Mining the Web
Similarity search

Soumen Chakrabarti

September 6, 2019

Similarity search

e Given a query, find similar documents

e Docs dy,ds very similar to each other both irrelevant or both relevant to
query ¢

e Extreme case: duplicates, mirror sites

e Given d; as query, find similar dss

e Indexed access much slower because docs longer than queries

e lIdeally, detect before incurring crawling costs

e At least dedup after crawling for better search response pages

e Exact duplicates: hashing

e Near-duplicates: ?

e Also useful for images, other multimedia

Exact hashing

Hash functions ()

e Basic data structure in information retrieval (to map strings to integers)

e First given the key set, then choose hash function(s) from families of hash
functions, then hash keys into buckets

e (May be impossible to ensure low collisions if hash function is chosen first and
then adversarial keys presented)

e Generally, you want hash functions to disperse the input &/ completely
uniformly over [M], minimizing collisions

e Weakly universal hash family

Pr(h(z1) = h(z2)) <1/M Vz1 # 22

Hash functions (2

e Strongly or 2-universal or pairwise independent hash family
Pr(h(z1) = y1 A h(za) = yo) = 1/M? V1 # 22,51 # o

e h,p(x) = ax + b mod p is weakly universal
e Weakly universal hash functions are adequate for O(1) expected probe time . ..

e ... but not worst case probe time: When n balls are thrown into n bins uar,
some bin has Q(logn/loglogn) wp at least 1 — 1/n

e Perfect hash: get O(n) storage, O(n) preprocessing time, and O(1) worst case
lookups

Perfect hashing ()

e One level is not enough; need two levels of hashing

e First level: hash function f from weakly universal family partitions S C U,
|S| = n, into buckets By, ..., B,_1

e Suppose b; = | B
o Keep choosing f until we get one such that }_, b7 < n

e Can show: if 8 > 4, then the expected number of times we need to sample f
is at most 2

e In the second level, allocate a memory array of size ab? for bucket B;

Perfect hashing (2

e Keep choosing hash function g; from weakly universal family, until there is no
collision among keys in B;

e Note b; keys go into ab? buckets
e Can show: if a > 2, expected work to find good g; is O(b?)

e Expected time to build the hash table is O(n), but worst-case time may be
larger

e However, storage is O(n) worst case, and lookups are O(1) worst case, once
the hash table is built

Locality sensitive hashing

Locality sensitive hash functions

e Sometimes, you want the hash function to be locality preserving — similar
domain objects should map to nearby numbers in the range

Wish to support different notions of similarity based on application
N

AU B]

. Show that 1 — J(A, B) satisfies triangle inequality

Jaccard similarity between sets: sim(A, B)

. a-b
Cosine similarity between vectors: sim(a, b) = ﬁa—q
) @]z (1012

° Show that 1 — cos(a, b) satisfies triangle inequality

L, distance between vectors: ||@ — b||, = > la; — bl

L, distance ||d — EHQ = Zj(aj —b;)?

Several variations

e Given page, find (approximate) mirror pages
e Given fragments of a site, find (approximate) mirror sites
e Given page, find page close in vector space but likely not a mirror

Challenge: Given n ~ 10'° pages, for each page, list 10 pages most likely to be a
mirror (or most similar in vector space)

Do this in o(n?) time, before the sun becomes a red giant

We will begin with a simple notion of document similarity:

e A document is a set of words
e Used Jaccard similarity between sets 8

e Cannot evaluate J(S;,S;) over all pairs 7, j
e Suppose all S C {1,2,...,n}

e Let 7 be a random permutation from {1,2,... n} to {1,2,...,n} (i.e., one
of the n! permutations chosen uar)

o 1(S) ={m(s):s €S}
e What is Pr(min{n(S;)} = min{n(S;)})?
e Equivalently, what fraction of n! permutations satisfy

min{7(S;)} = min{n(S;)}?

Min-hash analysis (1)

If x = min(7(A)) = min(7(B)), then 7! (x) must belong to AN B

Pick the range to which AU B is mapped in (‘AGB‘

Remaining n — |A U B| elements not chosen may be permuted every way:
(n—|AU B|)!

Element to be mapped to the minimum value in the range can be chosen in
|A N B| ways

) ways

Remaining elements in AU B can be permuted in (JAU B| — 1)! ways

n |AﬂB[
—|AUB|\)'|ANnB|(|JAUuB| -1
(140 5y) (= 1AUBDIAN Bl (14U Bl - 1) = F P

10

Min-hash analysis (2

e Simpler way to think:
Pr(min(7S) = min(nT))
= Pr(min in 7S U T lies in 7SN 7T)
= Z Pr(z e 7SN #T),

rzerSUnT
where z is the min, in turn
e or |[TSN7T| x Pr(some fixed member of 7.5 U w7 is the minimum)
e Either way, we get
iTSNal|

—_— = T
|7S U nT| J(5,T)

11

Sample many permutations

Over random permutations 7, we saw that
Pr(min{7(S)} = min{n(T)}) = J(S,T)

e Sample M (trial) permutations 7y, ..., 7y

e Count (successes) Y = [{m € [M] : min7,,(S) = minm,,(T)}|
e Estimate J(S,T) ~=Y/M

e Variance decreases with M

But how does this remove the all-pairs bottleneck?

12

First-cut pseudocode

1: for each random permutation 7 do

2 create a file f;

3: for each document d with word set 7'(d) do
4 write out (s = min 7 (7'(d)),d) to fr

5: sort f. using key s—this results in contiguous blocks with fixed s
containing all associated ds

6: create a file g,

7 for each pair (di, ds) within a run of f; having a given s do

8: write out a document pair record (dy,ds) to g,

9: sort g on key (di,ds)

10: merge g, for all 7 in (dy,dy) order
11: count number of (dy, ds) entries -

Avoiding random permutations

Needed to pick 7 from the “hash family” of all n! random permutations

Family size is n!, so need logn! ~ nlogn random bits to sample one

High-quality random bits are expensive: /dev/random vs. /dev/urandom

Can we reduce the size of the family from which we draw permutations?

14

Min-wise independent hash functions

Denote [n] = {1,...,n}

Let S, be all permutations from [n] to [n]

A family of permutations F C S, is exactly min-wise independent if for any

X C [n] and any = € X, when 7 is chosen uar from F, we have

Pr(min{r(X)} = 7(z)) = |71|

F =S8, = n! permutations

Sufficient, but not necessary for Jaccard

Need log(n!) &~ nlogn bits to sample one

15

Lower bounding | F]|

e Small F = fewer bits needed to sample 7

e Each element of X must be the minimum under F the same number of times

e Therefore | X | must divide |F| exactly

o |X|canbel,2,...,n (or 1,2,...,k for some smaller k)

e Lcmof 1,2,...,n (or 1,2,...,k) must divide | F]|

e Lemof 1,2,...,n (or 1,2,..., k) is at least "™ (or e¥=°(*)) — Number
Theory

16

Upper bounding | F]|

o Lletn=2"
e Construct F in stages recursively
e First stage: divide [n] into two halves, top and bottom
. (;}2) ways to do this
e n-bit long string, n/2 0s, n/2 1s
e Second stage: divide the halves into quarters, etc.
e Important: can reuse one n/2-bit string
e Number of permutations
|F| = lﬁn <n/2i_1) < lﬁn o2 g gpElllBie) < g
i=1 n/2) = i=1 B -

e l.e,, O(n) random bits suffice—still large

17

Approximate min-wise independent families

For any X C [n] and any = € X, when 7 is chosen uar from F,
1 €
Pr(min{W(X)} = W(ZE)) —— | <=
| X[~ | X]
There exist families of size O(n?/€?) that are e-approximately min-wise
independent (0 < e < 1)

Linear independent families with prime n and A(z) = az +b mod n

For each | X| = k and for each z € X
Pr(min{n(X)} = n(z)) >

2k —1)

18

Min hash summary

n—o(n)

e Min-wise independent family has size at least e
e Min-wise independent family has size at most 4"

e Allowing e-approximate min-wise independence reduces family size to
O(n?/€*), which needs O(logn) random bits to sample

19

Shingling

e From word set overlap to detecting mirroring or plagiarism
e Approximate sequence matching

e Pairwise edit distance too slow

e Turn document into token sequence

e Sliding window of size w = 4, say

e Each possible window value is called a shingle

e If each token represented using 32 bits, shingle is 128 bits

e Thus n = 2128

20

Detecting locally similar Web subgraphs

o After crawling
e Contract graph, save RAM and disk
e More faithful link-based ranking algorithms
e Apart from genuine content mirrors, cases like http://www.yahoo.com/ and
http://dir.yahoo.com/; \, virtual hosts, URL rewrites, etc.

e During crawling

Especially valuable in avoiding fetching same content many times
Only clue available is the URL (and possible text on a few crawled pages)

Often enough if corroborative info used properly
Can use known suspects from previous crawls

21

Graph contraction

Consider links (u1,v1) and (ug, v9)

Say shingling leads you to believe that v; and vy are mirror pages

Replace outlinks on u; and us to point to unified node v

May make u; and uy look more similar than before, especially if u are
represented only by outlink sequences

Could lead to cascaded collapses and whole site mirror folding

22

Shingling URLs (1)

e Identify candidate host pairs that might be mirrors to perform a more thorough

check
e Convert host and path to all lowercase characters
e Let any punctuation or digit sequence be a token separator

e Tokenize the URL into a sequence of tokens, for example, wwwé.infoseek.com

gives www, infoseek, com

e Eliminate frequent URL components (‘stopwords’) such as htm, html, txt,

main, index, home, bin, cgi

23

Shingling URLs (2

e Form positional bigrams from the token sequence, for example,
/cellblockl16/inmates/dilbert/personal/foo.htm yields bigrams
(cellblock,inmates,0), (inmates,dilbert,1), (dilbert,personal,2), and (personal,
foo,3)

e A host is now represented by a set of positional bigrams, just like documents
were represented as sets of shingles

e Once min-hash identifies suspected mirror hosts, can do a slower but more

thorough textual similarity check

24

Cosine similarity ()

e Documents represented as vectors z, y

® COS /T,y =

2]l

is the cosine of the angle between the vectors

e Choose a unit vector u with its arrow lying with uniform density on the unit

sphere with center at origin (this characterizes the family F)

e (For simf?licity visualize two ve

\
A}
\

A

LY

A

ctors in the 2d plane)

25

Cosine similarity (2

e Hyperplane perpendicular to u and passing through origin separates z,y for
2/x,y fraction out of 27 rotation of u

e Define h,(z) = sign(h - x) € £1 (one-bit hash)
e Easy to see that
LY rank
Pryer (hu() = ha(y)) = 1 — £ 2 o5
I yer(hu(z) = hy(y)) ~ Cos /x, Y
e How to generate random normal vector u?

e Projection to any plane through origin must be symmetric

e In 3d, uniform latitude then uniform longitude will not do (demo)

26

A
7T TN

Multivariate Gaussian

e Symmetry generalizes to any number of dimensions!

e How to generate multivariate Gaussians? 28

Generating random Gaussians (1)

e Suppose we are given a uniform random number generator /[0, 1]
e How to generate X ~ AN(0,1)?
e Recall the familiar trick to compute I = f_oooo e dz:
2= (2 etdn) (J2 oevay) = [2 [e @ dudy =
;;ro [Zyerdrdg=m,s0I=/1
e Suppose X,Y ~ N (0, 1) are two independent random variables distributed
standard normal. Then their joint density is

2 2
) = s (—m *y)

27 2

29

Generating random Gaussians (2)

e To sample X and Y, we will instead sample two random variables R and ©
from suitable distributions, then apply the transformation X = R cos©,
Y = Rsin®

e We can pick © ~ U[0, 2x], by the symmetry of f.

e The cumulative distribution of R is

r2

Gy =Pr(R<r) = [flay)dedy

P 2+y2:0

2
r 1 2 2
_/ —exp(+y>dxdy
24y2= 027T 2

/(bo/to—exp(2) tdtdo

30

Generating random Gaussians (3)

e To generate R from cumulative density GG, generate U ~ U[0, 1] and “invert”

G-
R=+/—2In(1-0)

Even though X and Y are apparently coupled via R, ©, they are independent

e Can generate any number of standard normal random numbers this way

Thus sample multivariate normal distribution with identity covariance matrix

Can use given mean p and covariance X to transform to arbitrary multivariate
normal

31

LSH for cosine: implementation details

e A single random hyperplane gives a 1-bit hash

e Divides all vectors in the corpus into two roughly equal halves

e Will still result in too many pairwise comparisons

e Consider K random hyperplanes

e Each vector in the corpus gets K hash bits

o Hyperplanes define 2% cones

e Two vectors in the same cone agree on all K hash bits

e Tune K to balance pairwise comparison cost vs. recall of near pairs

e Loss of near-pair recall across cone boundaries?

32

Hamming distance and bit sampling

2N strings {0, 1}V

Hamming distance ||z, y|| g between two strings is the number of disagreeing
bits

Define hash family F as h;(x) = x;, the ith bit of

Choosing a bit position 1 <7 < N u.a.r.,

1—Pri€H<hi(x) = hi(y)> Prze?—t(() 2 ol)> _ H:r:,]\y[HH

||$,y||H
P I = i)l
N [}

E.g., if |z,y]lg < N/3, then Pr(h(z) = h(y)) > 2/3
And if ||z,y||g > 2N/3, then Pr(h(z) = h(y)) < 1/3

Define sim(z,y) =1 —

33

LSH and range queries for Hamming distance

e Family Fis (¢,r, P, Py)-sensitive if for any two strings z,y
e |z,yllg <r = Pr(h(z) = h(y)) = A
e |z,yllag = cr = Pr(h(z) = h(y)) < P

c > 1, P, > P, is the interesting case

Single bit sampling hash family satisfies ¢ = 2,7 = N/3, P, =2/3, P, =1/3
e Or, in general, ¢,r,PL=1—7r/N,P,=1—cr/N

Will amplify this separation

e c-approximate r-range query: given query point g, if there exists at least one
p:d(q,p) < r, then return some p’ with d(q,p’) < cr

34

Data structure and preprocessing

e Instead of one bit position, sample k£ bit positions

e Given an N-bit string, look up these k positions

e Pack into a k-bit sketch of the original string

e Now do this L times (independently)

e Thus each of n string leads to L hash values, each k bits wide

e Call these g;(z),...,gr(r), each go(x) € {0,1}F

e Create a hash table foreach / =1,...,L

e Each hash table has 2* slots

e Each data item z is replicated (“pointer” only) to all L hash tables

e In hash table /7, item z is pushed into slot g,(z)

35

e Given query ¢
e For/=1,... L
e Compute slot number g4(q)
e Exhaustively check ||¢, x| g for all z in this slot
e If any ||¢, z||g < r report z
e At any time if more than 2L items z have been checked (including duplicates),

terminate the search
The above setup is correct under these conditions:

e If 3x : ||q,z||g < r, then go(q) = ge(x) for some ¢
e There are at most 2L items x such that ||q, z||z > ¢r and yet g/(q) = go(2)

for some ¢
36

Analysis: Few far points collide (1)

o Notational convenience: H(x,y) = ||z, y|lu
e For any ¢ and any z, if H(q,x) > cr (point is far from query), then
Pr(ge(q) = ge(2)) < Py

logn
th=——"— that Pf =1
e Se Tog(L/Py)’ so that P /n

e There are at most n points = with H(q,z) > cr

e Therefore the expected number of far points x with g,(q) = ge(x) (for a fixed
() is at most n(1/n) =1

e Over all L tables, the expected number of far points that collide with ¢ is at
most L

37

Analysis: Few far points collide (2

e Markov inequality: for any random variable X > 0, Pr(X > a) < E(X)/a

e By Markov inequality, the number of far, colliding points is at most 2L with
probability at least 1/2

38

Analysis: Near points tend to collide

For any ¢ and any z, if H(q,z) < (near point), then Pr(g,(q) = ge(x)) > PF

For a fixed ¢, the probability of collision with the query, Pr(g:(q) = go(z)) >
e 1 log(1/ P,
PF = P/ — exp (& log Pl) = exp < log(1/F4) logn) =n="

/P log(1/P,) _log(l/PQ)

log(1/P;

where p = ——=

* 7 log(1/Py)

e The probability that near point x collides with ¢ in at least one of L tables is
1—(1—nr)L

e Set L = n”, then the probability of a near point colliding is at least 1 — 1/e

39

From Hamming to [, distance

e Set P of n points in R?

e [, distance used

e Coordinates are positive integers in [0, C]

o Let x = (z1,...,124)

e Write down each coordinate in C-bit unary code
e Gives C'd-bit representation v(z) of each point z

e Note that L; distance between x and 2’ is the Hamming distance between
v(z) and v(x')

40

LSH for L, distance

Choose randomly oriented line ¢

Partition ¢ into segments/buckets of width a

Project each point x to ¢

Hash value is the bucket (index) where z got projected

(Use multiple randomly oriented lines for more hash values)
For subsequent analysis

e Join points x,y with line Ty
e Let # be the angle between 7y and /¢
e Let d(z,y) be Lo distance between x and y

41

e If d(z,y) > a, then 6 must be close to 90° for there to be a reasonable chance
that = and y go to the same bucket

e Specifically, if d(z,y) > 2a, then we need 6 € [60°,90°] for z and y to go to
the same bucket, which happens with probability at most 1/3

e If d(z,y) < a, then the chance that x,y go to the same bucket is large

e Specifically, if d(x,y) < a/2, then the probability that = and y will share a
bucket is at least 1/2

e Thus, we have a (dy = a/2,dy = 2a,p; = 1/2,py = 1/3)-LSH

42

Summary

LSH summary

Artifacts may be bit vectors, real vectors / directions, sets

Map each artifact to a set of sketches

Sketch values often used to populate (hash) tables

Approximate range query

Exhaustively search through very few buckets

43

	Exact hashing
	Perfect hashing

	Locality sensitive hashing
	Jaccard similarity
	Cosine similarity
	Hamming and L1 distance
	LSH for L2 distance

	Summary

