer
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Figure 3.1: A SmartNIC enabled Distributed File System stack

of cache outside of the host’s DRAM cache. The smartNIC-based cache can be leveraged
on the server-side to process client requests independent of the host’s involvement.
Another interesting question is, can we perform caching outside of the host and
achieve performance beyond the maximum host bandwidth? Today’s data centers use pro-
grammable switches as a connection fabric that have significant onboard memory which
can be used by the offloaded applications. We can extend the throughput beyond the
host’s capacity by leveraging the Top-of-the-Rack (ToR) switch’s memory as a cache (sec-
ond or third layer) for frequently accessed (read heavy-hitters) file objects stored at the
hosts within the same rack. However, the introduction of a cache involves developing

suitable management policies to leverage the cache effectively.

e Maintenance of cache coherency between the host and smartNIC memories during

concurrent read/write for the same file object.

e The limited size of the NIC onboard memory warrants the development of effective

provisioning, ageing, and eviction policies for file objects (data or metadata).

e Under a hyperconverged compute-storage view, the reader and writer nodes are not
separated; any compute unit can simultaneously play both the roles. While a writer
or a reader would prefer the host DRAM cache for local file objects, a consumer with
a remote request would prefer a remote smartNIC cache hit for latency purposes.
This duality requires policy decisions to be in place to find the best location for file

objects based on data access patterns.

Prefetching metadata and data

Local reads are typically much faster compared to remote reads even when zero-copy

kernel bypass optimizations are involved [14]. Effective identification of an application’s
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working set allows us to eagerly prefetch data from multiple read targets. This promises
to improve read latency at the same time reducing network traffic by reducing effective
remote reads. This can be supplemented by dynamic client side cache resizing based on
the working set of applications using the cache. Another interesting design question is the
dynamic sizing of cache space between metadata and data. Typically file/object systems
have hard coded cache division, but we believe that this division should be dynamic -
perhaps not real time but certainly periodically resized.

To understand the benefits and overheads of employment of prefetching, we want to

answer the following questions.

e What type of objects should be prefetched? For example, data vs. metadata and

small size vs. large size

e What is the destination of prefetch, smartNIC, DRAM, NVMM, or NVMe SSD?
The incoming requests would prefer smartNIC whereas outgoing requests prefer
DRAM cache. If the in-memory cache is unavailable, we can prefetch small objects
to NVMM and the application can use the PMDK library (memory-mapped I/O) to
access the cache, whereas prefetch large objects to NVMe SSD and the application
accesses them using SPDK library (kernel bypass).

e Which replica should be used for prefetching? The prefetch load should not become
the reason for a bottleneck. We require to establish policies to choose a source replica
for prefetch such that the load is balanced among the replicas and the network links.
Prefetching is best-effort, therefore, our policy should be designed to limit prefetch

under high load conditions.

e Where do we run the prefetch logic, CPU, smartNIC, or ToR switch? We should
identify the scenarios when offloading the prefetch logic to smartNIC or a ToR switch

is beneficial.

Offloading storage solution components to smartNICs

Recent advancements have improved computation capabilities on smartNICs, ranging from
ASIC based NPUs [17] to general purpose SoC multicore processors [2, 16]. This opens
up avenues to offload storage computations (complete/partial) from the host CPU to the
NIC. Offloading storage solution computations such as consistency and gossip protocols,
replication and failure handling, and analytics engine to understand application storage
to the smartNIC has a two-pronged advantage. First, making decisions at the network
edge reduces latency, allowing nodes to react faster to changing system states. Second,
this frees up the host CPUs to user-space applications that would otherwise have been

tied down with storage management tasks.
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One of the concerns related to computation offload is resource contention. In the
case of a multi-tenant model, applications potentially from separate customers operate in
isolated environments while sharing a pool of resources, which leads to scenarios where
a certain class of resource-consuming applications can affect its co-tenants’ performance.
The smartNIC CPU and memory cache are examples of such resources. While there are
battle-tested methods for partitioning host-side resources like virtual machines and con-
tainers, such hardware or software-assisted, partitioning mechanisms are not currently
available for smartNIC resources. Developing such partitioning mechanisms would pre-
vent resource consumption monopolization and enable provider-side QoS guarantees while
protecting against adversarial workloads.

We want to answer a few questions to ensure efficient utilization of computing resources

and improved compute performance.

e What application characteristics determine if the application is offloadable or not?
For example, if most requests for an offloaded application require smartNIC pro-
cessing as well as the user-space application processing, we should not offload such

applications.

e How much application compute should be offloaded to the smartNIC? We can offload
the entire application or partition the application functions and offload the functions
that are most frequently used by remote requests. For example, in the case of
replication, we offload replication logic to the CPU and the replication messages are
handled by the SmartNICs, or we can process both at the smartNIC.

e Since the request characteristics are dynamic; the offload decisions should also be
dynamic. What are the benefits of a dynamic offload decision? What should be the

decision-making period? What are the overheads?

e [f multiple host applications are offloaded to the smartNIC, how do we manage the

resource provisioning and partitioning for each application?

3.2.2 Collaboration between resources

e A direction worth exploring is how we can leverage SmartNICs for metadata lookup,
and at the same time leverage, one-sided RDMA for data fetch. The latter has been
shown to be effective by the existing literature, but the open question is whether we
can increase the effectiveness by complementing one-sided RDMA with metadata
lookup offloaded to SmartNICs.

e The other interesting question is, can we offload transaction processing to the smart-
NIC?

Consider an incoming client transaction request that involves multiple object lookups,

23



where some objects are cached on the smartNIC, and others need to be remotely
fetched. We could improve the performance if we can perform all the operations
at the smartNIC. To achieve this, we should be able to ofload the processing of
transport protocols (RPC/gRPC) to the smartNIC, and the NIC could use RDMA

to fetch the remote object into its cache.

We have three resources for storage access, smartNIC, RDMA, and CPU with the
recent hardware. We want to dynamically identify their capacities and then provide

control knobs that dynamically provision work between the smartNIC, RDMA, and
the CPU.
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