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Abstract word and document model

▪ Define a word as any non-empty maximal 
sequence of characters from a restricted set
• E.g. [a-zA-Z0-9]

• Some languages do not have easy delimiters

▪ Set of all words found over all documents in 
corpus is the corpus vocabulary

▪ Can arbitrarily order words and number them

▪ Henceforth, word integer word ID

▪ First cut: document = set of word IDs

▪ Later, bag (multiset), finally, sequence
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Word and document IDs

▪ For readability we will use string words 
instead of IDs in these slides

▪ Not essential to assign IDs to words in 
sorted order, can assign IDs using a counter 
as we encounter new words

○ Maintain a map (“dictionary”) from known 
words to allocated IDs

○ Later, will see how to compress this map

▪ Document IDs are completely arbitrary

○ Possible to assign doc IDs for better index 
compression
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Corpus

Toy corpus with two documents

my care is loss of care with old care done

your care is gain of care with new care won

d1

d2

1 care

2 done

3 gain

4 is

5 loss

6 my

7 new

8 of

9 old

10 with

11 won

12 your

Vocabulary

Document representation as sequence

d1 ={6, 1, 4, 5, 8, 1, 10, 9, 1, 2}

d2 ={12, 1, 4, 3, 8, 1, 10, 7, 1, 11}

Document representation as set

d1 ={1, 2, 4, 5, 6, 8, 9, 10}

d2 ={1, 3, 4, 7, 8, 10, 11, 12}
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Toy corpus as binary matrix

▪ Very sparse, most entries zero
• 109 Web pages, each has 100 distinct words

• Corpus vocabulary may be as large as 106

▪ When reading corpus, docs arrive one by one

▪ I.e., matrix is revealed a row at a time

▪ To run Boolean query, must probe by columns

▪ Must transpose matrix for fast query processing

w🡪 1 2 3 4 5 6 7 8 9 10 11 12

d1
1 1 0 1 1 1 0 1 1 1 0 0

d2
1 0 1 1 0 0 1 1 0 1 1 1
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● Each term maps to a 0/1 vector
○ 1=care → 11;  2=done → 10;  7=new→01

● Examples with set representation:
○ Document/s containing “care” and “done”

■ 11  10 = 10  i.e. document 1∧ 10 = 10 ⇒ i.e. document 1 ⇒ i.e. document 1

○ Document/s containing “care” but not “new”
■ 11  ∧ 10 = 10 ⇒ i.e. document 1 ￢ 01 = 11  10 = 10 i.e. document 1∧ 10 = 10 ⇒ i.e. document 1

● Examples with sequence representation:
○ Document containing phrase “new care”
○ Need to keep track of positions where terms appeared

● Can compose into more complex queries
○ Has phrase “care with” but not “old”

● Widely used in legal and library search for decades

Incidence vectors and Boolean queries
Sec. 1.1

6



Inverted index

▪ For each term t, we must store a list of all 
documents that contain t.
• Identify each by a docID, a document serial 

number

▪ Can we use fixed-size arrays for this?

Brutus

Calpurnia

Caesar 1 2 4 5 6 1
6

5
7

13
2

1 2 4 1
1

3
1

4
5

17
3

2 31

What happens if the word 
Caesar is added to document 
14? 

Sec. 1.2

174

54101
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Whether linked list or array is used, adding words to a document will force us to shift some elements.

Notice that document IDs are stored in sorted order.



Inverted index
▪ We need variable-size postings lists

• On disk, a continuous run of postings is 
normal and best

• In memory, can use linked lists or variable 
length arrays

• Some tradeoffs in size/ease of insertion

Dictionar
y

Posting
sSorted by docID (more later on why).

PostingPosting

Sec. 1.2

Brutus

Calpurnia

Caesar 1 2 4 5 6 1
6

5
7

13
2

1 2 4 1
1

3
1

4
5

17
3

2 31

174

54101
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Each document id is called a posting and a set of document ids is a postings list. So, the most basic inverted index is a dictionary of terms each of which is associated with a postings list.



Indexer steps: Token sequence

▪ Sequence of (Modified token, Document ID) 
pairs.

I did enact Julius
Caesar I was killed 

i' the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Sec. 1.2
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● Sort by terms
● And then docID 
● (Core indexing step)

Indexer steps: Sort

10
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Dictionary and postings

▪ Multiple term 
entries in a single 
document are 
merged.

▪ Split into 
Dictionary and 
Postings

▪ Doc. frequency 
information is 
added.

Why frequency?
Will discuss later.

Sec. 1.2
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Where do we pay in storage?

Pointers

Terms and 
counts ● How do we 

index 
efficiently?

● How much 
storage do we 
need?

Sec. 1.2

Lists of 
docIDs
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Query processing: AND

▪ Consider processing the query:
Brutus AND Caesar
• Locate Brutus in the Dictionary;

• Retrieve its postings.

• Locate Caesar in the Dictionary;
• Retrieve its postings.

• “Merge” the two postings:

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Sec. 1.3
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Walk through the two postings simultaneously, in time linear 
in the total number of postings entries

The merge

14

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar2 8

If list lengths are x and y, merge takes
 O(x+y) operations.
Crucial: postings sorted by docID.

Sec. 1.3



Intersecting two postings lists
(a “merge” algorithm)
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Boolean queries: Exact match
▪ The Boolean retrieval model is being able to ask a 

query that is a Boolean expression:
• Boolean Queries use AND, OR and NOT to join query 

terms
• Views each document as a set of words
• Is precise: document matches condition or not.

• Perhaps the simplest model to build an IR system on

▪ Primary commercial retrieval tool for 3 decades. 

▪ Many search systems you still use are Boolean:
• Email, library catalog, Mac OS X Spotlight

16
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Example: WestLaw   http://www.westlaw.com/

▪ Largest commercial (paying subscribers) 
legal search service (started 1975; ranking 
added 1992)

▪ Tens of terabytes of data; 700,000 users

▪ Majority of users still use boolean queries

▪ Example query:
• What is the statute of limitations in cases 

involving the federal tort claims act?
• LIMIT! /3 STATUTE ACTION /S FEDERAL /2 

TORT /3 CLAIM
• /3 = within 3 words, /S = in same sentence

17
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Boolean queries: More general merges

Exercise: Adapt the merge for the queries:

Brutus AND NOT Caesar

Brutus OR NOT Caesar

Can we still run through the merge in time O(x+y)?

What can we achieve?
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Merging

What about an arbitrary Boolean formula?

(Brutus OR Caesar) AND NOT

(Antony OR Cleopatra)

▪ Can we always merge in “linear” time?
• Linear in what?

▪ Can we do better?

19

Sec. 1.3
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Query optimization
▪ What is the best order for query processing?

▪ Consider a query that is an AND of n terms.

▪ For each of the n terms, get its postings, 
then AND them together.

Brutus

Caesar

Calpurnia

1 2 3 5 8 1
6

2
1

3
4

2 4 8 1
6

3
2

6
4

12
8

13 16

Query: Brutus AND Calpurnia AND Caesar
20
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Query optimization example

▪ Process in order of increasing freq:
• start with smallest set, then keep cutting 

further.

21

This is why we kept
document freq. in 

dictionary

Execute the query as (Calpurnia AND Brutus) AND Caesar.

Sec. 1.3

Brutus

Caesar

Calpurnia

1 2 3 5 8 1
6

2
1

3
4

2 4 8 1
6

3
2

6
4

12
8

13 16

shivam
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More general optimization
▪e.g., (madding OR crowd) AND 

(ignoble OR strife)

▪Get doc. freq.’s for all terms.

▪Estimate the size of each OR by the sum 
of its doc. freq.’s (conservative).

▪Process in increasing order of OR sizes.

22
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Exercise

▪ Recommend a query 
processing order for

23

(tangerine OR trees) AND
(marmalade OR skies) AND
(kaleidoscope OR eyes)

23

shivam
Recall the query processing heuristic of choosing terms in increasing order of their frequency
when computing an AND query. The frequency of an OR expression is estimated to be the sum of the
frequency of its individual components. In addition, for a term t, NOT t has an associated frequency of
N − frequency(t), where N is the total number of documents. Using these rules:

((kaleidoscope OR eyes) AND (tangerine OR trees)) AND (marmalade or skies)

kaleidoscope OR eyes - 300321
tangerine OR trees - 363465
marmalade or skies - 379571
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Transposing matrix = indexing

▪ When reading corpus, read a row at a time

▪ To run Boolean query, must probe by columns

▪ Must transpose matrix for fast query processing

▪ Matrix too large to fit in RAM

w🡪 1 2 3 4 5 6 7 8 9 10 11 12

d1
1 1 0 1 1 1 0 1 1 1 0 0

d2
1 0 1 1 0 0 1 1 0 1 1 1

shivam
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Indexing — Hardware basics
▪ Access to data in memory is much faster 

than access to data on disk.

▪ Disk seeks: No data is transferred from disk 
while the disk head is being positioned.

▪ Therefore: Transferring one large chunk of 
data from disk to memory is faster than 
transferring many small chunks.

▪ Disk I/O is block-based: Reading and writing 
of entire blocks (as opposed to smaller 
chunks).

▪ Block sizes: 8KB to 256 KB.

Sec. 4.1
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Hardware basics
▪ Servers used in IR systems now typically 

have tens to hundreds of GB of main 
memory

▪ Available disk space is several (2–3) orders 
of magnitude larger, tens of terabytes on a 
typical server

▪ Hardware fault tolerance is very expensive: 
It’s much cheaper to use many regular 
machines rather than one fault tolerant 
machine.

Sec. 4.1
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▪ Documents are parsed to extract words 
and these are saved with the Document 
ID.

I did enact Julius
Caesar I was killed 
i' the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was 
ambitious

Doc 2

Recall index construction
Sec. 4.2
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 Key step

▪ After all documents have 
been parsed, the 
inverted file is sorted by 
terms. 

We focus on this sort step.

Sec. 4.2
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Scaling index construction
▪ In-memory index construction does not 

scale
• Can’t fit entire collection into memory, sort, then 

write back

▪ How can we construct an index for very 
large collections?

▪ Taking into account the hardware 
constraints we just learned about . . .

▪ Memory, disk, speed, etc.

Sec. 4.2
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Sort-based index construction
▪ As we build the index, we parse docs one at a 

time

▪ Final postings for any term incomplete until end

▪ At 12 bytes per non-positional postings entry 
(term, doc, freq), demands a lot of space for large 
collections (32-bit docids may not suffice)

▪ Say vocab size is 100,000,000
• … can do this in memory in 2009, but typical 

collections are much larger.  E.g., the New York 
Times provides an index of >150 years of 
newswire

▪ Must store intermediate results on disk

Sec. 4.2
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Sort using disk as “memory”?
▪ Can we use the same index construction 

algorithm for larger collections, but by using 
disk instead of memory?

▪ No: 100,000,000 records on disk is too slow 
– too many disk seeks.

▪ We need an external sorting algorithm.

Sec. 4.2
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Bottleneck
▪ Parse and build postings entries one doc at 

a time

▪ Now sort postings entries by term (then by 
doc within each term)

▪ Doing this with random disk seeks would be 
too slow – must sort 100M records

If every comparison took 2 disk seeks, and N items could 
be sorted with N log2N comparisons, how long would this 
take?

Sec. 4.2
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BSBI: Blocked sort-based Indexing (Sorting with 
fewer disk seeks)

● 12-byte (4+4+4) records (term, doc, freq)

● These are generated as we parse docs

● Must now sort 100M such 12-byte records by term

● Define a block ~10M such records

○ Can easily fit a couple blocks into memory

○ Will have 10 such blocks to start with

● Basic idea of algorithm:

○ Accumulate postings for each block, sort, write to disk

○ Then merge the blocks into one long sorted order
33
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Sec. 4.2
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Sorting 10 blocks of 10M records
▪ First, read each block and sort within: 

• Quicksort takes 2N ln N expected steps
• In our case 2 x (10M ln 10M) steps

▪ Exercise: estimate total time to read each 
block from disk and and quicksort it.

▪ 10 times this estimate – gives us 10 sorted 
runs of 10M records each.

▪ Done straightforwardly, need 2 copies of 
data on disk
• But can optimize this

Sec. 4.2
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How to merge the sorted runs?
● Can do binary merges, with a merge tree of log210 = 4 

layers.
● During each layer, read into memory runs in blocks of 

10M, merge, write back.
● Generalize to multiway merges for i/o efficiency

Disk

1

3 4

2
2

1

4

3

Runs being
merged.

Merged run.

Sec. 4.2



A few practical issues

● Two things in each index ‘shard’
○ Map from string tokens to (begin, end) of posting lists
○ Posting lists themselves

● Vocabulary is different in different shards because terms 
assigned IDs as they are encountered in respecting 
corpus partitions

● Index merge needs to take extra care about 
vocabulary/dictionary merging
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Lucene, hands-on
▪ java –cp $CLASSPATH 

org.apache.lucene.demo.Index
Files –index /path/to/index/dir /
path/to/files/to/index

▪ java org.apache.lucene.demo.
SearchFiles

StandardAnalyzer

Documents

FileDocument

IndexWriter

Index

QueryParserQuery

Query

IndexSearcher

CollectorResponses
39
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SPIMI: 
Single-pass in-memory indexing

▪ Key idea 1: Generate separate dictionaries 
for each block – no need to maintain term-
termID mapping across blocks.

▪ Key idea 2: Don’t sort. Accumulate postings 
in postings lists as they occur.

▪ With these two ideas we can generate a 
complete inverted index for each block.

▪ These separate indexes can then be 
merged into one big index.

Sec. 4.3
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SPIMI-Invert

▪ Merging of blocks is analogous to BSBI.

Sec. 4.3



Recap

▪ Document as set, bag, sequence of terms

▪ Corpus as term-document matrix

▪ Indexing = transposing (d,t)  (t,d)

▪ Term  pposting list (= sparse list of doc IDs)

▪ Matrix too large to store in RAM

▪ Cast as external merge sort
• Process blocks of docs in RAM

• Merge per-block indices

▪ Compress the posting list and dictionary
42



Lucene and MG4J demo → exercises

● Download code, build and run. Print document scores.
● Using synthetic docs and queries, tease out salient 

properties of the scoring functions.
● Run MG4J and try query network embedding and note 

result highlighting.
● Extend to multiple fields. Learn multi-field query format.
● You are given a dict mapping a term to a set of synonyms. 

Modify the text scanner to emit all synonyms at the same 
token offset as the original word.

● You are given a dict from terms (cat, dog, hippo) to 
hypernyms (mammal). Modify the text scanner to emit all 
hypernyms at the same token offset as the original word.

● Test above two mods with synthetic corpus and queries. 43

PyLucene 
available!

https://bitbucket.org/soumenchakrabarti/mtwowi.git
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Deeper dive if you wish

▪ (Do not use Lucene, SOLR, etc.)

▪ Familiarize with a few key classes of MG4J 
(InputBitStream, OutputBitStream)

▪ Some classes we can provide 
(ExternalMergeSort)

▪ Write a very basic indexing program
• What is the size of the index?

▪ Extend to distributed map-reduce version?

▪ And a basic Boolean query processor
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Positional queries

▪ Examples with set representation:
• Document/s containing “care” and “done”
• Document/s containing “care” but not “old”

▪ Examples with sequence representation:
• Document containing phrase “new care”

• … “care” within 4 words of “won”

▪ Can build more complex clauses
• Has phrase “care with” but not “old”

▪ Was state of the art in library catalog and 
legal search (small corpus) for a long time
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Reusing the index we built

▪ Relax a phrase or proximity query to AND

▪ “new york” 🡪 “new” AND “york”

▪ Not all docs that pass the AND filter will 
have the phrase

▪ To filter, must read the document

▪ Random seek, very slow

▪ Solution: in the posting list, retain not only 
the doc ID, but also the word offset where 
the word occurred
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Documents as word sequences

Toy corpus with two documents

▪ Positional postings can speed up query 
processing

▪ But consumes much more index space

▪ Can (mostly) reconstruct document (except 
for discarded bits like case, punct

my0 care1 is2 loss3 of4 care5 with6 old7 care8 done9

your0 care1 is2 gain3 of4 care5 with6 new7 care8 won9

d1

d2

1 care

2 done

3 gain

4 is

5 loss

6 my

7 new

8 of

9 old

10 with

11 won

12 your

V
oc

ab
ul

ar
y

d1:1,5,8;  d2:1,5,8

d1: 9
Positional posting list: a 
doc info block followed 

by position list
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Why compression (in general)?
▪ Use less disk space

• Saves a little money

▪ Keep more stuff in memory
• Increases speed

▪ Increase speed of data transfer from disk to 
memory
• [read compressed data | decompress] is faster 

than     [read uncompressed data]
• Premise: Decompression algorithms are fast

• True of the decompression algorithms we use

Ch. 5
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Why compression for inverted 
indexes?

▪ Dictionary
• Make it small enough to keep in main memory

• Make it so small that you can keep some postings lists 
in main memory too

▪ Postings file(s)
• Reduce disk space needed

• Decrease time needed to read postings lists from disk

• Large search engines keep a significant part of the 
postings in memory.

• Compression lets you keep more in memory

▪ We will devise various IR-specific compression 
schemes
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Index compression
Ch. 5
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Postings compression
▪ The postings file is much larger than the 

dictionary, factor of at least 10.

▪ Key desideratum: store each posting compactly.

▪ A posting for our purposes is a docID (for starters)

▪ For Reuters (800,000 documents), we would use 
32 bits per docID when using 4-byte integers.
○ Web corpus → 100 G ID space

▪ Alternatively, we can use log2 800,000 ≈ 20 bits 
per docID.

▪ Our goal: use far fewer than 20 bits per docID.

Sec. 5.3
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Postings: two conflicting forces
▪ A term like arachnocentric occurs in maybe 

one doc out of a million – we would like to 
store this posting using log2 1M ~ 20 bits.

▪ A term like the occurs in virtually every doc, 
so 20 bits/posting is too expensive.
• Prefer 0/1 bitmap vector in this case 

Sec. 5.3
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Postings file entry
▪ We store the list of docs containing a term in 

increasing order of docID.
• computer: 33,47,154,159,202 …

▪ Consequence: it suffices to store gaps.
• 33,14,107,5,43 …

▪ Hope: most gaps can be encoded/stored 
with far fewer than 20 bits.

▪ Heads we win, tails they lose
• Either a word is rare, few gaps to encode
• Or many small gaps, each needs few bits

Sec. 5.3
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Three postings entries
Sec. 5.3
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Variable length encoding
▪ Aim:

• For arachnocentric, use ~20 bits/gap entry.
• For the, use ~1 bit/gap entry.

▪ If the average gap for a term is G, we want 
to use ~log2G bits/gap entry.

▪ Key challenge: encode every integer (gap) 
with about as few bits as needed for that 
integer.

▪ This requires a variable length encoding

▪ Variable length codes achieve this by using 
short codes for small numbers

Sec. 5.3
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Variable Byte (VB) codes
▪ For a gap value G, we want to use close to the 

fewest bytes needed to hold log2 G bits

▪ Begin with one byte to store G and dedicate 1 bit 
in it to be a continuation bit c

▪ If G ≤127, binary-encode it in the 7 available bits 
and set c =1

▪ Else encode G’s lower-order 7 bits and then use 
additional bytes to encode the higher order bits 
using the same algorithm

▪ At the end set the continuation bit of the last byte 
to 1 (c =1) – and for the other bytes c = 0.

Sec. 5.3
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Example
docIDs 824 829 215406

gaps 5 214577

VB code 00000110 
10111000 

10000101 00001101 
00001100 
10110001

Postings stored as the byte concatenation
000001101011100010000101000011010000110010110001

Key property: VB-encoded postings are
uniquely prefix-decodable.

Sec. 5.3

For a small gap (5), VB
uses a whole byte  :-(
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Other variable unit codes
▪ Instead of bytes, we can also use a different “unit of 

alignment”: 32 bits (words), 16 bits, 4 bits (nibbles).

▪ Variable byte alignment wastes space if you have many 
small gaps – nibbles do better in such cases.

▪ Variable byte codes:

• Used by many commercial/research systems

• Good low-tech blend of variable-length coding and 
sensitivity to computer memory alignment matches (vs. 
bit-level codes, which we look at next).

▪ There is also recent work on word-aligned codes that pack 
a variable number of gaps into one word

▪ Be sure to view Jeff Dean talk at WSDM 2009

Sec. 5.3
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Unary code
▪ Represent n as n 1s with a final 0.

▪ Unary code for 3 is 1110.

▪ Unary code for 40 is
11111111111111111111111111111111111111110 

.

▪ Unary code for 80 is:
111111111111111111111111111111111111111111

111111111111111111111111111111111111110

▪ This doesn’t look promising, but….

59
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Gamma codes
▪ We can compress better with bit-level codes

• The Gamma code is the best known of these.

▪ Represent a gap G as a pair length and offset

▪ offset is G in binary, with the leading bit cut off
• For example 13 → 1101 → 101

▪ length is the length of offset
• For 13 (offset 101), this is 3.

▪ We encode length with unary code: 1110.

▪ Gamma code of 13 is the concatenation of length 
and offset: 1110101

Sec. 5.3
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Gamma code examples
number length offset γ-codecode

0 none

1 0 0

2 10 0 10,0

3 10 1 10,1

4 110 00 110,00

9 1110 001 1110,001

13 1110 101 1110,101

24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111

1025 11111111110 0000000001 11111111110,0000000001

Sec. 5.3
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Gamma code properties
▪ G is encoded using 2 ⎣log G⎦ + 1 bits

• Length of offset is ⎣log G⎦ bits
• Length of length is ⎣log G⎦ + 1 bits

▪ All gamma codes have an odd number of bits

▪ Almost within a factor of 2 of best possible, log2 G

▪ Gamma code is uniquely prefix-decodable, like VB

▪ Can be used for any distribution, even if not the 
best fit

▪ Parameter-free

Sec. 5.3
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Gamma seldom used in practice
▪ Machines have word boundaries – 8, 16, 32, 

64 bits
• Operations that cross word boundaries are 

slower

▪ Compressing and manipulating at the 
granularity of bits can be slow

▪ Variable byte encoding is aligned and thus 
potentially more efficient

▪ Regardless of efficiency, variable byte is 
conceptually simpler at little additional 
space cost

Sec. 5.3
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RCV1 posting compression
Data structure Size in MB

dictionary, fixed-width 11.2

dictionary, term pointers into string 7.6

with blocking, k = 4 7.1

with blocking & front coding 5.9

collection (text, xml markup etc) 3,600.0

collection (text) 960.0

Term-doc incidence matrix 40,000.0

postings, uncompressed (32-bit words) 400.0

postings, uncompressed (20 bits) 250.0

postings, variable byte encoded 116.0

postings, γ−encoded
101.0

Sec. 5.3
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Next: dictionary compression
▪ Search begins with the dictionary

▪ We want to keep it in memory

▪ Memory footprint competition with other 
applications

▪ Embedded/mobile devices may have very 
little memory

▪ Even if the dictionary isn’t in memory, we 
want it to be small for a fast search startup 
time

▪ So, compressing the dictionary is important

Sec. 5.2
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Dictionary storage - first cut
▪ Array of fixed-width entries

• ~400,000 terms; 28 bytes/term = 11.2 MB.

Dictionary search
structure

20 bytes 4 bytes each

Sec. 5.2
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Fixed-width terms are wasteful
▪ Most of the bytes in the Term column are 

wasted – we allot 20 bytes for 1 letter terms.
• And we still can’t handle 

supercalifragilisticexpialidocious or 
hydrochlorofluorocarbons.

▪ Written English averages ~4.5 chars/word
• Exercise: Why is/isn’t this the number to use for 

estimating the dictionary size?

▪ Ave. English dictionary word: ~8 characters

Sec. 5.2
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Compressing the term list: 
Dictionary-as-a-String

▪ Store dictionary as a (long) string of 
characters:
• Pointer to next word shows end of current word
• Hope to save up to 60% of dictionary space.

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Total string length =
400K x 8B = 3.2MB

Pointers resolve 3.2M
positions: log23.2M =

22bits = 3bytes

Sec. 5.2
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Space for dictionary as a string
▪ 4 bytes per term for Freq.

▪ 4 bytes per term for pointer to Postings.

▪ 3 bytes per term pointer

▪ Avg. 8 bytes per term in term string

▪ 400K terms x 19 ⇒ i.e. document 1 7.6 MB (against 11.2MB 
for fixed width)

⎫ Now avg. 
11
⎬ bytes/term,
⎭ not 20.

Sec. 5.2
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Blocking
▪ Store pointers to every kth term string.

• Example below: k=4.

▪ Need to store term lengths (1 extra byte)

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

⎫ Save 9 
bytes
⎬ on 3
⎭ pointers.

Lose 4 bytes on
term lengths.

Sec. 5.2
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Net
▪ Example for block size k = 4

▪ Where we used 3 bytes/pointer without 
blocking
• 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.

Shaved another ~0.5MB. This reduces the size of the 
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with larger k?

Sec. 5.2
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Dictionary search without blocking

▪ Assuming each
dictionary term
equally likely in
query (not really
so in practice!),
average number
of comparisons =
(1+2∙2+4∙3+4)/8 ~2.6

Sec. 5.2

If the frequencies of query terms 
were non-uniform but known, 
how would you structure the 
dictionary search tree?

If the frequencies of query terms 
were non-uniform but known, 
how would you structure the 
dictionary search tree?



Chakrabarti

Dictionary search with blocking

▪ Binary search down to 4-term block;
• Then linear search through terms in block.

▪ Blocks of 4 (binary tree), avg. = 
(1+2∙2+2∙3+2∙4+5)/8 = 3 compares

Sec. 5.2



Begins to resemble general string compression.

Front coding
▪ Front-coding:

• Sorted words commonly have long common 
prefix – store differences only

• (for last k-1 in a block of k)

8automata8automate9automatic10automatio
n→8automat*a1◊e2◊ic3◊io
n

Encodes automat Extra length
beyond automat.

Sec. 5.2
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RCV1 dictionary compression 
summary

Technique Size in 
MB

Fixed width 11.2

Dictionary-as-String with pointers to every 
term

7.6

Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9

Sec. 5.2
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Index compression summary
▪ We can now create an index for highly 

efficient Boolean retrieval that is very space 
efficient

▪ Only 4% of the total size of the collection

▪ Only 10-15% of the total size of the text in 
the collection

▪ However, we’ve ignored positional 
information

▪ Hence, space savings are less for indexes 
used in practice
• But techniques substantially the same.

Sec. 5.3
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Other compression codes

▪ Gamma code is only one of many other 
possibilities, e.g. Golomb/Rice code

▪ Best choice depends on distribution of gaps

▪ Dgaps and pgaps behave differently

▪ Ditto for first and subsequent pgaps

▪ Can do doc-specific pgap compression
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Study of pgap distributions

X-axis=log(pgap), y-axis=frequency

Pgap distribution very different 
from what would result by 
random placement of tokens 
in document of given length

Gap from beginning to first 
term occurrence very 
different from second and 
subsequent gaps



Updating the index
▪ Messy!

▪ One possible
scheme shown

▪ Smarter tricks
exist

(d,t)

(t,d)

Batch
sort

Build
compact

index (may
hold partly
in RAM)

Query
logs

Main
index

Fresh batch
of documents

May preserve this
sorted sequence

New or deleted
documents

(d,t,s)
Stop-
press
index

Fast 
indexing
(may not

be compact)

Query
processor

User

Batch
sort

Merge-
purge

(t,d,s)
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Web search engine data centers
▪ Web search data centers (Google, Bing, 

Baidu) mainly contain commodity machines

▪ Data centers are distributed around the 
world

▪ Ancient estimate: Google ~1 million servers, 
3 million processors/cores (Gartner 2007)

Sec. 4.4
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Massive data centers
▪ If in a non-fault-tolerant system with 1000 

nodes, each node has 99.9% uptime, what 
is the uptime of the system?

▪ Answer: 63%

▪ Exercise: Calculate the number of servers 
failing per minute for an installation of 1 
million servers.

Sec. 4.4



Heavier iron

GFS / HDFS: Distributed replicated fault-tolerant file system
Map-codereduce / Hadoop: Bulk-synchronous parallel 
computation paradigm on top of GFS/HDFS
SSTable: “Sorted strings table”—Persistent sorted 
immutable key-value map, typically stored on GFS/HDFS
BigTable / Hbase: Distributed, persistent, fault-tolerant map 
where key = (row_string, column_string, timestamp) and cell 
value = arbitrary binary payload
Percolator: Workflow management implemented on top of 
BigTable; enables asynchronous crawling and indexing

82

https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb/
https://en.wikipedia.org/wiki/Bigtable
https://ai.google/research/pubs/pub36726
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Distributed indexing
▪ Maintain a master machine directing the 

indexing job – considered “safe”.

▪ Break up indexing into sets of (parallel) 
tasks.

▪ Master machine assigns each task to an idle 
machine from a pool.

Sec. 4.4
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Parallel tasks
▪ We will use two sets of parallel tasks

• Parsers (scan and tokenize)
• Inverters or ‘transposers’

▪ Break the input document collection into 
splits

▪ Each split is a subset of documents 
(corresponding to blocks in BSBI/SPIMI)

Sec. 4.4
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Parsers
▪ Master assigns a split to an idle parser 

machine

▪ Parser reads a document at a time and 
emits (term, doc) pairs

▪ Parser writes pairs into j partitions

▪ Each partition is for a range of terms’ first 
letters
• (e.g., a-f, g-p, q-z) – here j = 3.

▪ Now to complete the index inversion

Sec. 4.4
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Inverters
▪ An inverter collects all (term,doc) pairs (= 

postings) for one term-partition.

▪ Sorts and writes to postings lists

Sec. 4.4
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Data flow

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files Reduce
phase

Sec. 4.4
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MapReduce
▪ The index construction algorithm we just 

described is an instance of MapReduce.

▪ MapReduce (Dean and Ghemawat 2004) is 
a robust and conceptually simple framework 
for distributed computing …

▪ … without having to write code for 
distribution and coordination

▪ They describe the Google indexing system 
(ca. 2002) as consisting of a number of 
phases, each implemented in MapReduce.

Sec. 4.4
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Schema for index construction in 
MapReduce

▪ Schema of map and reduce functions

▪ map: input → list(k, v)     reduce: (k,list(v)) → 
output

▪ Instantiation of the schema for index 
construction

▪ map: collection → list(termID, docID)

▪ reduce: (<termID1, list(docID)>, <termID2, 
list(docID)>, …) → (postings list1, postings list2, 
…)

Sec. 4.4



Example for index construction
▪ Map input = { d1 : C came, C sat;

d2 : C spoke }

▪ Map output = { <C,d1>, <came,d1>, 
<C,d1>, <sat, d1>, <C, d2>, <spoke,d2> }

▪ Reduce input = (<C,(d1,d1,d2)>, <spoke,
(d2)>, <came,(d1)>, <sat,(d1)>)

▪ Reduce output = (<C,(d1:2,d2:1)>, <spoke,
(d2:1)>, <came,(d1:1)>, <sat,(d1:1)>)

90
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After creating term-partitioned index
▪ Index construction was just one phase.

▪ Another phase: transforming a term-
partitioned index into a document-
partitioned index.
• Term-partitioned: one machine handles a 

subrange of terms

• Document-partitioned: one machine handles a 
subrange of documents

▪ Most search engines use a document-
partitioned index … better load balancing, 
etc.

Sec. 4.4
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Other real-world Web indexing issues

▪ Source format and language detection
▪ Multi-lingual and code-switched documents

▪ Sentence and word delimiter, punctuation

▪ Case normalization
• MIT in English vs. mit in German

▪ Morphological normalization (“stemming”)

▪ Compound word (“multi word”) detection

▪ Multilingual dictionary
• Preferably unsupervised or weakly supervised
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