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Ziggurat: A Tiered File System for Non-Volatile Main Memories and Disks

Shengan Zheng™ Morteza Hoseinzadeh®
SUniversity of California, San Diego

TShanghai Jiao Tong University

Abstract

Emerging fast, byte-addressable Non-Volatile Main Memory
(NVMM) provides huge increases in storage performance
compared to traditional disks. We present Ziggurat, a tiered
file system that combines NVMM and slow disks to create a
storage system with near-NVMM performance and large ca-
pacity. Ziggurat steers incoming writes to NVMM, DRAM,
or disk depending on application access patterns, write size,
and the likelihood that the application will stall until the
write completes. Ziggurat profiles the application’s access
stream online to predict the behavior of individual writes.
In the background, Ziggurat estimates the “temperature” of
file data, and migrates the cold file data from NVMM to
disks. To fully utilize disk bandwidth, Ziggurat coalesces
data blocks into large, sequential writes. Experimental re-
sults show that with a small amount of NVMM and a large
SSD, Ziggurat achieves up to 38.9x and 46.5x throughput
improvement compared with EXT4 and XFS running on an
SSD alone, respectively. As the amount of NVMM grows,
Ziggurat’s performance improves until it matches the perfor-
mance of an NVMM-only file system.

1 Introduction

Emerging fast, byte-addressable persistent memories, such
as battery-backed NVDIMMs [25] and 3D-XPoint [24],
promise to dramatically increase the performance of stor-
age systems. These non-volatile memory technologies offer
vastly higher throughput and lower latency compared with
traditional block-based storage devices.

Researchers have proposed several file systems [8} 10, 11}
29,132]] on NVMM. These file systems leverage the direct ac-
cess (DAX) feature of persistent memory to bypass the page
cache layer and provide user applications with direct access
to file data.

The high performance of persistent memory comes at a
high cost. The average price per byte of persistent mem-

*This work was done while visiting University of California, San Diego.

Steven Swanson®

ory is higher than SSD, and SSDs and hard drives scale to
much larger capacities than NVMM. So, workloads that are
cost-sensitive or require larger capacities than NVMM can
provide would benefit from a storage system that can lever-
age the strengths of both technologies: NVMM for speed
and disks for capacity.

Tiering is a solution to this dilemma. Tiered file systems
manage a hierarchy of heterogeneous storage devices and
place data in the storage device that is a good match for the
data’s performance requirements and the application’s future
access patterns.

Using NVMM poses new challenges to the data placement
policy of tiered file systems. Existing tiered storage systems
(such as FlashStore [9]] and Nitro [23]]) are based on disks
(SSDs or HDDs) that provide the same block-based inter-
face, and while SSDs are faster than hard disks, both achieve
better performance with larger, sequential writes and neither
can approach the latency of DRAM for reads or writes.

NVMM supports small (e.g., 8-byte) writes and offers
DRAM-like latency for reads and write latency within a
small factor of DRAM’s. This makes the decision of where
to place data and metadata more complex: The system
must decide where to initially place write data (DRAM or
NVMM), how to divide NVMM between metadata, freshly
written data, and data that the application is likely to read.

The first challenge is how to fully exploit the high band-
width and low latency of NVMM. Using NVMM introduces
a much more efficient way to persist data than disk-based
storage systems. File systems can persist synchronous writes
simply by writing them to NVMM, which not only bypasses
the page cache layer but also removes the high latency of
disk accesses from the critical path. Nevertheless, a DRAM
page cache still has higher throughput and lower latency
than NVMM, which makes it competitive to perform asyn-
chronous writes to the disk tiers.

The second challenge is how to reconcile NVMM’s ran-
dom access performance with the sequential accesses that
disks and SSDs favor. In a tiered file system with NVMM
and disks, bandwidth and latency are no longer the only
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differences between different storage tiers. Compared with
disks, the gap between sequential and random performance
of NVMM is much smaller, which makes it capable of
absorbing random writes. Simultaneously, the file system
should leverage NVMM to maximize the sequentiality of
writes and reads to and from disk.

We propose Ziggurat, a tiered file system that spans
NVMM and disks. Ziggurat exploits the benefits of NVMM
through intelligent data placement during file writes and data
migration. Ziggurat includes two placement predictors that
analyze the file write sequences and predict whether the in-
coming writes are both large and stable, and whether up-
dates to the file are likely to be synchronous. Ziggurat then
steers the incoming writes to the most suitable tier based on
the prediction: writes to synchronously-updated files go to
the NVMM tier to minimize the synchronization overhead.
Small, random writes also go to the NVMM tier to fully
avoid random writes to disk. The remaining large sequen-
tial writes to asynchronously-updated files go to disk.

We implement an efficient migration mechanism in Zig-
gurat to make room in NVMM for incoming file writes and
accelerate reads to frequently accessed data. We first profile
the temperature of file data and select the coldest file data
blocks to migrate. During migration, Ziggurat coalesces ad-
jacent data blocks and migrates them in large chunks to disk.
Ziggurat also adjusts the migration policy according to the
application access patterns.

The contributions of this paper include:

e We describe a synchronicity predictor to efficiently pre-
dict whether an application is likely to block waiting a
write to complete.

e We describe a write size predictor to predict whether the
writes to a file are both large and stable.

e We describe a migration mechanism that utilizes the
characteristics of different storage devices to perform
efficient migrations.

e We design an adaptive migration policy that can fit dif-
ferent access patterns of user applications.

¢ We implement and evaluate Ziggurat to demonstrate the
effectiveness of the predictors and the migration mech-
anism.

We evaluate Ziggurat using a collection of micro- and
macro-benchmarks. We find that Ziggurat is able to obtain
near-NVMM performance on many workloads even with lit-
tle NVMM. With a small amount of NVMM and a large
SSD, Ziggurat achieves up to 38.9x and 46.5x through-
put improvement compared with EXT4 and XFS running on
SSD alone, respectively. As the amount of NVMM grows,
Ziggurat’s performance improves until it nearly matches the
performance of an NVMM-only file system.

The remainder of the paper is organized as follows. Sec-
tion [2] describes a variety of storage technologies and the
NOVA file system. Section [3| presents a design overview of

Technology Latency Sequential Bandwidth
Read | Write Read Write

DRAM 0.1us | O0.1us | 25GB/s 25GB/s
NVMM 0.2us | 0.5us | 10GB/s 5GB/s
Optane SSD | 10us | 10us | 2.5GB/s 2GB/s

NVMe SSD | 120us | 30us 2GB/s 500MB/s

SATA SSD 80us | 85us | 5S00MB/s | 500MB/s

Hard disk 10ms | 10ms | 100MB/s | 100MB/s

Table 1: Performance comparison among different stor-
age media. DRAM, NVMM and hard disk numbers are esti-
mated based on [5 19} 35]. SSD numbers are extracted from
Intel’s website.

the Ziggurat file system. We discuss the placement policy
and the migration mechanism of Ziggurat in Section {4 and
Section [} respectively. Section [6] evaluates Ziggurat, and
Section [/| shows some related work. Finally, we present our
conclusions in Section

2 Background

Ziggurat targets emerging non-volatile memory technologies
and conventional block-based storage devices (e.g., SSDs or
HDDs). This section provides background on NVMM and
disks, and the NOVA file system that Ziggurat is based on.

2.1 Storage Technologies

Emerging non-volatile main memory (NVMM), solid-state
drive (SSD) and hard disk drive (HDD) technologies have
their unique latency, bandwidth, capacity, and characteris-
tics. Table|l|shows the performance comparison of different
storage devices.

Non-volatile memory provides byte-addressability, persis-
tence and direct access via the CPU’s memory controller.
Battery-backed NVDIMMs [25, [26]] have been available
for some time. Battery-free non-volatile memory tech-
nologies include phase change memory (PCM) [22, 28],
memristors [31} [33]], and spin-torque transfer RAM (STT-
RAM) [[7,120]]. Intel and Micron’s 3D-XPoint [24] will soon
be available. All of these technologies offer both longer la-
tency and higher density than DRAM. 3D-XPoint has also
appeared in Optane SSDs [17]], enabling SSDs that are much
faster than their flash-based counterparts.

2.2 The NOVA File System

Ziggurat is implemented based on NOVA [32], an NVMM
file system designed to maximize performance on hybrid
memory systems while providing strong consistency guar-
antees. Below, we discuss the file structure and scalability
aspects of NOVA’s design that are most relevant to Ziggurat.
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NOVA maintains a separate log for each inode. NOVA
also maintains radix trees in DRAM that map file offsets to
NVMM locations. The relationship between the inode, its
log, and its data pages is illustrated in Figure For file
writes, NOVA creates write entries (the log entries for data
updates) in the inode log. Each write entry holds a pointer
to the newly written data pages, as well as its modification
time (mtime). After NOVA creates a write entry, it updates
the tail of the inode log in NVMM, along with the in-DRAM
radix tree.

NOVA uses per-cpu allocators for NVMM space and per-
cpu journals for managing complex metadata updates. This
enables parallel block allocation and avoids contention in
journaling. In addition, NOVA has per-CPU inode tables to
ensure good scalability.

3 Ziggurat Design Overview

Ziggurat is a tiered file system that spans across NVMM and
disks (hard or solid state). We design Ziggurat to fully uti-
lize the strengths of NVMM and disks and to offer high file
performance for a wide range of access patterns.

Three design principles drive the decisions we made in
designing Ziggurat. First, Ziggurat should be fast-first. It
should use disks to expand the capacity of NVMM rather
than using NVMM to improve the performance of disks as
some previous systems [14}[15] have done. Second, Ziggurat
strives to be frugal by placing and moving data to avoid wast-
ing scarce resources (e.g., NVMM capacity or disk band-
width). Third, Ziggurat should be predictive by dynamically
learning the access patterns of a given workload and adapting
its data placement decisions to match.

These principles influence all aspects of Ziggurat’s design.
For instance, being fast-first means, in the common case, file
writes go to NVMM. However, Ziggurat will make an excep-
tion if it predicts that steering a particular write in NVMM
would not help application performance (e.g., if the write is
large and asynchronous).

Alternatively, if the writes are small and synchronous
(e.g., to a log file), Ziggurat will send them to NVMM ini-
tially, detect when the log entries have “cooled”, and then ag-
gregate those many small writes into larger, sequential writes
to disk.

Ziggurat uses two mechanisms to implement these design
principles. The first is a placement policy driven by a pair of
predictors that measure and analyze past file access behavior
to make predictions about future behavior. The second is an
efficient migration mechanism that moves data between tiers
to optimize NVMM performance and disk bandwidth. The
migration system relies on a simple but effective mechanism
to identify cold data to move from NVMM to disk.

We describe Ziggurat in the context of a simple two-tiered
system comprising NVMM and an SSD, but Ziggurat can
use any block device as the “lower” tier. Ziggurat can also

handle more than one block device tier by migrating data
blocks across different tiers.

3.1 Design Decisions

We made the following design decisions in Ziggurat to
achieve our goals.

Send writes to the most suitable tier ~ Although NVMM
is the fastest tier in Ziggurat, file writes should not always go
to NVMM. NVMM is best-suited for small updates (since
small writes to disk are slow) and synchronous writes (since
NVMM has higher bandwidth and lower latency). However,
for larger asynchronous writes, targeting disk is faster, since
Ziggurat can buffer the data in DRAM more quickly than it
can write to NVMM, and the write to disk can occur in the
background. Ziggurat uses its synchronicity predictor to an-
alyze the sequence of writes to each file and predict whether
future accesses are likely to be synchronous (i.e., whether the
application will call £sync in the near future).

Only migrate cold data in cold files During migration,
Ziggurat targets the cold portions of cold files. Hot files and
hot data in unevenly-accessed files remain in the faster tier.
When the usage of the fast tier is above a threshold, Ziggurat
selects files with the earliest average modification time to
migrate (Section [5.1). Within each file, Ziggurat migrates
blocks that are older than average. Unless the whole file is
cold (i.e., its modification time is not recent), in which case
we migrate the whole file.

High NVMM space utilization Ziggurat fully utilizes
NVMM space to improve performance. Ziggurat uses
NVMM to absorb synchronous writes. Ziggurat uses a dy-
namic migration threshold for NVMM based on the read-
write pattern of applications, so it makes the most of NVMM
to handle file reads and writes efficiently. We also implement
reverse migration (Section[5.2)) to migrate data from disk to
NVMM when running read-dominated workloads.

Migrate file data in groups In order to maximize the
write bandwidth of disks, Ziggurat performs migration to
disks as sequentially as possible. The placement policy en-
sures that most small, random writes go to NVMM. How-
ever, migrating these small write entries to disks directly will
suffer from the poor random access performance of disks. In
order to make migration efficient, Ziggurat coalesces adja-
cent file data into large chunks for migration to exploit se-
quential disk bandwidth (Section[5.3).

High scalability = Ziggurat extends NOVA’s per-cpu stor-
age space allocators to include all the storage tiers. It also
uses per-cpu migration and page cache writeback threads to
improve scalability.
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(a) Write (b) Synchronize (c) Append (d) Migrate (e) Read (e) Mmap
NVMM
DRAM [ 07 |[ 815 |[1623] | 07 H 815 H 16—23‘ ‘ 07 H 815 H 16—23|
DISK [ 0-23 ‘ [ 0-23 | 0-23 H 24-31 ] ‘ 0-23 H 24-31 ‘ | 8-23 H 24-31 |

Figure 1: File operations. Ziggurat utilizes different storage tiers to handle I/O requests such as write, synchronize, append,

migrate, read and mmap efficiently.

3.2 File Operations

Figure [T]illustrates how Ziggurat handles operations on files
(write, synchronize, append, migrate, read, and mmap) that
span multiple tiers.

Write The application initializes the first 24 blocks of the
file with three sequential writes in (a). Ziggurat first checks
the results from the synchronicity predictor and the write size
predictor (Sectiond) to decide which tier should receive the
new data. In the example, the three writes are large and Zig-
gurat predicts that the accesses are asynchronous, so Zig-
gurat steers these writes to disk. It writes the data to the
page cache in DRAM and then asynchronously writes them
to disk.

Synchronize The application calls fsync in (b). Ziggurat
traverses the write log entries of the file, and writes back the
dirty data pages in the DRAM page cache. The write-back
threads merge all adjacent dirty data pages to perform large
sequential writes to disk. If the file data were in NVMM,
fsync would be a no-op.

Append  After the fsync, the application performs eight
synchronous writes to add eight blocks to the end of the file
in (c). The placement predictor recognizes the pattern of
small synchronous writes and Ziggurat steers the writes to
NVMM.

Migrate  When the file becomes cold in (d), Ziggurat
evicts the first 24 data pages from DRAM and migrates last
eight data blocks from NVMM to disk using group migration

(Section[5.3).

Read The user application reads the last eight data blocks
in (e). Ziggurat fetches them from disk to DRAM page
cache.

Memory map The user application finally issues a mmap
request to the head of the file in (f). Ziggurat uses reverse
migration to bring the data into NVMM and then maps the
pages into the application’s address space.

4 Placement Policy

Ziggurat steers synchronous or small writes to NVMM, but
it steers asynchronous, large writes to disk, because writing
to the DRAM page cache is faster than writing to NVMM,
and Ziggurat can write to disk in the background. It uses two

predictors to distinguish these two types of writes.

Synchronicity predictor  The synchronicity predictor pre-
dicts whether the application is likely to call £sync on the
file in the near future. The synchronicity predictor counts
the number of data blocks written to the file between two
calls to fsync. If the number is less than a threshold (e.g.,
1024 in our experiments), the predictor classifies it as a
synchronously-updated file. The predictor treats writes to
files opened with 0_SYNC as synchronous as well.

Write size predictor The write size predictor not only en-
sures that a write is large enough to effectively exploit disk
bandwidth but also that the future writes within the same
address range are also likely to be large. The second con-
dition is critical. For example, if the application initializes
a file with large I/Os, and then performs many small I/Os,
these small new write entries will read and invalidate dis-
crete blocks, increasing fragmentation and leading to many
random disk accesses to service future reads.

Ziggurat’s write size predictor keeps a counter in each
write entry to indicate whether the write size is both large
and stable. When Ziggurat rewrites an old write entry, it first
checks whether the write size is big enough to cover at least
half the area taken up by the original log entry. If so, Zig-
gurat transfers the counter value of the old write entry to the
new one and increases it by one. Otherwise, it resets the
counter to zero. If the number is larger than four (a tunable
parameter), Ziggurat classifies the write as “large”. Writes
that are both large and asynchronous go to disk.

5 Migration Mechanism

The purpose of migration is to make room in NVMM for in-
coming file writes, as well as speeding up reads to frequently
accessed data. We use basic migration to migrate data from
disk to NVMM to fully utilize NVMM space when running
read-dominated workloads. We use group migration to mi-
grate data from NVMM to disk by coalescing adjacent data
blocks to achieve high migration efficiency and free up space
for future writes. Ziggurat can achieve near-NVMM perfor-
mance for most accesses as long as the migration mechanism
is efficient enough.

In this section, we first describe how Ziggurat identifies
good targets for migration. Then, we illustrate how it mi-
grates data efficiently to maximize the bandwidth of the disk
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Figure 2: Migration mechanism of Ziggurat. Ziggurat migrates file data between tiers using its basic migration and group
migration mechanisms. The blue arrows indicate data movement, while the black ones indicate pointers.

with basic migration and group migration. Finally, we show
how to migrate file logs efficiently.

5.1 Migration Profiler

Ziggurat uses a migration profiler to identify cold data to
migrate from NVMM to disk.

Implementation.  Ziggurat first identifies the cold files to
migrate. Ziggurat profiles the temperature of each file by
maintaining cold lists, the per-cpu lists of files on each stor-
age tier, sorted by the average modification time(amtime)
computed across all the blocks in the file. The per-cpu cold
lists correspond to per-cpu migration threads which migrate
files from one tier to another. Ziggurat updates the cold list
whenever it modifies a file. To identify the coldest blocks
within an cold file, Ziggurat tracks the mtime for each block
in the file.

To migrate data, Ziggurat pops the coldest file from a cold
list. If the mtime of the popped file is not recent (more than
30 seconds ago), then Ziggurat treats the whole file as cold
and migrates all of it. Otherwise, the modification time of the
file’s block will vary, and Ziggurat migrates the write entries
with mtime earlier than the amtime of the file. Hence, the
cold part of the file is migrated to a lower tier, and the hot
part of the file stays in the original tier.

Deciding when to migrate. Most existing tiered stor-
age systems (such as [6, 21]]) use a fixed utilization thresh-
old to decide when to migrate data to lower tiers. How-
ever, a higher threshold is not suitable for write-dominated
workloads, since the empty space in persistent memory will
be devoured by intensive file writes. In this case, the file
writes have to either stall before the migration threads clean
up enough space in NVMM, or write to disk. On the other
hand, a lower threshold is not desirable for read-dominated

workloads, since reads have to load more blocks from disks
instead of NVMM. We implement a dynamic threshold for
NVMM in Ziggurat based on the overall read-write ratio of
the file system. The migration threshold rises from 50% to
90% as the read-write ratio of the system changes.

5.2 Basic Migration

The goal of basic migration is to migrate the coldest data in
Ziggurat to disk. When the usage of the upper tier is above
the threshold, a per-cpu migration thread migrates the coldest
data in a cold file to disk. The migration process repeats until
the usage of the upper tier is below the threshold again.

The granularity of migration is a write entry. During mi-
gration, we traverse the in-DRAM radix tree to locate every
valid write entry in the file and migrate the write entries with
mtime earlier than the amtime of the file.

Figure [2alillustrates the basic procedures of how Ziggurat
migrates a write entry from NVMM to disk. The first step
is to allocate continuous space on disk to hold the migrated
data. Ziggurat copies the data from NVMM to disk. Then,
it appends a new write entry to the inode log with the new
location of the migrated data blocks. After that, it updates
the log tail in NVMM and the radix tree in DRAM. Finally,
Ziggurat frees the old blocks of NVMM.

To improve scalability, Ziggurat uses locks in the granu-
larity of a write entry instead of an entire file. Ziggurat locks
write entries during migration but other parts of the file re-
main available for reading. Migration does not block file
writes. If any foreground file I/O request tries to acquire the
inode lock, the migration thread will stop migrating the cur-
rent file, and release the lock.

If a write entry migrates to a disk when the DRAM page
cache usage is low (i.e., below 50%), Ziggurat will make
a copy of the pages in the DRAM page cache in order to
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accelerate future reads. Writes will benefit from this as well,
since unaligned writes have to read the partial blocks from
their neighbor write entries to fill the data blocks.

Ziggurat implements reverse migration, which migrates
file data from disks to NVMM, using basic migration. Write
entries are migrated successively without grouping since
NVMM can handle sequential and random writes efficiently.
File mmap uses reverse migration to enable direct access to
persistent data. Reverse migration also optimizes the perfor-
mance of read-dominated workloads when NVMM usage is
low since the performance depends on the size of memory. If
Ziggurat can only migrate data from a faster tier to a slower
one, then the precious available space of NVMM will stay
idle when running read-dominated workloads. Meanwhile,
the data on disks contend for a limited DRAM. Reverse mi-
gration makes full use of NVMM in such a scenario.

5.3 Group Migration

Group migration avoids fine-grain migration to improve ef-
ficiency and maximize sequential bandwidth to disks. Zig-
gurat tends to fill NVMM with small writes due to its data
placement policy. Migrating them from NVMM to disk with
basic migration is inefficient because it will incur the high
random access latency of disks.

Group migration coalesces small write entries in NVMM
into large sequential ones to disk. There are four benefits: (1)
It merges small random writes into large sequential writes,
which improves the migration efficiency. (2) If the migrated
data is read again, loading continuous blocks is much faster
than loading scattered blocks around the disk. (3) By merg-
ing write entries, the log itself becomes smaller, reducing
metadata access overheads. (4) It moderates disk fragmenta-
tion caused by log-structured writes by mimicking garbage
collection.

As illustrated in Figure the steps of group migration
are similar to migrating a write entry. In step 1, we allocate
large chunks of data blocks in the lower tier. In step 2, we
copy multiple pages to the lower tier with a single sequen-
tial write. After that, we append the log entry, and update
the inode log tail, which commits the group migration. The
stale pages and logs are freed afterward. Ideally, the group
migration size (the granularity of group migration) should be
set close to the future I/O size, so that applications can fetch
file data with one sequential read from disk. In addition, it
should not exceed the CPU cache size in order to maximize
the performance of loading the write entries from disks.

5.4 File Log Migration

Ziggurat migrates file logs in addition to data when NVMM
utilization is too high, freeing up space for hot data and meta-
data. Ziggurat periodically scans the cold lists, and initiates
log migration on cold files. Figure [3|illustrates how log mi-

NVMM  Inode [ Head || Tail |
pmm————— 7 Step 3 SN—
Inode

log
..... o step 1

. S o —L__ -
Disk 1
Step 2‘
Log type 170 be coalesced : .
Invalid Coal d 1
[invalid. [ Coslesce DRAM page cache ! Disk

Figure 3: Log migration in Ziggurat. Ziggurat compacts
logs as it moves them from NVMM to disk.

gration is performed. Ziggurat copies live log entries from
NVMM into the page cache. The log entries are compacted
into new log pages during coping. Then, it writes the new log
pages back to disk, and updates the inode metadata cache in
DRAM to point to the new log. After that, Ziggurat atomi-
cally replaces the old log with the new one and reclaims the
old log.

6 Evaluation

6.1 Experimental Setup

Ziggurat is implemented on Linux 4.13. We used NOVA as
the code base to build Ziggurat, and added around 8.6k lines
of code. To evaluate the performance of Ziggurat, we run
micro-benchmarks and macro-benchmarks on a dual-socket
Intel Xeon ES5 server. Each processor runs at 2.2GHz, has 10
physical cores, and is equipped with 25 MB of L3 cache and
128 GB of DRAM. The server also has a 400 GB Intel DC
P3600 NVMe SSD and a 187 GB Intel DC P4800X Optane
SSD.

As persistent memory devices are not yet available, we
emulate the latency and bandwidth of NVMM with the
NUMA effect on DRAM. There are two NUMA nodes in our
platform. During the experiments, the entire address space
of NUMA node 1 is used for NVMM emulation. All appli-
cations are pinned to run on the processors and memory of
NUMA node 0. Table[2]shows the DRAM latency of our ex-
perimental platform by Intel Memory Latency Checker [[16].

We compare Ziggurat with different types of file systems.
For NVMM-based file systems, we compare Ziggurat with
NOVA [32]], Strata [21] (NVMM only) and the DAX-based
file systems on Linux: EXT4-DAX and XFS-DAX. For disk-
based file systems, we compare Ziggurat with EXT4 in the
data journaling mode (-DJ) and XFS in the metadata log-
ging mode (-ML). Both EXT4-DJ and XFS-ML provide data
atomicity, like Ziggurat. For EXT4-DJ, the journals are kept
in a 2 GB journaling block device (JBD) on NVMM. For
XFS-ML, the metadata logging device is 2 GB of NVMM.

212 17th USENIX Conference on File and Storage Technologies

USENIX Association



30000
E 50/50 EB 50/50
250001 == 90/10 =&~ 90/10
=z -@- 80/20 -@ 80/20
£ 20000{ g 7030 |/ 70/3%
- /i /
2 15000 - 60/40 - 60/40
£ V- 50/50 - 50/50
2 10000 { EEA 50/50 B 50/50
=
=
5000
0 I I ! / Z m m i / Z
N B N S R Y I N A R\
+w°¢,‘“ & %@‘ « ,&” »}’“’ »}’104 e bogf\ « o" « »}” f’ a\io‘\ R
TR S K A x@ﬁs”x@’ e

(a) Fio read on Optane SSD and NVMM

(b) Fio read on NVMe SSD and NVMM

12000
= 50/50 = 50/50
100001 =&~ 90/10 A 90/10
= -@- 80/20 -@- 50/20
= 80007 - 7030 - 70/30
= O /
5 6000 £0/40 - 60/40
£ N~ 50/50 - 50/50
2 4000 EEA 50/50 B 50/50
=
£
2000
0 B_m . I
> Mo 9D & > X O O
Vo /*\V & & & 5 k’O‘\V o¢o’+ O @* gt o 7 o
& Ll °,;>‘"' 0@ 0@$ O &E & Q}’ & FEEE I
A AT A (1 4 SN WA AY (F i F

(¢) Fio write on Optane SSD and NVMM  (d) Fio write on NVMe SSD and NVMM

Figure 4: Fio performance. Each workload performs 4 KB reads/writes to a hybrid file system backed by NVMM and SSD
(EXT4-DJ, XFS-ML and Ziggurat) or an NVMM-only file system (NOVA, EXT4-DAX and XFS-DAX).

Node | 0 1 Node | 0 1

0 76.6  133.7 0 52213.9 25505.9

1 1342 755 1 254873 52111.8
(a) NUMA latency (ns) (b) NUMA bandwidth (MB/s)

Table 2: NUMA latency and bandwidth of our platform.
We use the increased latency and reduced bandwidth of the
remote NUMA node to emulate the lower performance of
NVMM compared to DRAM.

We limit the capacity of the DRAM page cache to 10 GB.

For tiered file systems, we only do the comparison among
Ziggurat with different configurations. To the best of our
knowledge, Strata is the only currently available tiered file
system that spans across NVMM and disks. However, the
publicly available version of Strata only supports a few ap-
plications and has trouble running workloads with dataset
sizes larger than NVMM size as well as multi-threaded ap-
plications.

We vary the NVMM capacity available to Ziggurat to
show how performance changes with different storage con-
figurations. The dataset size of each workload is smaller
than 64 GB. The variation starts with Ziggurat-2 (i.e., Zig-
gurat with 2 GB of NVMM). In this case, most of the data
must reside on disk forcing Ziggurat to frequently migrate
data to accommodate incoming writes. Ziggurat-2 is also
an interesting comparison point for EXT4-DJ and XFS-ML,
since those configurations take different approaches to using
a small amount of NVMM to improve file system perfor-
mance. The variation ends with Ziggurat-64 (i.e., Ziggurat
with 64 GB of NVMM). The group migration size is set to
16 MB. We run each workload three times and report the
average across these runs.

6.2 Microbenchmarks

We demonstrate the relationship between access locality and
the read/write throughput of Ziggurat with Fio [1]. Fio can

90/10
1.04

80/20
0.88

70/30
0.71

60/40 | 50/50
0.44 0

Locality
Parameter 6

Table 3: Zipf Parameters. We vary the Zipf parameter, 6,
to control the amount of locality in the access stream.

issue random read/write requests according to Zipfian distri-
bution. We vary the Zipf parameter 0 to adjust the locality
of random accesses. We present the results with a range of
localities range from 90/10 (90% of accesses go to 10% of
data) to 50/50 (Table [3). We initialize the files with 2 MB
writes and the total dataset is 32 GB. We use 20 threads for
the experiments, each thread performs 4 KB I/Os to a private
file, and all writes are synchronous.

Figure [4] shows the results for Ziggurat, EXT4-DJ, and
XFS-ML on Optane SSD and NVMe SSD, as well as NOVA,
EXT4-DAX, and XFS-DAX on NVMM. The gaps between
the throughputs from Optane SSD and NVMe SSD in both
graphs are large because Optane SSD’s read/write bandwidth
is much higher than the NVMe SSD’s. The throughput of
Ziggurat-64 is close to NOVA for the 50/50 locality, the per-
formance gap between Ziggurat-64 and NOVA is within 2%.
This is because when all the data fits in NVMM, Ziggurat is
as fast as NOVA. The throughput of Ziggurat-2 is within 5%
of EXT4-DJ and XFS-ML.

In Figure #al and Figure [db] the random read performance
of Ziggurat grows with increased locality. The major over-
head of reads comes from fetching cold data blocks from
disk to DRAM page cache. There is a dramatic performance
increase in 90/10, due to CPU caching and the high locality
of the workload.

In Figure[dc|and Figure[dd] the difference between the ran-
dom write performance of Ziggurat with different amounts
of locality is small. Since all the writes are synchronous
4 KB aligned writes, Ziggurat steers these writes to NVMM.
If NVMM is full, Ziggurat writes the new data blocks to
the DRAM page cache and then flushes them to disk syn-
chronously. Since the access pattern is random, the migra-
tion threads cannot easily merge the discrete data blocks to
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Figure 5: Filebench performance (multi-threaded). Each workload runs with 20 threads so as to fully show the scalability of
the file systems. The performance gaps between Optane SSD and NVMe SSD are smaller than the single-threaded ones.
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Figure 6: Filebench performance (single-threaded). For small amounts of NVMM, Ziggurat is no slower than conventional
file systems running on disk. With large amount of NVMM, performance nearly matches that of NVMM-only file systems.

perform group migration in large sequential writes to disk.
Therefore, the migration efficiency is limited by the random
write bandwidth of disks, which leads to accumulated cold
data blocks in NVMM. Increasing NVMM size, increasing
locality, or reducing work set size can all help alleviate this
problem.

We also measure the disk throughput of the random write
workloads on Ziggurat-2 to show how Ziggurat fully uti-
lizes disk bandwidth to achieve maximum performance. Al-
though it is hard to merge the discrete data blocks to perform
group migration, the per-CPU migration threads make full
use of the concurrency of disks to achieve high migration ef-
ficiency. The average disk write bandwidth of Ziggurat-2 is
1917 MB/s and 438 MB/s for Optane SSD and NVMe SSD,
respectively. These values are very close to the bandwidth
limit numbers in Table [Tl

6.3 Macrobenchmarks

We select three Filebench workloads: fileserver, webproxy,
and varmail to evaluate the overall performance of Ziggurat.
Table ] summarizes the characteristics of these workloads.
Figure [5] shows the multi-threaded Filebench throughput
on our five comparison file systems and several Ziggurat
configurations. In general, we observe that the throughput
of Ziggurat-64 is close to NOVA, the performance gap be-

Average | #of 1/0 size R/W

Workload file sizge files (R/W) Threads ratio
Fileserver 2MB 16K | 16KB/16KB 20/1 1:2
Webproxy 2MB 16K 1IMB/16KB 20/1 5:1
Varmail 2MB 16K 1IMB/16KB 20/1 1:1

Table 4: Filebench workload characteristics. These work-
loads have different read/write ratios and access patterns.

tween Ziggurat-64 and NOVA is within 3%. Ziggurat grad-
ually bridges the gap between disk-based file systems and
NVMM-based file systems by increasing the NVMM size.

Fileserver emulates the I/O activity of a simple file server,
which consists of creates, deletes, appends, reads and writes.
In the fileserver workload, Ziggurat-2 has similar throughput
to EXT4-DJ and XFS-ML. The performance increases sig-
nificantly when the NVMM size is larger than 32 GB since
most of the data reside in memory. Ziggurat-64 outperforms
EXT4-DAX and XFS-DAX by 2.6 and 5.1 x.

Webproxy is a read-intensive workload, which involves
appends and repeated reads to files. Therefore, all the
file systems achieve high throughputs by utilizing the page
cache.

Varmail emulates an email server with frequent syn-
chronous writes. Ziggurat-2 outperforms EXT4-DJ and
XFS-ML by 2.1x (Optane SSD) and 2.6x (NVMe SSD)
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Figure 7: Rocksdb performance. Ziggurat shows good performance for inserting file data with write-ahead logging, due to
the clear distinction between hot and cold files and its migration mechanism.

on average. Varmail performs an fsync after every two ap-
pends. Ziggurat analyzes these synchronous appends and
steers them to NVMM, eliminating the cost of most of the
fsyncs.

Figure[f]illustrates the single-threaded Filebench through-
puts. Strata achieves the best throughput in the varmail
workload since its digestion skips many temporary durable
writes which are superseded by subsequent writes. However,
Ziggurat-64 outperforms Strata by 31% and 27% on the file-
server and webproxy workloads due to the inefficiency of
reads in Strata.

6.4 Rocksdb

We illustrate the high performance of updating a key-
value store with write-ahead logging (WAL) on Ziggurat
with Rocksdb [[13], a persistent key-value store based on
log-structured merge trees (LSM-trees). Every update to
RocksDB is written to two places: an in-memory data struc-
ture called memtable and a write-ahead log in the file sys-
tem. When the size of the memtable reaches a threshold,
RocksDB writes it back to disk and discards the log.

We select three Rocksdb workloads from db_bench: ran-
dom insert (FillUniqueRandom), sequential insert (FillSeq),
and sequential read (ReadSeq) to evaluate the key-value
throughput and migration efficiency of Ziggurat. We set
the writes to synchronous mode for a fair comparison. The
database size is set to 32 GB.

Figure[7]measures the Rocksdb throughput. In the random
insert workload, Ziggurat with 2 GB of NVMM achieves
8.6 and 13.2x better throughput than EXT4-DJ and XFS-
ML, respectively. In the sequential insert workload, Ziggu-
rat is able to maintain near-NVMM performance even when
there are only 2 GB of NVMM. It achieves up to 38.9x and
46.5x throughput of EXT4-DJ and XFS-ML, respectively.

WAL is a good fit for Ziggurat. The reason is three-fold.
First, since the workload updates WAL files much more fre-
quently than the database files, the migration profiler can dif-
ferentiate them easily. The frequently-updated WAL files re-
main in NVMM, whereas the rarely-updated database files

are subject to migration.

Second, the database files are usually larger than the group
migration size. Therefore, group migration can fully-utilize
the high sequential bandwidth of disks. Moreover, since
Rocksdb mostly updates the journal files instead of the large
database files, the migration threads can merge the data
blocks from the database files and perform sequential writes
to disk without interruption. The high migration efficiency
helps clean up NVMM space more quickly so that NVMM
can absorb more synchronous writes, which in turn boosts
the performance.

Third, the WAL files are updated frequently with syn-
chronous and small updates. The synchronicity predictor
can accurately identify the synchronous write pattern from
the access stream of the WAL files, and the write size pre-
dictor can easily discover that the updates to these files are
too small to be steered to disk. Therefore, Ziggurat steers the
updates to NVMM so that it can eliminate the double copy
overhead caused by synchronous writes to disks. Since the
entire WAL files are hot, Ziggurat is able to maintain high
performance as long as the size of NVMM is larger than the
total size of the WAL files, which is only 128 MB in our
experiments.

Comparing Figure [7a) and Figure the difference be-
tween the results from random and sequential insert of Zig-
gurat is due to read-modify-writes for unaligned writes.
In the random insert workload, the old data blocks of the
database files are likely to be on disk, especially when the
NVMM size is small. Thus, loading them from disks in-
troduces large overhead. However, in the sequential insert
workload, the old data blocks come from recent writes to
the files which are likely to be in NVMM. Hence, Ziggurat
achieves near-NVMM performance in the sequential insert
workload.

In sequential read, Ziggurat-2 outperforms EXT-DJ and
XFS-ML by 42.8% and 47.5%. With increasing NVMM
size, the performance of Ziggurat gradually increases. The
read throughputs of Ziggurat-64, NOVA, EXT4-DAX, and
XFS-DAX are close (within 6%).
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Figure 8: SQLite performance. Ziggurat maintains near-NVMM performance because the hot journal files are either short-
lived or frequently updated, so Ziggurat keeps them in NVMM. Migrating the cold database file with group migration in the

background imposes little overhead to foreground file operations.

6.5 SQLite

We analyze the performance of different logging mecha-
nisms on Ziggurat by measuring SQLite [2], a popular light-
weight relational database that supports both undo and redo
logging. It hosts the entire database in a single file, with
other auxiliary files for logging (rollback or write-ahead log).
We use Mobibench [[18]] to test the performance of SQLite
with three journaling modes: DELETE, PERSIST and WAL.
DELETE and PERSIST are rollback journaling modes. The
journal files are deleted at the end of each transaction in
DELETE mode. The PERSIST mode foregoes the deletion
and instead overwrites the journal header with zeros. The
WAL mode uses write-ahead logging for rollback journal-
ing. The database size is set to 32 GB in the experiments.
The experimental results are presented in Figure [§]

For DELETE and PERSIST, the journal files are either
short-lived or frequently updated. Therefore, they are classi-
fied as hot files by the migration profiler of Ziggurat. Hence,
Ziggurat only migrates the cold parts of the database files,
leaving the journal files in NVMM to absorb frequent up-
dates. The performance gain comes from accurate profil-
ing and high migration efficiency of Ziggurat. With an effi-
cient migration mechanism, Ziggurat can clear up space in
NVMM fast enough for in-coming small writes. As a result,
Ziggurat maintains near-NVMM performance in all configu-
rations. Compared with block-based file systems running on
Optane SSD, Ziggurat achieves 2.0x and 1.4x speedup for
DELETE and PERSIST on average, respectively. Further-
more, Ziggurat outperforms block-based file systems run-
ning on NVMe SSD by 3.9x and 5.6x for DELETE and
PERSIST on average, respectively.

In WAL mode, there are three types of files: the main
database files and two temporary files for each database:
WAL and SHM. The WAL files are the write-ahead log files,
which are hot during key-value insertions. The SHM files are
the shared-memory files which are used as the index for the
WAL files. They are accessed by SQLite via mmap.

Ziggurat’s profiler keeps these hot files in NVMM. Mean-
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Figure 9: MySQL performance. Ziggurat manages to keep
high throughput even with little NVMM.

while, the cold parts of the large database files migrate to
disks in the background. This only introduces very small
overhead to the foreground database operations. There-
fore, Ziggurat maintains near-NVMM performance even
when there’s only about 5% of data is actually in NVMM
(Ziggurat-2), which outperforms block-based file systems
by 1.61x and 4.78x, respectively. Ziggurat also achieves
2.22x and 2.92x higher performance compared with EXT4-
DAX and XFS-DAX on average.

6.6 MySQL

We further evaluate the throughput of databases on Ziggurat
with MySQL [27], another widely-used relational database.
We measure the throughput of MySQL with TPC-C [3]], a
representative online transaction processing (OLTP) work-
load. We run the experiments with a data set size of 20 GB.

Figure 9] shows the MySQL throughput. The performance
of Ziggurat is always close to or better than EXT-DJ and
XFS-ML. On average, Ziggurat-2 outperforms disk-based
file systems by 1% (Optane SSD) and 19% (NVMe SSD).
During the transactions, Ziggurat steers most of the small
updates to NVMM. Since the transactions need to be pro-
cessed in DRAM, Ziggurat is capable of migrating the data
blocks to disks in time, which leaves ample NVMM space to
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receive new writes. Thus, Ziggurat maintains near-NVMM
performance even with little NVMM.

6.7 Parameter Tuning

We illustrate the impact of the parameter choices on perfor-
mance by measuring the throughput of workloads from Fio,
Filebench and Rocksdb with a range of thresholds. We run
the workloads with Ziggurat-2 on NVMe SSD.

Group migration size = We vary the group migration size
from 4 KB to 1 GB. The normalized throughputs relative to
the maximum performance are shown in Figure [I0} In gen-
eral, larger group migration size provides better performance
for write-dominated workloads, such as Rand-write from Fio
and Rand-insert from Rocksdb.

For read-dominated workloads, such as Seq-read from Fio
and Seq-read from Rocksdb, the throughputs peak when the
group migration size is set to 128 KB and 16 MB. This is
because the maximum I/O size of our NVMe SSD is 128 KB
and the CPU cache size of our experimental platform is
25 MB. Note that the group migration size is also the granu-
larity of loading file data from disk to DRAM since we fetch
file data in the granularity of write entry. On one hand, if the
group migration size is too small, Ziggurat has to issue mul-
tiple requests to load the on-disk file data into DRAM, which
hurts performance. On the other hand, if the group migration
size is too large, then a small read request will fetch redun-
dant data blocks from disk, which will waste I/O bandwidth
and pollute CPU cache. As Figure [I0b] shows, the average
throughputs of all ten workloads peak when the group mi-
gration size is set to 16 MB.

The throughputs of Filebench workloads are saturated
when the group migration size reaches 2 MB because the
average file size of the workloads is 2 MB. During the mi-
gration of the Filebench workloads, the data blocks of a file
are coalesced into one write entry, which suits the access pat-

tern of whole-file-reads.

Synchronous write size threshold We vary the syn-
chronous write size threshold from 4 KB to 1 GB. The per-
formance results are insensitive to the synchronous write size
threshold throughout the experiments. The standard devia-
tion is less than 3% of the average throughput. We further
examine the accuracy of the synchronicity predictor given
different synchronous write size thresholds. The predictor
accurately predicts the presence or absence of an fsync in
the near future 99% of the time. The lowest accuracy (97%)
occurs when the synchronous write size is set between the
average file size and the append size of Varmail. In this case,
the first £sync contains the writes from file initialization and
the first append, while the subsequent fsyncs only contain
one append. In general, the synchronous write size thresh-
old should be set a little larger than the average 1/O size of
the synchronous write operations from the workloads. In
this case, the synchronicity predictor can not only identify
synchronously updated files easily, but also effectively dis-
tinguish asynchronous, large writes from rest of the access
stream.

Sequential write counter threshold We vary the sequen-
tial write counter threshold of Ziggurat from 1 to 64. We find
that different sequential write counter thresholds have little
impact on performance since the characteristics of our work-
loads are stable. Users should balance the trade-off between
accuracy and prediction overhead when running workloads
with unstable access patterns. A higher threshold number
improves the accuracy of the sequential predictor, which can
effectively avoid jitter in variable workloads. However, it
also introduces additional prediction overhead for Ziggurat
to produce correct prediction.

7 Related Work

The introduction of multiple storage technologies provides
an opportunity of having a large uniform storage space over
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a set of different media with varied characteristics. Appli-
cations may leverage the diversity of storage choices either
directly (e.g. the persistent read cache of RocksDB), or by
using NVMM-based file systems (e.g. NOVA, EXT4-DAX
or XFS-DAX). In this section, we place Ziggurat’s approach
to this problem in context relative to other work in this area.

NVMM-Based File Systems. BPFS [§] is a storage class
memory (SCM) file system, which is based on shadow-
paging. It proposes short-circuit shadow paging to curtail
the overheads of shadow-paging in regular cases. However,
some I/O operations that involve a large portion of the file
system tree (such as moving directories) still impose large
overheads. Like BPFS, Ziggurat also exploits fine-grained
copy-on-write in all I/O operations.

SCMEFS [30] offers simplicity and performance gain by
employing the virtual address space to enable continuous file
addressing. SCMFS keeps the mapping information of the
whole available space in a page table which may be scaled
to several Gigabytes for large NVMM. This may result in a
significant increase in the number of TLB misses. Although
Ziggurat similarly maps all available storage devices into a
unified virtual address space, it also performs migration from
NVMM to block devices, and group page allocation which
reduces TLB misses.

PMEFS [11] is another NVMM-based file system which
provides atomicity in metadata updates through journaling,
but large size write operations are not atomic because it re-
lies on small size in-place atomic updates. Unlike PMFS,
Ziggurat’s update mechanism is always through journaling
with fine-grained copy-on-writes.

Dong et al. propose SoupFS [10], a simplified soft update
implementation of an NVMM-based file system. They adjust
the block-oriented directory organization to use hash tables
to leverage the byte-addressability of NVMM. It also gains
performance by taking out most synchronous flushes from
the critical path. Ziggurat also exploits asynchronous flushes
to clear the critical path for higher write throughput.

Tiering Systems. Hierarchical storage Management
(HSM) systems date back decades to when disks and tapes
were the only common massive storage technologies. There
have been several commercial HSM solutions for block-
based storage media such as disk drives. IBM Tivoli Storage
Manager is one of the well-established HSM systems that
transparently migrates rarely used or sufficiently aged files
to a lower cost media. EMC DiskXtender is another HSM
system with the ability of automatically migrating inactive
data from the costly tier to a lower cost media. AutoTier-
ing [34] is another example of a block-based storage man-
agement system. It uses a sampling mechanism to estimate
the IOPS of running a virtual machine on other tiers. It calcu-
lates their performance scores based on the IOPS measure-
ment and the migration costs, and sorts all possible move-
ments accordingly. Once it reaches a threshold, it initiates a

live migration.

Since the invention of NVDIMMs, many fine-grained tier-
ing solutions have been introduced. Agarwal et al. propose
Thermostat [4], a methodology for managing huge pages in
two-tiered memory which transparently migrates cold pages
to NVMM as the slow memory, and hot pages to DRAM
as the fast memory. The downside of this approach is the
performance degradation for those applications with uniform
temperature across a large portion of the main memory. Con-
versely, Ziggurat’s migration granularity is variable, so it
does not hurt performance due to fixed-size migration as
in Thermostat. Instead of huge pages, it coalesces adjacent
dirty pages into larger chunks for migration to block devices.

X-Mem [12] is a set of software techniques that relies on
an off-line profiling mechanism. The X-Mem profiler keeps
track of every memory access and traces them to find out the
best storage match for every data structure. X-Mem requires
users to make several modifications to the source code. Ad-
ditionally, unlike Ziggurat, the off-line profiling run should
be launched for each application before the production run.

Strata [21]] is a multi-tiered user-space file system that ex-
ploits NVMM as the high-performance tier, and SSD/HDD
as the lower tiers. It uses the byte-addressability of NVMM
to coalesce logs and migrate them to lower tiers to mini-
mize write amplification. File data can only be allocated in
NVMM in Strata, and they can be migrated only from a faster
tier to a slower one. The profiling granularity of Strata is a
page, which increases the bookkeeping overhead and wastes
the locality information of file accesses.

8 Conclusion

We have implemented and described Ziggurat, a tiered file
system that spans across NVMM and disks. We manage data
placement by accurate and lightweight predictors to steer in-
coming file writes to the most suitable tier, as well as an ef-
ficient migration mechanism that utilizes the different char-
acteristics of storage devices to achieve high migration effi-
ciency. Ziggurat bridges the gap between disk-based storage
and NVMM-based storage, and provides high performance
and large capacity to applications.
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