Text Indexing

CS635
Soumen Chakrabarti
(+ many slides from MRS book)

Abstract word and document model

m Define a word as any non-empty maximal
sequence of characters from a restricted set

E.g. [a-zA-Z0-9]
Some languages do not have easy delimiters

m Set of all words found over all documents In
corpus Is the corpus vocabulary

m Can arbitrarily order words and number them
m Henceforth, word integer word ID

m First cut: document = set of word IDs

m Later, bag (multiset), finally, sequence

Word and document IDs
m For readability we will use string words
Instead of IDs In these slides

m Not essential to assign IDs to words In
sorted order, can assign IDs using a counter
as we encounter new words

O Maintain a map (“dictionary”) from known
words to allocated IDs

O Later, will see how to compress this map
m Document IDs are completely arbitrary

O Possible to assign doc IDs for better index
compression

shivam

shivam

Toy corpus with two documents

d, my care is loss of care with old care done \{oci:rlilary
d, your care is gain of care with new care won 2 | done
Corpus 3 Joan
4 IS
d, ={6, 1,4, 5,8, 1, 10,9, 1, 2} > |10S
6 my
d,={12,1,4,3,8,1,10, 7,1, 11} 7 | new
Document representation as sequence 8 |of
9 |old
d,={1, 2,4,5,6, 8,9, 10} 10 | with
11 | won
d,={1, 3,4,7,8, 10, 11, 12} | 12 | your
Document representation as set

Toy corpus as binary matrix

1 2 |3 |14 |5 |6 |7 |8 |9 1011 /12
wl]
d, 1 |1 1 11 |1 1 |1 |1
d, 1 1 |1 1 |1 1 |1 |1

m Very sparse, most entries zero
10° Web pages, each has 100 distinct words
Corpus vocabulary may be as large as 106

m When reading corpus, docs arrive one by one

m |l.e., matrix is revealed a row at a time

m To run Boolean query, must probe by columns
m Must transpose matrix for fast query processing

Incidence vectors and Boolean queries

e Each term maps to a O/1 vector
o l=care - 11; 2=done - 10; 7=new-01
e Examples with set representation:

o Document/s containing “care” and “done”
m 11 A 10=10=i.e.document 1

o Document/s containing “care” but not “new”
B 11 A 701=11A10=10i.e.document 1

e Examples with sequence representation:

© Document containing phrase “new care”

© Need to keep track of positions where terms appeared
e (Can compose into more complex gueries

o Has phrase “care with” but not “old”
e \Widely used in legal and library search for decades

Inverted index

m For each term t, we must store a list of all
documents that contain t.

ldentify each by a docID, a document serial
number

m Can we use fixed-size arrays for this?

Brutus 112 1411 131417 174
Caesar 11 2] 4151675 13
Calpurnia 2 131154101 6T

What happens if the word
Caesar is added to document 5
147

shivam
Whether linked list or array is used, adding words to a document will force us to shift some elements.

Notice that document IDs are stored in sorted order.

Inverted index 5

m We need variable-size postings lists

On disk, a continuous run of postings Is
normal and best

In memory, can use linked lists or variable
length arrays

Posting

* Some tradeoffs in size/ease of insertion /

4 | Brutus 112 1411 131417 1174
Caesar 11 21 4 1.5 16 E 35 13
Calpurnia 2 311 54101 Sl

: .

Dictionar Posting

y Sorted by docID (more later on why). :

shivam
Each document id is called a posting and a set of document ids is a postings list. So, the most basic inverted index is a dictionary of terms each of which is associated with a postings list.

Indexer steps: Token sequence

m Sequence of (Modified token, Document ID)

pairs.

Doc 1

Doc 2 —

| did enact Julius
Caesar | was killed
I' the Capitol;
Brutus killed me.

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Term

|

did
enact
julius
caesar
|

was
killed

i

the
capitol
brutus
killed
me

SO

let

it

be
with
caesar
the
noble
brutus
hath
told
you
caesar

was
ambitious

docID

NNNPNPNNONMNDNNNNONNONDNDMNDNN A A A A aaaaaaaaa

©

Indexer steps: Sort

e Sort by terms
e And then docID
e (Core indexing step)

Term

did
enact
julius
caesar
|

was
killed

i

the
capitol
brutus
killed
me

SO

let

it

be
with
caesar
the
noble
brutus
hath
told
you
caesar
was
ambitious

docID

NP NMNNNDNMNNDNMNNDMNNDNMNDMNONDMNDN 2222 A aaaa

.
>

Term
ambitious
be
brutus
brutus
capitol
caesar
caesar
caesar
did
enact
hath

julius
killed
killed
let
me
noble
SO
the
the
told
you
was
was
with

docIlD

NN =2NDNN=2$20PNNN=_NEEEm RN = mSmaaada@a@a NN == N =N

10

Dictionary and postings

Term doclD d ;] i
. ambitious 2 term doc. freq. — postings lists

. MUItIpIe term Eet ? ambitious | 1 — E
: - - be | 1 - 2]

entriesinasingle &= ¢ w1k
1 : —
document are casser : e DB

caesar 2 caesar | 2 — 1=
did 1 did | 1 — |1
m e rg ed] elnact L e:Iar:t 1 — T
. . hath 1 el
m Split into | | hath [1 T2
2 - i 1 = —
Dictionary and i ? || ~ [
. julius 1 it |1 — i
Postings iled 1 Julivs - [
let 2 killed — ;
m Doc. frequency ; et 1 - 2]
- - - 5 me | 1 — ;
Information Is - : woble T - I
the 2 so | 1 — |2

added. o 2] _ G-z
ﬂ was 1 told | 1 — 2]
was 2 [~]
Why frequency? with 2 you -2

. . was | 2 — i—>

Will discuss later. with | 1 -~ 2 1

shivam

Where do we pay In storage?

term doc. freq.

ostings lists

©

anﬂﬂﬁous‘ 1‘

be | 1

brutus | 2 ‘

capitol | 1

caesar | 2

did | 1

Terms and
counts

enact | 1
hath | 1
i1
i1
it |1

julius | 1
killed | 1
let | 1

me | 1
noble | 1

so | 1
the 2‘
told | 1

you | 1

was 2‘

with | 1

Pointers

-

-

- [1]-[2]

— 1]

B EL Lists of
- [1] | doclDs
— |2

- [

-

:

— |1

- ® How do we
C B index

- |2 efficiently?
~n-p @ How much

B storage do we
~ -2 need?

ﬁ

12

Query processing: AND

m Consider processing the query:
Brutus AND Caesar

* Locate Brutus In the Dictionary;

* Retrieve its postings.

* Locate Caesar In the Dictionary;

* Retrieve its postings.

* “Merge” the two postings:

{_

2

4

18

» 16

= 32

" 64

1128

Brutus

1

" 2

"3

ks

" 3

» 13

21

Caesar

13

The merge

Walk through the two postings simultaneously, in time linear
In the total number of postings entries

16

= 32

{64

128

Brutus

2 4
| 12

13

21

Caesar

If list lengths are x and y, merge takes

O(x+y) operations.

Crucial: postings sorted by docliD.

14

Intersecting two postings lists
(a “merge” algorithm)

INTERSECT(p1, p2)
answer «— ()
while p; # NIL and p, # NIL
do if doc/D(p1) = doclD(p>)
then ADD(answer, doclD(p;))

p1 < next(p1)

p> < next(ps)
else if doclD(p1) < doclD(p-)

then p; < next(p1)
else p, < next(p>)
return answer

O © 0O ~NO OB W N =

I—L

15

Boolean queries: Exact match

m The Boolean retrieval model is being able to ask a
guery that iIs a Boolean expression:

* Boolean Queries use AND, OR and NOT to join query
terms

* Views each document as a set of words
* |s precise: document matches condition or not.

* Perhaps the simplest model to build an IR system on
m Primary commercial retrieval tool for 3 decades.

m Many search systems you still use are Boolean:
* Emaill, library catalog, Mac OS X Spotlight

16
16

Example: WestLaw nipsmwwwestiaw.com

m Largest commercial (paying subscribers)
legal search service (started 1975; ranking
added 1992)

m Tens of terabytes of data; 700,000 users
m Majority of users still use boolean queries

m Example query:

* What is the statute of limitations In cases
Involving the federal tort claims act?

* LIMIT! /3 STATUTE ACTION /S FEDERAL /2
TORT /3 CLAIM

e /3 = within 3 words, /S = In same sentence

17
17

Boolean queries: More general merges

Exercise: Adapt the merge for the gueries:
Brutus AND NOT Caesar
Brutus OR NOT Caesar
Can we still run through the merge in time O(x+y)?

What can we achieve?

18

Merging

What about an arbitrary Boolean formula?
(Brutus OR Caesar) AND NOT
(Antony OR Cleopatra)

m Can we always merge In “linear” time?
Linear in what?

m Can we do better?

Chakrabarti

Query optimization
m What is the best order for query processing?
m Consider a query that is an AND of n terms.

m For each of the n terms, get its postings,
then AND them together.

Brutus 214 1 811 [316 112
Caesar 11 21 315181119213
Calpurnia 113116 Sl N

Query: Brutus AND Calpurnia AND Caesar

Query optimization example

m Process In order of increasing freq:
start with smallest set, then keep cutting

further. j r
IS IS Why we Kept

document freq. in

TS QI TirAal

Brutus 214 1 811 [316 112
Caesar 11 21 315181119213
Calpurnia 113116 Sl N

Execute the query as (Calpurnia AND Brutus) AND Caesar.

Chakrabarti

shivam

shivam

More general optimization

me.g., (madding OR crowd) AND
(ignoble OR strife)

m Get doc. freq.’s for all terms.

m Estimate the size of each OR by the sum
of its doc. freq.’s (conservative).

m Process In increasing order of OR sizes.

Exercise

H
m Recommend a query
processing order for Term

eyes
(tangerine OR trees) AND kaleidoscope
(marmalade OR skies) AND marmalade
(kaleidoscope OR eyes) skies

tangerine

trees

Freq
213312
87009
107913
271658
46653
316812

23

23

shivam
Recall the query processing heuristic of choosing terms in increasing order of their frequency
when computing an AND query. The frequency of an OR expression is estimated to be the sum of the
frequency of its individual components. In addition, for a term t, NOT t has an associated frequency of
N − frequency(t), where N is the total number of documents. Using these rules:

((kaleidoscope OR eyes) AND (tangerine OR trees)) AND (marmalade or skies)

kaleidoscope OR eyes - 300321
tangerine OR trees - 363465
marmalade or skies - 379571

Transposing matrix = indexing

1 2 |3 |14 |5 |6 |7 |8 |9 1011 /12
wl]
d, 1 |1 1 11 |1 1 |1 |1
d, 1 1 |1 1 |1 1 |1 |1

m When reading corpus, read a row at a time

m To run Boolean query, must probe by columns
m Must transpose matrix for fast query processing
m Matrix too large to fit in RAM

Chakrabarti

shivam

Indexing — Hardware basics

m Access to data iIn memory Is much faster
than access to data on disk.

m Disk seeks: No data is transferred from disk
while the disk head Is being positioned.

m Therefore: Transferring one large chunk of
data from disk to memory Is faster than
transferring many small chunks.

m Disk I/O is block-based: Reading and writing
of entire blocks (as opposed to smaller
chunks).

m Block sizes: 8KB to 256 KB.

Hardware basics

m Servers used in IR systems now typically
have tens to hundreds of GB of main
memory

m Avallable disk space is several (2—3) orders
of magnitude larger, tens of terabytes on a
typical server

m Hardware fault tolerance is very expensive:
It's much cheaper to use many regular
machines rather than one fault tolerant
machine.

26

Recall index construction

Term Doc #

| 1
m Documents are parsed to extract words did 1
and these are saved with the Document s !
I[)_ faesar :
was 1
killed 1
i 1
the 1
capitol 1
brutus 1
killed 1
Doc 1 Doc 2 — 5o ;
let 2
it 2
- : let | with e
| did enact Julius go el tt‘l)'?w t " be 2
Caesar | was killed elesteln s (o1l caesar 2
i the Capitol; Brutus hath told you noble 2
! ! brutus 2
Brutus killed me. Caesar was hath 2
ambitious told 2
you 2
caesar 2
was 2
ambitious 2

Chakrabarti

Key step

m After all documents have
been parsed, the
Inverted file Is sorted by
terms.

|

We focus on this sort step.

Chakrabarti

Term

|

did
enact
julius
caesar
|

was
killed

i

the
capitol
brutus
killed
me

so

let

it

be
with
caesar
the
noble
brutus
hath
told
you
caesar
was
ambitious

o)
o
3]
$*

NDNDNMNMNMNNMNMNMDMNMNMNMNMNMNMNMNMNMMNMMNMNNN=_ 22 adadadadadaaaaaaa

—_—

Term
ambitious
be
brutus
brutus
capitol
caesar
caesar
caesar
did
enact
hath

|

|

i

it
julius
killed
killed
let

me
noble
so

the

the
told
you
was
was
with

O
o
0
H*®

NN =NDNMNMN=SPNN=SN= 2 QN - ma a3 NN =2 N=SNN

Scaling index construction

m In-memory index construction does not
scale

* Can't fit entire collection into memory, sort, then
write back

m How can we construct an index for very
large collections?

m Taking into account the hardware
constraints we just learned about . . .

m Memory, disk, speed, etc.

29

Sort-based index construction

m As we build the index, we parse docs one at a
time
m Final postings for any term incomplete until end

m At 12 bytes per non-positional postings entry
(term, doc, freq), demands a lot of space for large
collections (32-bit docids may not suffice)

m Say vocab size is 100,000,000

... can do this in memory in 2009, but typical
collections are much larger. E.g., the New York
Times provides an index of >150 years of
newswire

m Must store intermediate results on disk ¥

Sort using disk as “memory”?

m Can we use the same index construction
algorithm for larger collections, but by using
disk instead of memory?

m No: 100,000,000 records on disk Is too slow
— too many disk seeks.

m We need an external sorting algorithm.

Bottleneck

m Parse and build postings entries one doc at
a time

m Now sort postings entries by term (then by
doc within each term)

m Doing this with random disk seeks would be
too slow — must sort 100M records

i

If every comparison took 2 disk seeks, and N items could
be sorted with N log,N comparisons, how long would this

take?

32

shivam

BSBI: Blocked sort-based Indexing (Sorting with
fewer disk seeks)

e 12-byte (4+4+4) records (term, doc, freq)
® These are generated as we parse docs
e Must now sort 100M such 12-byte records by term
e Define a block ~10M such records
o Can easlly fit a couple blocks into memory
o Will have 10 such blocks to start with
e Basic idea of algorithm:
o Accumulate postings for each block, sort, write to disk

o Then merge the blocks into one long sorted order

33

shivam

postings

brutus
caesar
noble
with

to be merged brutus d2
brutus d3
d3 brutus d2 caesar dl
d4 caesar dl caesar d4
d3 julivs d1 | > | julius d1
d4 killed d2 killed d2
noble d3
with d4
< -

disk

merged
postings

34

Sorting 10 blocks of 10M records

m First, read each block and sort within:
Quicksort takes 2N In N expected steps
In our case 2 X (10M In 10M) steps

m Exercise: estimate total time to read each
block from disk and and quicksort it.

m 10 times this estimate — gives us 10 sorted
runs of 10M records each.

m Done straightforwardly, need 2 copies of
data on disk
But can optimize this

35

BSBINDEXCONSTRUCTION()

1 n<20

2 while (all documents have not been processed)
3 don+<—n+1

4 block < PARSENEXTBLOCK()

5 BSBI-INVERT(block)

6 WRITEBLOCKTODISK(block, f,)

7 MERGEBLOCKS(f1, ..., fn; fmerged)

How to merge the sorted runs?

e Can do binary merges, with a merge tree of log,10 = 4
layers.

e During each layer, read into memory runs in blocks of
10M, merge, write back.

e (eneralize to multiway merges for i/o efficiency

1
2
» | 2 | |Merged run.
3 4
/ / ;
Runs being \ 4

merged.

37

A few practical issues

e Two things in each index ‘shard’

o Map from string tokens to (begin, end) of posting lists
o Posting lists themselves
e \ocabulary is different in different shards because terms

assigned IDs as they are encountered in respecting
corpus partitions

® Index merge needs to take extra care about
vocabulary/dictionary merging

38

Lucene, hands-on
m java —cp $CLASSPATH

org.apache.lucene.demo.lndex I bocuments |
~lles —index /path/to/index/dir /

nath/to/files/to/index StandardAnalyzer
m Java org.apache.lucene.demo. O
SearchFiles " =
FileDocument o
(-

QueryParser

% Query

IndexSearcher

Chakrabarti

IndexWriter

SearchFiles

SPIMI;
Single-pass iIn-memory indexing

m Key idea 1: Generate separate dictionaries
for each block — no need to maintain term-
termID mapping across blocks.

m Key idea 2: Don’t sort. Accumulate postings
INn postings lists as they occur.

m With these two ideas we can generate a
complete inverted index for each block.

m These separate indexes can then be
merged into one big index.

40

SPIMI-Invert

SPIMI-INVERT(token_stream)

1

00O NO 1T & WDN

11
12
13

m Merging of blocks is analogous to BSBI.

output_file = NEWFILE()
dictionary = NEWHASH()
while (free memory available)
do token <+ next(token_stream)
if term(token) ¢ dictionary
then postings_list = ADDTODICTIONARY (dictionary, term(token))
else postings_list = GETPOSTINGSLIST(dictionary, term(token))
if full(postings_list)
then postings_list = DOUBLEPOSTINGSLIST(dictionary, term(token))
ADDToPoSTINGSLIST(postings_list, doclD(token))
sorted_terms < SORTTERMS(dictionary)
WRITEBLOCKTODISK(sorted_terms, dictionary, output_file)
return output_file

41

Recap

m Document as set, bag, sequence of terms

m Corpus as term-document matrix

m Indexing = transposing (d,t) - (t,d)

m Term _, posting list (= sparse list of doc IDs)
m Matrix too large to store in RAM

m Cast as external merge sort
Process blocks of docs in RAM
Merge per-block indices

m Compress the posting list and dictionary

42

Lucene and MG4J demo - exercises
available!

e Download code, build and run. Print document scores.

e Using synthetic docs and queries, tease out salient
properties of the scoring functions.

e Run MG4J and try query network embedding and note
result highlighting.

e Extend to multiple fields. Learn multi-field query format.

® You are given a dict mapping a term to a set of synonyms.
Modify the text scanner to emit all synonyms at the same
token offset as the original word.

® You are given a dict from terms (cat, dog, hippo) to
hypernyms (mammal). Modify the text scanner to emit all
hypernyms at the same token offset as the original word.

e Test above two mods with synthetic corpus and queries.

https://bitbucket.org/soumenchakrabarti/mtwowi.git

Deeper dive if you wish

m (Do not use Lucene, SOLR, etc.)

m Familiarize with a few key classes of MG4J
(InputBitStream, OutputBitStream)

m Some classes we can provide
(ExternalMergeSort)

m Write a very basic indexing program
What is the size of the index?

m Extend to distributed map-reduce version?
m And a basic Boolean query processor

Positional queries

m Examples with sequence representation:

Document containing phrase “new care”
... ‘care” within 4 words of “won”

m Can build more complex clauses
Has phrase “care with” but not “old”

45

Reusing the index we built

m Relax a phrase or proximity query to AND
m ‘new york” [“new” AND “york”

m Not all docs that pass the AND filter will
have the phrase

m To filter, must read the document
m Random seek, very slow

m Solution: in the posting list, retain not only
the doc ID, but also the word offset where
the word occurred

Toy corpus with two documents

d, my, care, IS, loss, of, care; with, old, care, done,
d, your,care, Is, gain, of, care; with, new, care, won,
Documents as word sequences
1 jcae ——d:1,5,8; d,:1,5,8
2 .. : :
: done \ Positional posting list: a
aln . :
T d;: 9 doc info block followed
% = T loss by position list
215 |my m Positional postings can speed up query
7 .
§ . ;‘few processing
> 5 Tog m But consumes much more index space
10 | with m Can (mostly) reconstruct document (except
11 | won for discarded bits like case, punct
47
12 | your

Why compression (in general)?
m Use less disk space
* Saves a little money

m Keep more stuff in memory
* Increases speed

m Increase speed of data transfer from disk to
memory

* [read compressed data | decompress] is faster
than [read uncompressed data]

* Premise: Decompression algorithms are fast
* True of the decompression algorithms we use

48

Why compression for inverted
Indexes?

m Dictionary
* Make it small enough to keep in main memory

* Make it so small that you can keep some postings lists
IN main memory too

m Postings file(s)
* Reduce disk space needed
* Decrease time needed to read postings lists from disk

* Large search engines keep a significant part of the
postings in memory.
* Compression lets you keep more in memory
m We will devise various IR-specific compression
schemes

49

BRUTUS

CAESAR

CALPURNIA

Index compression

—

1| 2| 4| 11|31 |45 |1/3 | 174
1| 2| 4 51 6|16 | b7 | 132
2 |31 |54 101

50

50

Postings compression

m The postings file is much larger than the
dictionary, factor of at least 10.

m Key desideratum: store each posting compactly.
m A posting for our purposes is a doclID (for starters)

m For Reuters (800,000 documents), we would use
32 bits per docID when using 4-byte integers.

o Web corpus - 100 G ID space

m Alternatively, we can use log, 800,000 = 20 bits
per docliD.

m Our goal: use far fewer than 20 bits per doclID.

51

Postings: two conflicting forces

m A term like arachnocentric occurs in maybe
one doc out of a million — we would like to
store this posting using log, 1M ~ 20 bits.

m A term like the occurs in virtually every doc,
so 20 bits/posting Is too expensive.

* Prefer O/1 bitmap vector In this case

52
52

Postings file entry

m We store the list of docs containing a term In
iIncreasing order of doclID.

computer: 33,47,154,159,202 ...
m Consequenc MCeS to store gaps.

e: |
~~

33,14,10715}43 ...

m Hope: most gaps can be encoded/stored
with far fewer than 20 bits.
m Heads we win, talls they lose
Either a word Is rare, few gaps to encode
Or many small gaps, each needs few bits

53

Three postings entries

encoding postings list

THE doclDs . 283042 283043 283044 283045
gaps 1 1 1
COMPUTER doclDs . 283047 283154 283159 283202
gaps 107 b 43
ARACHNOCENTRIC doclDs 252000 500100
gaps 252000 248100

54
Chakrabarti

Variable length encoding
m Aim:
* For arachnocentric, use ~20 bits/gap entry.
* For the, use ~1 bit/gap entry.

m If the average gap for aterm is G, we want
to use ~log,G bits/gap entry.

m Key challenge: encode every integer (gap)
with about as few bits as needed for that
Integer.

m This requires a variable length encoding

m Variable length codes achieve this by usmg .
short codes for small nuumbers

Variable Byte (VB) codes

m For a gap value G, we want to use close to the
fewest bytes needed to hold log, G bits

m Begin with one byte to store G and dedicate 1 bit
In it to be a continuation bit ¢

m If G <127, binary-encode it in the 7 available bits
and set ¢ =1

m Else encode G’s lower-order 7 bits and then use
additional bytes to encode the higher order bits
using the same algorithm

m At the end set the continuation bit of the last byte
to 1 (c =1) — and for the other bytes ¢ = 0.

56

Example
m_m—ez_

gaps 214577
VB code 00000110 10000101 00001101
10111000 00001100
10110001

Postings stored as the byte concatenation
0000011010111000%9000101000011010000110010110001

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB
uses a whole byte :-(

57

Other variable unit codes

m Instead of bytes, we can also use a different “unit of
alignment”; 32 bits (words), 16 bits, 4 bits (nibbles).

m Variable byte alignment wastes space if you have many
small gaps — nibbles do better in such cases.

m Variable byte codes:
Used by many commercial/research systems

Good low-tech blend of variable-length coding and
sensitivity to computer memory alignment matches (vs.
bit-level codes, which we look at next).

m There is also recent work on word-aligned codes that pack
a variable number of gaps into one word

m Be sure to view Jeff Dean talk at WSDM 2009

58

Unary code

m Represent n as n 1s with a final O.

m Unary code for 3 is 1110.

m Unary code for 40 Is
111111111111111212111121111117171111212111121110

m Unary code for 80 Is:

11111111717131773111117171212733111171717133331117117171
11111171233111712233111712233111712233111121210

m This doesn’t look promising, but....

59

Gamma codes

m We can compress better with bit-level codes
* The Gamma code Is the best known of these.

m Represent a gap G as a pair length and offset

m Offset Is G In binary, with the leading bit cut off
* For example 13 - 1101 - 101

m /length is the length of offset
* For 13 (offset 101), this is 3.

m We encode /length with unary code: 1110.

m Gamma code of 13 is the concatenation of length
and offset. 1110101

60

Gamma code examples

umber _length ___offset__yoode

0 none

1 0 0

2 10 0 10,0

3 10 1 10,1

4 110 00 110,00

9 1110 001 1110,001
13 1110 101 1110,101
24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111

1025 11111111110 0000000001 11111111110,0000000001

61

Gamma code properties

m G is encoded using 2 | log G| + 1 bits
» Length of offset is | log G | bits
- Length of length is | log G | + 1 bits
m All gamma codes have an odd number of bits
m Almost within a factor of 2 of best possible, log, G

m Gamma code is uniquely prefix-decodable, like VB

m Can be used for any distribution, even if not the
best fit

m Parameter-free

62
62

Gamma seldom used In practice

m Machines have word boundaries — 8, 16, 32,
64 bits

Operations that cross word boundaries are
slower
m Compressing and manipulating at the
granularity of bits can be slow

m Variable byte encoding is aligned and thus
potentially more efficient

m Regardless of efficiency, variable byte is
conceptually simpler at little additional
space cost

63

RCV1 postinag compression

Data structure

dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k = 4 7.1
with blocking & front coding 5.9
collection (text, xml markup etc) 3,600.0
collection (text) 960.0
Term-doc incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0

postings, Yy—encoded 101.0 |

64

Next: dictionary compression

m Search begins with the dictionary
m We want to keep it in memory

m Memory footprint competition with other
applications

m Embedded/mobile devices may have very
little memory

m Even If the dictionary isn’'t In memory, we
want it to be small for a fast search startup
time

m SO, compressing the dictionary is important ..

Dictionary storage - first cut

m Array of fixed-width entries
* ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms |Freq. Postings ptr.

a 656,265

o
/ aachen |65

. zulu 221
N/

20 bytes 4 bytes each

Dictionary search
structure

Fixed-width terms are wasteful

m Most of the bytes in the Term column are

wasted — we allot 20 bytes for 1 letter terms.

And we still can’t handle
supercalifragilisticexpialidocious or
hydrochlorofluorocarbons.

m Written English averages ~4.5 chars/word

Exercise: Why is/isn’t this the number to use for
estimating the dictionary size?

m Ave. English dictionary word: ~8 characters

67

Compressing the term list:
Dictionary-as-a-String
m Store dictionary as a (long) string of

characters:

Pointer to next word shows end of current word
Hope to save up to 60% of dictionary space.

.. ..systilesy_zygeticsyzygialsyzygyszaibelyiteszczecinszomo. .

N\

Freq. Postings ptr. Term ptr. J

25

29

44

I

Total string length =
400K x 8B = 3.2MB

126

Pointers resolve 3.2M
positions: log,3.2M =

22bits = 3bytes o4

Space for dictionary as a string

m 4 bytes
m 4 bytes
m 3 bytes

m Avg. 8 bytes per term In term string

per term for Freq.

per term pointer

] Now avg.
11

per term for pointer to POStirgﬁes/term,

not 20.

m 400K terms x 19 = 7.6 MB (against 11.2MB
for fixed width)

69
69

Blocking

m Store pointers to every kth term string.
Example below: k=4.

m Need to store term lengths (1 extra byte)

....7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo.. ..

T

Freq. Postings ptr. Term ptr.

33

—

29 Save 9
Lose 4 bytes on
T
44 bytes term lengths.
126 ton 3

70

l .
/ Jpointers.

Net

m Example for block size k=4

m Where we used 3 bytes/pointer without
blocking

* 3x4 =12 bytes,
now we use 3 + 4 = 7 bytes.

Shaved another ~0.5MB. This reduces the size of the
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with larger k?

71

Dictionary search without blocking

m Assuming each
dictionary term
equally likely In
qguery (not really
SO In practice!),
average number
of comparisons =
(1+2-2+4-3+4)/8 ~2.6

If the frequencies of query terms
were non-uniform but known,
how would you structure the
dictionary search tree?

Dictionary search with blocking

> DEN “;
- WIN

m Binary search down to 4-term block;
* Then linear search through terms in block.

m Blocks of 4 (binary tree), avg. =
(1+2-2+2-3+2-4+5)/8 = 3 compares

Chakrabarti

Front coding

m Front-coding:

Sorted words commonly have long common
prefix — store differences only

(for last k-1 in a block of k)

S8automataSautomateQautomaticlO0automatio
- 8automat*alje2(ic3jio
n

Extra length
beyond automat.

Encodes automat

Begins to resemble general string compression.

RCV1 dictionary compression

summary
E
Fixed width 11.2
Dictionary-as-String with pointers to every 7.6
term
Also, blocking k=4 7.1

Also, Blocking + front coding 5.9

75

Index compression summary

m We can now create an index for highly
efficient Boolean retrieval that Is very space
efficient

m Only 4% of the total size of the collection

m Only 10-15% of the total size of the text in
the collection

m However, we’'ve ignored positional
Information

m Hence, space savings are less for indexes
used in practice
But techniques substantially the same.

76

Other compression codes
m Gamma code is only one of many other
possiblilities, e.g. Golomb/Rice code
m Best choice depends on distribution of gaps
m Dgaps and pgaps behave differently
m Ditto for first and subsequent pgaps
m Can do doc-specific pgap compression

Study of pgap dlstrlbutlo NS

vaccine

n
o

- = ‘\

é 25 o é i / —+—1st |
=20 =~ 2nd 5 / *\

23 2 o

ZZ O - — other | | il 15 = oifier

L] o w

o N o 7

v & X \ N § E\D—

?810 b G 10 Dl Loty e

— = =

8° 5 jl ,t/'/ %_K \\ s ° 5 J/ W

2 = 3 = !

P ool B Ry | |7 i] ~Tuny

0 5 10 15

[2 o real
E 15 : eal L E,.;»]s N, o artticial
E g l‘\ --m- artificial zZE / .,l‘)\ artificial
-l R 1) 3 o’ N
g 10 i o S 10 —= 5
%8 -\ E(D / ,_Lﬂ_ﬂ/ﬂ \\.
% n 2% 5 -
g ° - g - -
3 N\L!ﬁb. 3 .
* 0 . . 0 .
0 5 10 15 0 5 10 15
log2(size of gap) log2(size of gap)
death h

f Num
I'-'/

- N N

(5 B — T+,]
[

j»

:L

tage of Numb

of Gaps (%)

0 5 10 15
log2(size of gap) log2(size of gap)
death hurrica
5 70 5 30
2 60 al —e—1st I -E 25 ,‘P\ e 1st |
S I .| o-2nd E- al el
=29 By L —other | 222 B -
‘S i S w | — other
S 3o 174 s Z1s B
g6 % AEEE £0 10
%5 20 ' E%
10 m \\ 5 \1 \
o 0 B—Emu_ = o 0
0 5 10 15 0 5 10 15
log2(size of gap) log2(size of gap)

Pgap distribution very different
from what would result by
random placement of tokens
In document of given length

Gap from beginning to first
term occurrence very
different from second and
subsequent gaps

X-axis=log(pgap), y-axis=frequency

78

Updating the index

t) «—— Fresh batch

m Messy!
m One possible

scheme shown

m Smarter tricks
exist

(t,d,s)

d

y

Batch
sort

y

Merge-

A

Batch
sort

y

(t,

d) +

A

y

purge

dt,s
New or deleted f ()

documents

Fast
indexing
(may not

be compact)

Build

com
index

pact
(may

hold partly
in RAM)

of documents

May preserve this
sorted sequence

—v

Main
index

Stop-
press
index

Query
logs

Y

Query
processor

<« User

A

79

Web search engine data centers

m Web search data centers (Google, Bing,
Baidu) mainly contain commodity machines

m Data centers are distributed around the
world

m Ancient estimate: Google ~1 million servers,
3 million processors/cores (Gartner 2007)

80

Massive data centers

m If In a non-fault-tolerant system with 1000
nodes, each node has 99.9% uptime, what
IS the uptime of the system?

m Answer: 63%

m Exercise: Calculate the number of servers
failing per minute for an installation of 1
million servers.

Heavier iron

GFS | HDFS: Distributed replicated fault-tolerant file system
Map-reduce /| Hadoop: Bulk-synchronous parallel
computation paradigm on top of GFS/HDFS

SSTable: “Sorted strings table™—Persistent sorted
Immutable key-value map, typically stored on GFS/HDFS
BigTable / Hbase: Distributed, persistent, fault-tolerant map
where key = (row_string, column_string, timestamp) and cell
value = arbitrary binary payload

Percolator: Workflow management implemented on top of
BigTable; enables asynchronous crawling and indexing

82

https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb/
https://en.wikipedia.org/wiki/Bigtable
https://ai.google/research/pubs/pub36726

Distributed indexing

m Maintain a master machine directing the
Indexing job — considered “safe”.

m Break up indexing into sets of (parallel)
tasks.

m Master machine assigns each task to an idle
machine from a pool.

83

Parallel tasks

m We will use two sets of parallel tasks
Parsers (scan and tokenize)
Inverters or ‘transposers’
m Break the input document collection into
splits

m Each split is a subset of documents
(corresponding to blocks in BSBI/SPIMI)

84

Parsers

m Master assigns a split to an idle parser
machine

m Parser reads a document at a time and
emits (term, doc) pairs

m Parser writes pairs into j partitions

m Each partition Is for a range of terms’ first
letters

(e.qg., a-f, g-p, g-z) — here j = 3.
m Now to complete the index inversion

85

Inverters

= An inverter collects all (term,doc) pairs (=
postings) for one term-partition.

m Sorts and writes to postings lists

86

Data flow

' Master | '
T %90 postings

———_——-__—__55
- ~o
~

e ——

oflo-p) nverter 1o

’/

oo
o000

spTits /
i @ a-|9-p| q-2 -

Map Segment files ~ R€duce
phase phase o

MapReduce

m The index construction algorithm we just
described is an instance of MapReduce.

m MapReduce (Dean and Ghemawat 2004) is
a robust and conceptually simple framework
for distributed computing ...

m ... without having to write code for
distribution and coordination

m They describe the Google indexing system
(ca. 2002) as consisting of a number of
phases, each implemented in MapReduce.

88

Schema for index construction In
MapReduce

m Schema of map and reduce functions

m map: input - list(k, v) reduce: (klist(v)) -
output

m Instantiation of the schema for index
construction

m map: collection - list(termID, docID)

m reduce: (<termlD1, list(docID)>, <termlD2,
list(docID)>, ...) - (postings listl, postings list2,

)

89

Example for index construction

m Map input ={d1l : C came, C sat;
d2 : C spoke }

m Map output = { <C,d1>, <came,dl1>,
<C,d1>, <sat, d1>, <C, d2>, <spoke,d2>}

m Reduce input = (<C,(d1,d1,d2)>, <spoke,
(d2)>, <came,(d1)>, <sat,(d1)>)

m Reduce output = (<C,(d1:2,d2:1)>, <spoke,
(d2:1)>, <came,(d1:1)>, <sat,(d1:1)>)

After creating term-partitioned index

m Index construction was just one phase.

m Another phase: transforming a term-
partitioned index into a document-
partitioned index.

Term-partitioned: one machine handles a
subrange of terms

Document-partitioned: one machine handles a
subrange of documents
m Most search engines use a document-
partitioned index ... better load balancing,
etc. "

Other real-world Web indexing issues

m Source format and language detection
m Multi-lingual and code-switched documents

m Sentence and word delimiter, punctuation

m Case normalization
MIT in English vs. mit in German

m Morphological normalization (“stemming”)
m Compound word (“multi word”) detection

m Multilingual dictionary
Preferably unsupervised or weakly supervised

92

	Slide 1
	Abstract word and document model
	Word and document IDs
	Toy corpus with two documents
	Toy corpus as binary matrix
	Incidence vectors and Boolean queries
	Inverted index
	Slide 8
	Slide 9
	Indexer steps: Sort
	Slide 11
	Slide 12
	Slide 13
	The merge
	Slide 15
	Boolean queries: Exact match
	Example: WestLaw http://www.westlaw.com/
	Boolean queries: More general merges
	Slide 19
	Query optimization
	Slide 21
	More general optimization
	Slide 23
	Transposing matrix = indexing
	Indexing — Hardware basics
	Hardware basics
	Slide 27
	Slide 28
	Scaling index construction
	Sort-based index construction
	Sort using disk as “memory”?
	Bottleneck
	Slide 33
	Slide 34
	Sorting 10 blocks of 10M records
	Slide 36
	How to merge the sorted runs?
	A few practical issues
	Lucene, hands-on
	SPIMI: Single-pass in-memory indexing
	SPIMI-Invert
	Recap
	Lucene and MG4J demo → exercises
	Deeper dive if you wish
	Positional queries
	Reusing the index we built
	Toy corpus with two documents
	Why compression (in general)?
	Why compression for inverted indexes?
	Index compression
	Postings compression
	Postings: two conflicting forces
	Postings file entry
	Slide 54
	Variable length encoding
	Variable Byte (VB) codes
	Example
	Other variable unit codes
	Unary code
	Gamma codes
	Gamma code examples
	Gamma code properties
	Gamma seldom used in practice
	RCV1 posting compression
	Next: dictionary compression
	Dictionary storage - first cut
	Fixed-width terms are wasteful
	Compressing the term list: Dictionary-as-a-String
	Space for dictionary as a string
	Blocking
	Net
	Dictionary search without blocking
	Slide 73
	Slide 74
	RCV1 dictionary compression summary
	Index compression summary
	Other compression codes
	Study of pgap distributions
	Updating the index
	Web search engine data centers
	Massive data centers
	Heavier iron
	Distributed indexing
	Parallel tasks
	Parsers
	Inverters
	Data flow
	MapReduce
	Schema for index construction in MapReduce
	Example for index construction
	After creating term-partitioned index
	Other real-world Web indexing issues

