Relevance Ranking

CS635
Soumen Chakrabarti
(+ many slides from MRS book)

Ranked retrieval

" Thus far, our queries have all been Boolean.
* Documents either match or don't.

" Works for expert users with precise understanding
of their needs and the collection.

* Also good for applications: Applications can easily
consume 1000s of results.

" Not good for the majority of users.

* Most users incapable of writing Boolean queries (or they
are, but they think it’s too much work).

* Most users don’t want to wade through 1000s of results.
* This is particularly true of web search.

The need for relevance ranking

Boolean search returns a set of docs without
any scores or ranking

Average Web query Is 2—3 words long

Bits of entropy in query = 10 which
‘addresses’ 1024 items

Meanwhile corpus has > 10 G docs
Typical query results in > 10 M hits

Problem with Boolean search:
feast or famine

" Boolean gueries often result in either too few
(=0) or too many (1000s) results.

" Query 1: “windows dlink 650" — 200,000 hits

" Query 2: "*windows dlink 650 no card found”
— 0 hits

" It takes a lot of skill to come up with a query
that produces a manageable number of hits.

* AND gives too few; OR gives too many

shivam

Ranked retrieval models

" Rather than a set of documents satisfying a query
expression, in ranked retrieval, the system returns
an ordering over the (top) documents in the
collection for a query

" Free text gueries: Rather than a query language of
operators and expressions, the user’s query Is just
one or more words in a human language

" In principle, there are two separate choices here,
but in practice, ranked retrieval has normally been
associated with free text queries and vice versa

shivam

shivam

shivam

Scoring as the basis of ranked

retrieval
" We wish to return in order the documents
most likely to be useful to the searcher

" How can we rank-order the documents in the
collection with respect to a query?

" Assign a score —say In [0, 1] — to each
document

" This score measures how well document and
guery “match”.

Feast or famine: not a problem iIn
ranked retrieval

" When a system produces a ranked result set,
large result sets are not an issue

* Indeed, the size of the result set is not an issue
* We just show the top k (= 10) results

* We don’t overwhelm the user

* Premise: the ranking algorithm works

" How do users react to ranked responses
from search engines?

Eye tracklng study on search results

Google

=Bing

s { result

Heatmaps showing the aggregate gaze time of all 24 participants on Google (left) and Bing (nght) far

one of the transactional tasks. The red color indicates areas that received the most fofal gaze time

(4.5 seconds and above). Each callout includes the percentage of participants who locked at the area

and the time (in seconds) they spent looking there. The numerical data are an average across all four

tasks. Asterisks indicate values that were significantly different bebwean Google and Bing at alpha = 1. g

Yahoo, MSN, Google

s://www.forbes.com/sites/roberthof/2015/03/03/
do-you-google-new-eye-tracking-study-reveals-huge-chang

Eye tracking summary

Small differences in gaze at ad panels, but

Overall, users spend a lot of time gazing at
*organic” results

Mostly scanning down from rank 1 in search of
search satisfaction

Spending more time inspecting top ranks

There are very sophisticated models of summary
Inspection, skip, click, satisfaction, backoff, etc.

For now, the clear first principle is: present results
most relevant first

How to measure relevance?

10

shivam

shivam

Forms of supervision

Regression: for each doc, relevance score
(unrealistic to collect absolute scores)

Ordinal regression: discretize into K-point
relevance scale (somewhat more realistic)

Complete rank order: Total order on docs but
no scores (still quite unrealistic)

Prefix of rank order: Slightly more realistic

Pairwise preferences: (possibly inconsistent)
partial order between docs “u less preferred
than v” (inferred from click-log and eye-
tracking)

11

| oss and reward

L1 or L2: If y, ¥ are gold, predicted scores, can
use [y —y|° or [§ — yl

Let T,,, T, be gold and system top-k sets

Total gold score of Ty, = Yyer, Y(V)

Total gold (note, not system)
score of Ty = ¥, Y (V)

Relative aggregated goodness (RAG):
ZvETfk y(v)
2ver;, Y(V) €10.1]

Useful to give credit to "good enough” hits

12

L.osses an

Pair preference vio
y(v), thisis a vio

d rewards, cont’d

ation: Ifu < v but y(u) >
ated pair. Count the number

of pair violations as loss.

Rank correlation: Order docs by decreasing y
and compute rank correlation with
(unrealistic) ground truth ranking

Prefix rank correlation:

m pairs v, w from

Ty U Ty

c concordant pairs v, w where

(@) —yW)) (W) —yWw)) >0

d discordant pairs where above quantity < 0

13

L osses and rewards, cont’d

Prefix rank correlation:
a approximate ties where y(v) = y(w)
e exact ties where y(v) = y(w)
Kendall’s tau is defined as

c—d
€ [—1,+1]
J(m—e)(m—a)
What matters most in practice is the density of
relevant results at the top ranks

14

Binary relevance

" Suppose each doc in corpus is known as
relevant or irrelevant (big assumption!)

" |ldeal search engine should rank all relevant
documents above any irrelevant document

" In practice, an imperfect search engine may
mix them up a little

" If we went far enough down the list, we
would collect all relevant docs (“total recall”)

" But many collected docs would be irrelevant
" Recall vs. precision tradeoff

15

Recall and precision

" Suppose for a query there are R relevant
documents

" We inspect the response list up to rank k

" Precision@k = fraction of docs within rank k
that are relevant

Rest are false positives

" Recall@k = fraction of R relevant docs that Is
iIncluded in top k ranks

Rest are false negatives
" “Silent and correct” vs. “verbose and wrong”

16

shivam

shivam

shivam

shivam

shivam

Recall-precision tradeoff
Me 1 -

. " As recall Is increased,

precision generally (but

not always) decreases

|_\
Precision

" Interpolated precision

OIN[O|OI|R]|WIN]F-
[HEN
czoco

fixes this anomaly

o

O
=

Recall " Many ways to reduce

[HEN
=)
o

=
=

to single number

1

[EEN
N

R, P F1

[HEN
w

[EEY
AN

Break-even point

[HEN
o1
[HEN

=
)

MRR

Interpolated

[HEN
\l

AUC

=
0]

[EEN
O

MAP

o

N
o

0 Recall 1 NDCG

“Nice thing about standards is there’re so many to choose 1‘romi7

shivam

Mean reciprocal rank (MRR)
" Query set Q; one query g; first relevant doc

at rank r
a MRR = =y =
|Q| q€Q Tq
" Sometimes truncated at fixed “patience runs

out” rank k (often k=10)
1 1
MRR = —- —
Q| qEC;'I;Sk Tq
" Dropping from 1 to 2 as bad as 2 to «
" “Mean” reciprocal rank

" Good for navigational queries
E.g. Jjet airways

18

shivam

ROC curve

" Shorthand: good=relevant, bad=irrelevant
" FIX query, suppose n* good, n" bad docs
" Algorithm sorts all (n*+n") docs H
“Fori=0,1,2, ..., (n"+tn)
Suppose algorithm marks top i as relevant
Rest as irrelevant
In top i, say n; actually good, 7; =% — n; bad
true positive@i = (n," /n™)
false positiveQ: = (n; /n™)

" Plot y = true positive vs. x = false positive

19

shivam
https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c

Area under ROC curve (AUC)

Called Receiver Operating '

Characteristic curve 7

Suppose ranking is random

* Will get roughly diagonal line n

[¥]
2 04

Ranking function #1
Ranking function #2
Ranking function #3

Good ranking functions "

* Will get very high true positive at
very small false positive rates |

ok

* Large lift above diagonal - i

Measure area under the curve
* 5> = effectively random

* Close to 1 = good ranking
algorithm

20

Another AUC example

0
1 2 3Rk4 5

" Good =1, bad = 0; two good, three bad docs

" For perfect ordering 1,1,0,0,0, plot passes through
(1,0), (1,1), (2,1), (2,2), (3,2), (4,2), (5,2)

" For imperfect ordering 0,1,0,1,0, plot passes
through (1,0), (2,0), (2,1), (3,1), (4,1), (4,2), (5,2)

" Area between two plots related to number of
discordant pairs Q

21

Concordant and discordant pairs

" RRredfsiaitARess for & given query
"= Ssath ey re aesies rainking Mch Wsikh
themtabratSanks 1 < p1 <p2 <--- < pr

"= | (e | YRt ieRIRS anking £al; | sistailts
ggibgodaics dasidkfarayangedaloc

"= ER i tKasmyss ned Bettines @ndier with good and bad

wnadféstst
Fengine — di_,d;,dg_,di_,dg,dﬁ_,d;_,dg
T'ideal = di_? d:;'_? di—, d;_; dy ,ds ,dg ,dg

= Sy Qdlsssrgant pairs between these two

29

Relating ranks p. and discordant pairs Q

Account for Q as follows: First consider the relevant
document at position p, inr, ;... Because it has
been pushed out from position 1 to position p,, the
number of inversions introduced is p,—1.

For the document at position p, in r, ..., the number

of inversions introduced is p,—1-1, the last “-1"

thanks to having the first relevant document ahead
of It.

Srmming up, we get

Y pi—1-(i-1)=Q, or
i=1

Average precision

" “Informational” queries
" High-ranking relevant hits matter a lot

" But user continues exploring (with increasing
satiation or fatigue)

" Accrues reward for each additional relevant
doc, but reward decreases with rank (fatigue)

" FIX one query, suppose there are R relevant

documents atranks 1 < p;1 <py < --- < PR
" Precision at rank p. Is (i/p,) 1 B

* Over all relevant ranks: AvgPrec = B —
i=1 p’b

Bounding average precision given Q
" If Q I1s small, average precision must be large
" Minimize average precision subject to Q
" Relax integer rank and inequalities among p,
R . R
L(p1,---,PR;A) = %;éﬁ)\ (;pi—Q— (R;1>>

a£ 7/ set Z
= — A=0 toget pf=4/—.
Op; Rp? " e Py

R

u " 2
From which we get (Zfil \ﬁ)

AngI‘eC (’rengine) 'rideal) 2
R(Q+ (")

25

Normalized discounted cumulative gain

Fix query g

Relevance level of document ranked j wrt g be r (j)

r.(j)=0 means totally irrelevant
Response list Is inspected up to rank L

Discnuinted cumulative gain for query g is

27“q(j) —]_/ gain

cumulative\zL:
NDCG, =Z7 :
T T = log(145)

normalized

Jj=1

rank discount

Z,1s a normalization factor that ensures the perfect
ordering has NDCG_=1

Overall NDCG is average of NDCG_ over all g
No notion of recall, only precision at low ranks

26

This iIs all fine, but...

" ...how does a search and ranking system
optimize one or more of these criteria?

" Early IR systems—time-tested heuristics
Coming up next

" Later, some probabillistic justification
Will visit when we study corpus models

" Then, direct optimization based on machine
learning

After we cover a bit of ground on basic ML

27

The “vector space model”

Letw =1, ..., W define the corpus vocab

Let x € R" denote a vector representing a
document (i.e., one axis per vocab word)

Query g € R% is in the same space
Similarity between q and x is defined as

- X
cos(g,x) = 9 Why length
||Q||z ||x||2 normalization

In which component x,, depends on
« Term frequency: number of times w occurs in x
« Utility of word w as a search term

28

Comparing guery to docs

enzyme

the

spoke

20

TFEXIDF representation

Use word rarity as a surrogate

“The’ appears in almost all docs
‘Calculus’ is rare and possibly useful for search

Rarity = inverse document frequency (IDF)

“Squashing functions”

TF(x,w) = log(1 + #(x,w)) /

Here #(x,w) is the raw word count in doc
IDF(w) = log(1 + #,,2¢/#(W)) Property of
#(w) is #docs in which w occurs at east once

#ax = max,, #(w)

30

TEXIDF representation

*« Nty T amd IIDF tegriner
£, (x) = TF(x,w) - IDF(w)

oo FREAW [tgngin off gins

. Normalize to &4 Ve

:E éwﬁﬁ:}onents

w

\
* O iF&rE%){ i@é{’ﬁ&%ﬁ }%%?Sﬁ’ﬂﬁ}eﬂ’i%

. [6)ubl.e-inclu e IDF ‘F’ct)r dog1 and ﬂyu]el%’?

ueries rarely repeat wor

S, ON

* Double-include IDF for doc and query?

31

Query processing using inverted lists

How exactly does TFIDF retrieval happen
using inverted lists?

Interested in top-k documents only

Speed up using various pruning and termination
heuristics

A general framework started by Fagin et al.
Worst case (pessimistic) guarantees
Depends on posting list ordering

Later, probabilistic bounds
Incorrect ranking with small probabillity

Basic TFIDF vector space scoring

(Assume no phrases or Boolean clauses)
Init empty accumulator map: score[docid]

In decreasing IDF order of query words t
Scan posting list for word to get (x, TF(x,w))
score[x] += TF(x,w) * IDF(w)

Divide each score[x] by (function of) length of x
(Implement cosine)

Many score accumulators, need top-k docids
Partial sort (how?) and report top-k

Where Is time spent?

For queries with relatively rare terms
Accumulator management
Sparse or dense map?

For queries with some frequent terms
Bit processing for decompressing postings

Arithmetic to update accumulators
Wasted effort in computing scores to throw away

You can'’t really afford (updating) a billion
accumulators for 300 million queries a day

Be sloppy when no one is looking

Score/impact ordering

Thus far we have ordered postings by
document ID...

... which are assigned arbitrarily

For any query we must scan to the end of
posting lists

Because the best doc may be at the end

Instead we can order postings by
decreasing impact: how much the doc’s
score can be affected by that term

Docs in different order in different lists -t

35

Quit and continue heuristics
Quit: Once |score| exceeds some size just quit
and report answers

Continue: Stop creating new score
accumulators but continue processing and
accumulating scores for remaining words

Critical to process in decreasing IDF order
Quit Is crude but continue Is reasonable

Prescale by document length to avoid final
division (that can upset many ranks)
Could destroy compressibility of index
Limited precision doc lengths (6 bits adequate)

Inverted list

Inverted list

Quit, continue, prune

=

Pointers processed

(a)

Pointers processed
(b)

IDF-ordered quit
heuristic

Impact-ordered
continuation and/or
pruning heuristic

http://resources.mpi-inf.mpg.de/d5/teaching/ws11_12/irdm/slides/

Term impact

Worth/impact of updating accumulator of x In
response to word w depends on

Term frequency TF(x,w) TREC.

Inverse document frequency IDF(w) precision

(Function of) document length L(x) at rank 10
Store TF(x,w) IDF(w) / L(x)

= “term impact”

Quant|ze to b bltS TREC S Lﬁfle(izmn (Tr;z{r;;m

Uniform/geometric? web me o o
Effect on retrieval S S S A e

accuracy and

5.1 3.3 = . . 1609 1174

4
index size [ggorpus ©¢ i¢ t= @ lom

Exp.1, Prec.10

Exp.1, Prec.10

0.25

0.20

015

0.10

0.05

0.00

0.25 —

0.20 —

045 —

010 —

0.05 —

0.00

Term impact order -- results

—0— Uniform, b=5
—0— Left.Geom, b=5

—&— Frequency sorted
—<o— Document sorted

Pointers processed (% of the pointers required for full evaluation)

I I
1.0 10.0

e

—3— Uniform, b=5
—0— Left.Geom, b=5
—+#— Frequency sorted
—o— Document sorted

100.0

W—ﬂ—ﬂ—a

0.00

I I I
0.02 0.03 0.04

Time per query (CPU seconds)

I
0.05

Formalize as branch and bound

Cartesian space D1xD2x...Dm

m-dimensional data points and queries

Similarity function si: Di x Di o [0,1] for each
dimension

Global similarity = aggr 1 si(g,d)

Sorted access to each dimension in order of si
as In impact-sorted IR
We are lucky that queries are composed of terms
What If they were term pairs? Small graphs?

Keep ub and |Ib on scores of candidate points

Generic pseudocode

| ranges TA-sorted:
over dims top-k :={dummy, ..., dummyy}: // with s (dummy,)=0
min-k := 0;
vondidates == O
scan all lists L; (1 = 1..m) 1n parallel:
Any future // e.g., round-robin or merggd in descending order of s; values
record will consider item d at position pos; in L;; U h 9
if d ¢ candidates then er ooun
have a lower candidates := candidates v {d}; PP |
score E(d) = {1}; :
high; = s;(q;,d); // current <., e L; LB assuming
E(d) = E(d) U {i};
Explored bestscore(d):=aggr{aggr{s,(q,.d)|veE(d)}. Allels are
dimensions ager {highy|veE(d)} - 2e10s
] worstscore(d) = aggr{s,(q,.d)|veE(d)};
of item d if worstscore(d) > min-k then
if d ¢ top-k then
— remove argming: {worstscore(d’)|d’ etop-k} from top-k;
Eviction candidates := candidates w {d’};
add d to top-k
Note: need to min-k := min{worstscore(d’) | d’ € top-k};
full | if bestscore(d) < min-k then candidates := candidates — {d}:
ully evaluate threshold := max {bestscore(d”) | d’ e candidates};

winner scores | if threshold < min-k then exit;

Some properties

wassisee(@d) s(g(d)dlpestsests(srely,d)

ey ((wansttsoone(@,d), aggrihigh_IlEE0T)}F =
(et brmmes((@p)
Tessthwsttsmme(@d) < mitn_Ik rmay be conservative

2 Score

drop d
bestscore, from .the
T candidate

T gqueue
min-k .
- 5(d) I S
1) — T
, worstscored .
i scan depth

Guaranteed vs. probabilistic pruning
Guaranteed to be correct:
2 si(d) =s(d) = X si(d) + X high

b_e_stscored i€E(d) i€E(d) iZE(d)
] min-k
B If min_k > bestscore(q,d) drop_e
 5(d) More adventurous drog
p(d):=P| Y s;j(d) + 3 si(d)>min,| <g
1) i€E(d) i2E(d)
WOI”StSCOI”ed

p(d)=P|)} si(d)>o6(d)| <&

iZE(d)

How to guess this?

Guessing the remaining accumulation

Model distributions over each dimension
Conditioned on seeing latest value high |
Remaining distribution bounded in [0,high_1i]

For two random variables S, and S,

Density functions f,(x)=1¢thigh_and_f.(x)=1/high.
f(x)=f fi(2) fo(x- z)dz

Consider convolution

Each factor is non-zero in 0 < z < high, and 0 < x-z < high,
— Copious case differentiations

Instead, consider moment- Mi(s) = fe fi(x)dx =E |5

Of the form M(s) =[T; M. (s)
Consider convolution

P[3;S; >8] <infyp{e” > M(s)}

Apply Chernoff-Hoeffding bounds

	Relevance Ranking
	Ranked retrieval
	The need for relevance ranking
	Problem with Boolean search: feast or famine
	Ranked retrieval models
	Scoring as the basis of ranked retrieval
	Feast or famine: not a problem in ranked retrieval
	Eye tracking study on search results
	Yahoo, MSN, Google
	Eye tracking summary
	Forms of supervision
	Loss and reward
	Losses and rewards, cont’d
	Losses and rewards, cont’d
	Binary relevance
	Recall and precision
	Recall-precision tradeoff
	Mean reciprocal rank (MRR)
	ROC curve
	Area under ROC curve (AUC)
	Another AUC example
	Concordant and discordant pairs
	Relating ranks pi and discordant pairs Q
	Average precision
	Bounding average precision given Q
	Normalized discounted cumulative gain
	This is all fine, but…
	The “vector space model”
	Comparing query to docs
	TFIDF representation
	TFxIDF representation
	Query processing using inverted lists
	Basic TFIDF vector space scoring
	Where is time spent?
	Score/impact ordering
	Quit and continue heuristics
	Quit, continue, prune
	Term impact
	Term impact order -- results
	Formalize as branch and bound
	Generic pseudocode
	Some properties
	Guaranteed vs. probabilistic pruning
	Guessing the remaining accumulation

