
Mining the Web

Similarity search

Soumen Chakrabarti

September 6, 2019

1

Similarity search

� Given a query, find similar documents

� Docs d1, d2 very similar to each other both irrelevant or both relevant to

query q

� Extreme case: duplicates, mirror sites

� Given d1 as query, find similar d2s

� Indexed access much slower because docs longer than queries

� Ideally, detect before incurring crawling costs

� At least dedup after crawling for better search response pages

� Exact duplicates: hashing

� Near-duplicates: ?

� Also useful for images, other multimedia

2

Exact hashing

Hash functions (1)

� Basic data structure in information retrieval (to map strings to integers)

� First given the key set, then choose hash function(s) from families of hash

functions, then hash keys into buckets

� (May be impossible to ensure low collisions if hash function is chosen first and

then adversarial keys presented)

� Generally, you want hash functions to disperse the input U completely

uniformly over [M], minimizing collisions

� Weakly universal hash family

Pr(h(x1) = h(x2)) ≤ 1/M ∀x1 6= x2

3

Hash functions (2)

� Strongly or 2-universal or pairwise independent hash family

Pr(h(x1) = y1 ∧ h(x2) = y2) = 1/M2 ∀x1 6= x2, y1 6= y2

� ha,b(x) = ax+ b mod p is weakly universal

� Weakly universal hash functions are adequate for O(1) expected probe time . . .

� . . . but not worst case probe time: When n balls are thrown into n bins uar,

some bin has Ω(log n/ log log n) wp at least 1− 1/n

� Perfect hash: get O(n) storage, O(n) preprocessing time, and O(1) worst case

lookups

4

Perfect hashing (1)

� One level is not enough; need two levels of hashing

� First level: hash function f from weakly universal family partitions S ⊂ U ,

|S| = n, into buckets B0, . . . , Bn−1

� Suppose bi = |Bi|
� Keep choosing f until we get one such that

∑
i b

2
i ≤ βn

� Can show: if β ≥ 4, then the expected number of times we need to sample f

is at most 2

� In the second level, allocate a memory array of size α b2i for bucket Bi

5

Perfect hashing (2)

� Keep choosing hash function gi from weakly universal family, until there is no

collision among keys in Bi

� Note bi keys go into αb2i buckets

� Can show: if α ≥ 2, expected work to find good gi is O(b2i)

� Expected time to build the hash table is O(n), but worst-case time may be

larger

� However, storage is O(n) worst case, and lookups are O(1) worst case, once

the hash table is built

6

Locality sensitive hashing

Locality sensitive hash functions

� Sometimes, you want the hash function to be locality preserving — similar

domain objects should map to nearby numbers in the range

� Wish to support different notions of similarity based on application

� Jaccard similarity between sets: sim(A,B) =
|A ∩B|
|A ∪B|

� HW Show that 1− J(A,B) satisfies triangle inequality

� Cosine similarity between vectors: sim(~a,~b) =
~a ·~b

‖~a‖2 ‖~b‖2
� HW Show that 1− cos(~a,~b) satisfies triangle inequality

� L1 distance between vectors: ‖~a−~b‖1 =
∑

j |aj − bj|

� L2 distance ‖~a−~b‖2 =
√∑

j(aj − bj)2

7

“Find similar”

Several variations

� Given page, find (approximate) mirror pages

� Given fragments of a site, find (approximate) mirror sites

� Given page, find page close in vector space but likely not a mirror

Challenge: Given n ≈ 1010 pages, for each page, list 10 pages most likely to be a

mirror (or most similar in vector space)

Do this in o(n2) time, before the sun becomes a red giant

We will begin with a simple notion of document similarity:

� A document is a set of words

� Used Jaccard similarity between sets 8

Min-hash

� Cannot evaluate J(Si, Sj) over all pairs i, j

� Suppose all S ⊂ {1, 2, . . . , n}
� Let π be a random permutation from {1, 2, . . . , n} to {1, 2, . . . , n} (i.e., one

of the n! permutations chosen uar)

� π(S) = {π(s) : s ∈ S}
� What is Pr(min{π(Si)} = min{π(Sj)})?

� Equivalently, what fraction of n! permutations satisfy

min{π(Si)} = min{π(Sj)}?

9

Min-hash analysis (1)

� If x = min(π(A)) = min(π(B)), then π−1(x) must belong to A ∩B
� Pick the range to which A ∪B is mapped in

(
n

|A∪B|

)
ways

� Remaining n− |A ∪B| elements not chosen may be permuted every way:

(n− |A ∪B|)!
� Element to be mapped to the minimum value in the range can be chosen in

|A ∩B| ways

� Remaining elements in A ∪B can be permuted in (|A ∪B| − 1)! ways(
n

|A ∪B|

)
(n− |A ∪B|)! |A ∩B| (|A ∪B| − 1)! =

|A ∩B|
|A ∪B|

n!

10

Min-hash analysis (2)

� Simpler way to think:

Pr(min(πS) = min(πT))

= Pr(min in πS ∪ πT lies in πS ∩ πT)

=
∑

x∈πS∪πT

Pr(x ∈ πS ∩ πT),

where x is the min, in turn

� or |πS ∩ πT | × Pr(some fixed member of πS ∪ πT is the minimum)

� Either way, we get
|πS ∩ πT |
|πS ∪ πT |

= J(S, T)

11

Sample many permutations

� Over random permutations π, we saw that

Pr(min{π(S)} = min{π(T)}) = J(S, T)

� Sample M (trial) permutations π1, . . . , πM

� Count (successes) Y = |{m ∈ [M] : min πm(S) = min πm(T)}|
� Estimate J(S, T) ≈= Y/M

� Variance decreases with M

� But how does this remove the all-pairs bottleneck?

12

First-cut pseudocode

1: for each random permutation π do

2: create a file fπ
3: for each document d with word set T (d) do

4: write out 〈s = minπ(T (d)), d〉 to fπ

5: sort fπ using key s—this results in contiguous blocks with fixed s

containing all associated ds

6: create a file gπ
7: for each pair (d1, d2) within a run of fπ having a given s do

8: write out a document pair record (d1, d2) to gπ

9: sort gπ on key (d1, d2)

10: merge gπ for all π in (d1, d2) order

11: count number of (d1, d2) entries 13

Avoiding random permutations

� Needed to pick π from the “hash family” of all n! random permutations

� Family size is n!, so need log n! ∼ n log n random bits to sample one

� High-quality random bits are expensive: /dev/random vs. /dev/urandom

� Can we reduce the size of the family from which we draw permutations?

14

Min-wise independent hash functions

� Denote [n] = {1, . . . , n}
� Let Sn be all permutations from [n] to [n]

� A family of permutations F ⊆ Sn is exactly min-wise independent if for any

X ⊆ [n] and any x ∈ X, when π is chosen uar from F , we have

Pr(min{π(X)} = π(x)) =
1

|X|
� F = Sn ⇒ n! permutations

� Sufficient, but not necessary for Jaccard

� Need log(n!) ≈ n log n bits to sample one

15

Lower bounding |F|

� Small F ⇒ fewer bits needed to sample π

� Each element of X must be the minimum under F the same number of times

� Therefore |X| must divide |F| exactly

� |X| can be 1, 2, . . . , n (or 1, 2, . . . , k for some smaller k)

� Lcm of 1, 2, . . . , n (or 1, 2, . . . , k) must divide |F|
� Lcm of 1, 2, . . . , n (or 1, 2, . . . , k) is at least en−o(n) (or ek−o(k)) — Number

Theory

16

Upper bounding |F|

� Let n = 2r

� Construct F in stages recursively

� First stage: divide [n] into two halves, top and bottom

�

(
n
n/2

)
ways to do this

� n-bit long string, n/2 0s, n/2 1s

� Second stage: divide the halves into quarters, etc.

� Important: can reuse one n/2-bit string

� Number of permutations

|F| =
logn∏
i=1

(
n/2i−1

n/2i

)
≤

logn∏
i=1

2n/2
i−1 ≤ 2n(1+1/2+···) ≤ 4n

� I.e., O(n) random bits suffice—still large

17

Approximate min-wise independent families

� For any X ⊆ [n] and any x ∈ X, when π is chosen uar from F ,∣∣∣∣Pr
(

min{π(X)} = π(x)
)
− 1

|X|

∣∣∣∣ ≤ ε

|X|
� There exist families of size O(n2/ε2) that are ε-approximately min-wise

independent (0 ≤ ε ≤ 1)

� Linear independent families with prime n and h(x) = ax+ b mod n

� For each |X| = k and for each x ∈ X

Pr(min{π(X)} = π(x)) ≥ 1

2(k − 1)

18

Min hash summary

� Min-wise independent family has size at least en−o(n)

� Min-wise independent family has size at most 4n

� Allowing ε-approximate min-wise independence reduces family size to

O(n2/ε2), which needs O(log n) random bits to sample

19

Shingling

� From word set overlap to detecting mirroring or plagiarism

� Approximate sequence matching

� Pairwise edit distance too slow

� Turn document into token sequence

� Sliding window of size w = 4, say

� Each possible window value is called a shingle

� If each token represented using 32 bits, shingle is 128 bits

� Thus n = 2128

20

Detecting locally similar Web subgraphs

� After crawling

� Contract graph, save RAM and disk

� More faithful link-based ranking algorithms

� Apart from genuine content mirrors, cases like http://www.yahoo.com/ and

http://dir.yahoo.com/; \, virtual hosts, URL rewrites, etc.

� During crawling

� Especially valuable in avoiding fetching same content many times

� Only clue available is the URL (and possible text on a few crawled pages)

� Often enough if corroborative info used properly

� Can use known suspects from previous crawls

21

Graph contraction

� Consider links (u1, v1) and (u2, v2)

� Say shingling leads you to believe that v1 and v2 are mirror pages

� Replace outlinks on u1 and u2 to point to unified node v

� May make u1 and u2 look more similar than before, especially if u are

represented only by outlink sequences

� Could lead to cascaded collapses and whole site mirror folding

22

Shingling URLs (1)

� Identify candidate host pairs that might be mirrors to perform a more thorough

check

� Convert host and path to all lowercase characters

� Let any punctuation or digit sequence be a token separator

� Tokenize the URL into a sequence of tokens, for example, www6.infoseek.com

gives www, infoseek, com

� Eliminate frequent URL components (‘stopwords’) such as htm, html, txt,

main, index, home, bin, cgi

23

Shingling URLs (2)

� Form positional bigrams from the token sequence, for example,

/cellblock16/inmates/dilbert/personal/foo.htm yields bigrams

(cellblock,inmates,0), (inmates,dilbert,1), (dilbert,personal,2), and (personal,

foo,3)

� A host is now represented by a set of positional bigrams, just like documents

were represented as sets of shingles

� Once min-hash identifies suspected mirror hosts, can do a slower but more

thorough textual similarity check

24

Cosine similarity (1)

� Documents represented as vectors x, y

� cos x, y =
x · y

‖x‖2‖y‖2
is the cosine of the angle between the vectors

� Choose a unit vector u with its arrow lying with uniform density on the unit

sphere with center at origin (this characterizes the family F)

� (For simplicity visualize two vectors in the 2d plane)

x, y x, y

25

Cosine similarity (2)

� Hyperplane perpendicular to u and passing through origin separates x, y for

2 x, y fraction out of 2π rotation of u

� Define hu(x) = sign(h · x) ∈ ±1 (one-bit hash)

� Easy to see that

Pr u∈F(hu(x) = hu(y)) = 1− x, y

π
rank
= cos x, y

� How to generate random normal vector u?

� Projection to any plane through origin must be symmetric

� In 3d, uniform latitude then uniform longitude will not do (demo)

26

Random vector on unit sphere

27

Multivariate Gaussian

� Symmetry generalizes to any number of dimensions!

� How to generate multivariate Gaussians? 28

Generating random Gaussians (1)

� Suppose we are given a uniform random number generator U [0, 1]

� How to generate X ∼ N (0, 1)?

� Recall the familiar trick to compute I =
∫∞
−∞ e

−x2dx:

I2 =
(∫∞

x=−∞ e
−x2dx

)(∫∞
y=−∞ e

−y2dy
)

=
∫∞
x=−∞

∫∞
y=−∞ e

−(x2+y2)dx dy =∫ 2π

φ=0

∫∞
r=0

e−r
2
r dr dφ = π, so I =

√
π

� Suppose X, Y ∼ N (0, 1) are two independent random variables distributed

standard normal. Then their joint density is

f(x, y) =
1

2π
exp

(
−x

2 + y2

2

)
29

Generating random Gaussians (2)

� To sample X and Y , we will instead sample two random variables R and Θ

from suitable distributions, then apply the transformation X = R cos Θ,

Y = R sin Θ

� We can pick Θ ∼ U [0, 2π], by the symmetry of f .

� The cumulative distribution of R is

G(r) = Pr(R ≤ r) =

∫ r2

x2+y2=0

f(x, y) dx dy

=

∫ r2

x2+y2=0

1

2π
exp

(
−x

2 + y2

2

)
dx dy

=

∫ 2π

φ=0

∫ r

t=0

1

2π
exp

(
−t

2

2

)
t dt dφ

30

Generating random Gaussians (3)

=

∫ r

t=0

e−t
2/2t dt = 1− e−r2/2

� To generate R from cumulative density G, generate U ∼ U [0, 1] and “invert”

G:

R =
√
−2 ln(1− U)

� Even though X and Y are apparently coupled via R,Θ, they are independent
HW

� Can generate any number of standard normal random numbers this way

� Thus sample multivariate normal distribution with identity covariance matrix

� Can use given mean µ and covariance Σ to transform to arbitrary multivariate

normal

31

LSH for cosine: implementation details

� A single random hyperplane gives a 1-bit hash

� Divides all vectors in the corpus into two roughly equal halves

� Will still result in too many pairwise comparisons

� Consider K random hyperplanes

� Each vector in the corpus gets K hash bits

� Hyperplanes define 2K cones

� Two vectors in the same cone agree on all K hash bits

� Tune K to balance pairwise comparison cost vs. recall of near pairs

� Loss of near-pair recall across cone boundaries?

32

Hamming distance and bit sampling

� 2N strings {0, 1}N

� Hamming distance ‖x, y‖H between two strings is the number of disagreeing

bits

� Define hash family F as hi(x) = xi, the ith bit of x

� Choosing a bit position 1 ≤ i ≤ N u.a.r.,

1− Pr i∈H

(
hi(x) = hi(y)

)
= Pr i∈H

(
hi(x) 6= hi(y)

)
=
‖x, y‖H
N

� Define sim(x, y) = 1− ‖x, y‖H
N

∈ [0, 1]

� E.g., if ‖x, y‖H ≤ N/3, then Pr(h(x) = h(y)) ≥ 2/3

� And if ‖x, y‖H ≥ 2N/3, then Pr(h(x) = h(y)) ≤ 1/3

33

LSH and range queries for Hamming distance

� Family F is (c, r, P1, P2)-sensitive if for any two strings x, y

� ‖x, y‖H ≤ r =⇒ Pr(h(x) = h(y)) ≥ P1

� ‖x, y‖H ≥ cr =⇒ Pr(h(x) = h(y)) ≤ P2

� c > 1, P1 > P2 is the interesting case

� Single bit sampling hash family satisfies c = 2, r = N/3, P1 = 2/3, P2 = 1/3

� Or, in general, c, r, P1 = 1− r/N, P2 = 1− cr/N
� Will amplify this separation

� c-approximate r-range query: given query point q, if there exists at least one

p : d(q, p) ≤ r, then return some p′ with d(q, p′) ≤ cr

34

Data structure and preprocessing

� Instead of one bit position, sample k bit positions

� Given an N -bit string, look up these k positions

� Pack into a k-bit sketch of the original string

� Now do this L times (independently)

� Thus each of n string leads to L hash values, each k bits wide

� Call these g1(x), . . . , gL(x), each g`(x) ∈ {0, 1}k

� Create a hash table for each ` = 1, . . . , L

� Each hash table has 2k slots

� Each data item x is replicated (“pointer” only) to all L hash tables

� In hash table `, item x is pushed into slot g`(x)

35

Probe step

� Given query q

� For ` = 1, . . . , L

� Compute slot number g`(q)

� Exhaustively check ‖q, x‖H for all x in this slot

� If any ‖q, x‖H ≤ r report x

� At any time if more than 2L items x have been checked (including duplicates),

terminate the search

The above setup is correct under these conditions:

� If ∃x : ‖q, x‖H ≤ r, then g`(q) = g`(x) for some `

� There are at most 2L items x such that ‖q, x‖H ≥ cr and yet g`(q) = g`(x)

for some `

36

Analysis: Few far points collide (1)

� Notational convenience: H(x, y) = ‖x, y‖H
� For any ` and any x, if H(q, x) ≥ cr (point is far from query), then

Pr(g`(q) = g`(x)) ≤ P k
2

� Set k =
log n

log(1/P2)
, so that P k

2 = 1/n

� There are at most n points x with H(q, x) ≥ cr

� Therefore the expected number of far points x with g`(q) = g`(x) (for a fixed

`) is at most n(1/n) = 1

� Over all L tables, the expected number of far points that collide with q is at

most L

37

Analysis: Few far points collide (2)

� Markov inequality: for any random variable X ≥ 0, Pr(X ≥ a) ≤ E(X)/a

� By Markov inequality, the number of far, colliding points is at most 2L with

probability at least 1/2

38

Analysis: Near points tend to collide

� For any ` and any x, if H(q, x) ≤ r (near point), then Pr(g`(q) = g`(x)) ≥ P k
1

� For a fixed `, the probability of collision with the query, Pr(g`(q) = g`(x)) ≥

P k
1 = P

logn
log(1/P2)

1 = exp

(
log n

log(1/P2)
logP1

)
= exp

(
− log(1/P1)

log(1/P2)
log n

)
= n−ρ

where ρ =
log(1/P1)

log(1/P2)

� The probability that near point x collides with q in at least one of L tables is

1− (1− n−ρ)L

� Set L = nρ, then the probability of a near point colliding is at least 1− 1/e
HW

39

From Hamming to L1 distance

� Set P of n points in Rd

� L1 distance used

� Coordinates are positive integers in [0, C]

� Let x = (x1, . . . , xd)

� Write down each coordinate in C-bit unary code

� Gives Cd-bit representation v(x) of each point x

� Note that L1 distance between x and x′ is the Hamming distance between

v(x) and v(x′)

40

LSH for L2 distance

� Choose randomly oriented line `

� Partition ` into segments/buckets of width a

� Project each point x to `

� Hash value is the bucket (index) where x got projected

� (Use multiple randomly oriented lines for more hash values)

For subsequent analysis

� Join points x, y with line xy

� Let θ be the angle between xy and `

� Let d(x, y) be L2 distance between x and y

41

Analysis

� If d(x, y)� a, then θ must be close to 90° for there to be a reasonable chance

that x and y go to the same bucket

� Specifically, if d(x, y) ≥ 2a, then we need θ ∈ [60°, 90°] for x and y to go to

the same bucket, which happens with probability at most 1/3

� If d(x, y)� a, then the chance that x, y go to the same bucket is large

� Specifically, if d(x, y) ≤ a/2, then the probability that x and y will share a

bucket is at least 1/2

� Thus, we have a (d1 = a/2, d2 = 2a, p1 = 1/2, p2 = 1/3)-LSH

42

Summary

LSH summary

� Artifacts may be bit vectors, real vectors / directions, sets

� Map each artifact to a set of sketches

� Sketch values often used to populate (hash) tables

� Approximate range query

� Exhaustively search through very few buckets

43

	Exact hashing
	Perfect hashing

	Locality sensitive hashing
	Jaccard similarity
	Cosine similarity
	Hamming and L1 distance
	LSH for L2 distance

	Summary

