
Relevance Ranking

CS635

Soumen Chakrabarti

(+ many slides from MRS book)

1

Ranked retrieval
 Thus far, our queries have all been Boolean.

• Documents either match or don’t.

 Works for expert users with precise understanding
of their needs and the collection.
• Also good for applications: Applications can easily

consume 1000s of results.

 Not good for the majority of users.
• Most users incapable of writing Boolean queries (or they

are, but they think it’s too much work).

• Most users don’t want to wade through 1000s of results.
• This is particularly true of web search.

Ch. 6

2

The need for relevance ranking
• Boolean search returns a set of docs without

any scores or ranking

• Average Web query is 2–3 words long

• Bits of entropy in query ≈ 10 which
‘addresses’ 1024 items

• Meanwhile corpus has > 10 G docs

• Typical query results in > 10 M hits

3

Problem with Boolean search:
feast or famine

 Boolean queries often result in either too few
(=0) or too many (1000s) results.

 Query 1: “windows dlink 650” → 200,000 hits
 Query 2: “windows dlink 650 no card found”

→ 0 hits
 It takes a lot of skill to come up with a query

that produces a manageable number of hits.
• AND gives too few; OR gives too many

Ch. 6

4

shivam

Ranked retrieval models
 Rather than a set of documents satisfying a query

expression, in ranked retrieval, the system returns
an ordering over the (top) documents in the
collection for a query

 Free text queries: Rather than a query language of
operators and expressions, the user’s query is just
one or more words in a human language

 In principle, there are two separate choices here,
but in practice, ranked retrieval has normally been
associated with free text queries and vice versa

5

5

shivam

shivam

shivam

Scoring as the basis of ranked
retrieval

 We wish to return in order the documents
most likely to be useful to the searcher

 How can we rank-order the documents in the
collection with respect to a query?

 Assign a score – say in [0, 1] – to each
document

 This score measures how well document and
query “match”.

Ch. 6

6

Feast or famine: not a problem in
ranked retrieval

 When a system produces a ranked result set,
large result sets are not an issue
• Indeed, the size of the result set is not an issue
• We just show the top k (≈ 10) results
• We don’t overwhelm the user

• Premise: the ranking algorithm works

 How do users react to ranked responses
from search engines?

Ch. 6

7

Eye tracking study on search results

Google Bing

8

Yahoo, MSN, Google

9

https://www.forbes.com/sites/roberthof/2015/03/03/
how-do-you-google-new-eye-tracking-study-reveals-huge-changes/

Eye tracking summary
 Small differences in gaze at ad panels, but
 Overall, users spend a lot of time gazing at

“organic” results
 Mostly scanning down from rank 1 in search of

search satisfaction
 Spending more time inspecting top ranks
 There are very sophisticated models of summary

inspection, skip, click, satisfaction, backoff, etc.
 For now, the clear first principle is: present results

most relevant first
 How to measure relevance?

10

shivam

shivam

Forms of supervision
Regression: for each doc, relevance score

(unrealistic to collect absolute scores)

Ordinal regression: discretize into K-point
relevance scale (somewhat more realistic)

Complete rank order: Total order on docs but
no scores (still quite unrealistic)

Prefix of rank order: Slightly more realistic

Pairwise preferences: (possibly inconsistent)
partial order between docs “u less preferred
than v” (inferred from click-log and eye-
tracking)

11

Loss and reward

12

Losses and rewards, cont’d

13

Losses and rewards, cont’d

14

Binary relevance
 Suppose each doc in corpus is known as

relevant or irrelevant (big assumption!)
 Ideal search engine should rank all relevant

documents above any irrelevant document
 In practice, an imperfect search engine may

mix them up a little
 If we went far enough down the list, we

would collect all relevant docs (“total recall”)
 But many collected docs would be irrelevant
 Recall vs. precision tradeoff

15

Recall and precision
 Suppose for a query there are R relevant

documents
 We inspect the response list up to rank k
 Precision@k = fraction of docs within rank k

that are relevant
• Rest are false positives

 Recall@k = fraction of R relevant docs that is
included in top k ranks
• Rest are false negatives

 “Silent and correct” vs. “verbose and wrong”

16

shivam

shivam

shivam

shivam

shivam

Recall-precision tradeoff
 As recall is increased,

precision generally (but
not always) decreases

 Interpolated precision
fixes this anomaly

 Many ways to reduce
to single number
• R, P, F1
• Break-even point
• MRR
• AUC
• MAP
• NDCG

k rk

1 1
2
3 1
4 1
5
6 1
7
8
9 1

10
11
12
13
14
15 1
16
17
18
19
20

0

1

0 1Recall

P
re

ci
si

on

0

1

0 1Recall

In
te

rp
ol

at
ed

“Nice thing about standards is there’re so many to choose from!
17

shivam

Mean reciprocal rank (MRR)
 Query set Q; one query q; first relevant doc

at rank rq

 Sometimes truncated at fixed “patience runs
out” rank k (often k=10)

 Dropping from 1 to 2 as bad as 2 to 
 “Mean” reciprocal rank
 Good for navigational queries

• E.g. jet airways
18

shivam

ROC curve
 Shorthand: good=relevant, bad=irrelevant
 Fix query, suppose n+ good, n bad docs
 Algorithm sorts all (n++n) docs
 For i = 0, 1, 2, …, (n++n)

• Suppose algorithm marks top i as relevant
• Rest as irrelevant
• In top i, say actually good, bad

 Plot y = true positive vs. x = false positive
19

shivam
https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c

Area under ROC curve (AUC)
 Called Receiver Operating

Characteristic curve
 Suppose ranking is random

• Will get roughly diagonal line

 Good ranking functions
• Will get very high true positive at

very small false positive rates
• Large lift above diagonal

 Measure area under the curve
• ½  effectively random

• Close to 1  good ranking
algorithm

20

Another AUC example

 Good = 1, bad = 0; two good, three bad docs
 For perfect ordering 1,1,0,0,0, plot passes through

(1,0), (1,1), (2,1), (2,2), (3,2), (4,2), (5,2)
 For imperfect ordering 0,1,0,1,0, plot passes

through (1,0), (2,0), (2,1), (3,1), (4,1), (4,2), (5,2)
 Area between two plots related to number of

discordant pairs Q

0

1

2

1 2 3 4 5Rank

#
G

o
o

d

Perfect

Imperfect

21

Concordant and discordant pairs
 R relevant docs for a given query
 Search engine creates ranking which lists

them at ranks
 Ideal system creates ranking that lists all

good docs before any bad doc
 But keeps relative order with good and bad

unaffected

 Say Q discordant pairs between these two

22

Relating ranks pi and discordant pairs Q
 Account for Q as follows: First consider the relevant

document at position p1 in rengine. Because it has
been pushed out from position 1 to position p1, the
number of inversions introduced is p1−1.

 For the document at position p2 in rengine, the number
of inversions introduced is p2−1−1, the last “−1”
thanks to having the first relevant document ahead
of it.

 Summing up, we get

23

Average precision
 “Informational” queries
 High-ranking relevant hits matter a lot
 But user continues exploring (with increasing

satiation or fatigue)
 Accrues reward for each additional relevant

doc, but reward decreases with rank (fatigue)
 Fix one query, suppose there are R relevant

documents at ranks
 Precision at rank pi is (i/pi)

 Over all relevant ranks:
24

Bounding average precision given Q
 If Q is small, average precision must be large
 Minimize average precision subject to Q
 Relax integer rank and inequalities among pi

 From which we get

25

Normalized discounted cumulative gain
 Fix query q
 Relevance level of document ranked j wrt q be rq(j)
 rq(j)=0 means totally irrelevant
 Response list is inspected up to rank L
 Discounted cumulative gain for query q is

 Zq is a normalization factor that ensures the perfect
ordering has NDCGq = 1

 Overall NDCG is average of NDCGq over all q
 No notion of recall, only precision at low ranks

gain

rank discount

cumulative

normalized

26

This is all fine, but…
 …how does a search and ranking system

optimize one or more of these criteria?
 Early IR systems—time-tested heuristics

• Coming up next

 Later, some probabilistic justification
• Will visit when we study corpus models

 Then, direct optimization based on machine
learning
• After we cover a bit of ground on basic ML

27

The “vector space model”

28

Why length
normalization
?

Comparing query to docs

29

the
spoke

enzyme

query

document

TFIDF representation

30

Property of
IDF?

TFxIDF representation

31

• Multiply TF and IDF together

• Raw ‘length’ of doc

• Normalize to final vector components

• Queries rarely repeat words, only TF?

• Double-include IDF for doc and query?

Query processing using inverted lists

How exactly does TFIDF retrieval happen
using inverted lists?
Interested in top-k documents only

Speed up using various pruning and termination
heuristics

A general framework started by Fagin et al.
Worst case (pessimistic) guarantees

Depends on posting list ordering

Later, probabilistic bounds
Incorrect ranking with small probability

Basic TFIDF vector space scoring

(Assume no phrases or Boolean clauses)

Init empty accumulator map: score[docid]

In decreasing IDF order of query words t
Scan posting list for word to get (x, TF(x,w))

score[x] += TF(x,w) * IDF(w)

Divide each score[x] by (function of) length of x
(implement cosine)

Many score accumulators, need top-k docids

Partial sort (how?) and report top-k

Where is time spent?

For queries with relatively rare terms
Accumulator management

Sparse or dense map?

For queries with some frequent terms
Bit processing for decompressing postings

Arithmetic to update accumulators

Wasted effort in computing scores to throw away

You can’t really afford (updating) a billion
accumulators for 300 million queries a day
Be sloppy when no one is looking

Score/impact ordering
• Thus far we have ordered postings by

document ID…

• … which are assigned arbitrarily

• For any query we must scan to the end of
posting lists

• Because the best doc may be at the end

• Instead we can order postings by
decreasing impact: how much the doc’s
score can be affected by that term

• Docs in different order in different lists 

35

Quit and continue heuristics
Quit: Once |score| exceeds some size just quit

and report answers
Continue: Stop creating new score

accumulators but continue processing and
accumulating scores for remaining words

Critical to process in decreasing IDF order
Quit is crude but continue is reasonable
Prescale by document length to avoid final

division (that can upset many ranks)
Could destroy compressibility of index
Limited precision doc lengths (6 bits adequate)

Quit, continue, prune

IDF-ordered quit
heuristic

Impact-ordered
continuation and/or

pruning heuristic

http://resources.mpi-inf.mpg.de/d5/teaching/ws11_12/irdm/slides/

http://resources.mpi-inf.mpg.de/d5/teaching/ws11_12/irdm/slides/

Term impact
Worth/impact of updating accumulator of x in

response to word w depends on
Term frequency TF(x,w)
Inverse document frequency IDF(w)
(Function of) document length L(x)

Store TF(x,w) IDF(w) / L(x)
= “term impact”
Quantize to b bits
Uniform/geometric?

Effect on retrieval
accuracy and
index size

TREC

Web

TREC,
precision
at rank 10

%corpus

Term impact order -- results

Formalize as branch and bound

Cartesian space D1×D2×…Dm

m-dimensional data points and queries

Similarity function si: Di × Di  [0,1] for each
dimension

Global similarity = aggr_i si(q,d)

Sorted access to each dimension in order of si
as in impact-sorted IR
We are lucky that queries are composed of terms

What if they were term pairs? Small graphs?

Keep ub and lb on scores of candidate points

Generic pseudocode
i ranges

over dims

Any future
record will

have a lower
score

Explored
dimensions

of item d

Upper bound

LB assuming
all else are

zeros

Eviction

Note: need to
fully evaluate
winner scores

Some properties
worstscore(q,d) s(q,d) bestscore(q,d)

aggr(worstscore(q,d), aggr{high_i|iE(d)}) =
bestscore(q,d)

Test bestscore(q,d) < min_k may be conservative

 scan depth

bestscored

worstscored

min-k

score

δ(dd)

drop d
from the
candidate
queue

Guaranteed vs. probabilistic pruning
Guaranteed to be correct:

If min_k > bestscore(q,d) drop d

More adventurous drop test:

How to guess this?

bestscored

worstscored

min-k

δ(dd)

() () ()
() () ()i i i

i E d i E d i E d
s d s d s d high

  

    

() ()
() : () () mini i k

i E d i E d
p d P s d s d

 

 
   
  

  

()
() () ()i

i E d
p d P s d d



 
  
  

 

Model distributions over each dimension

Conditioned on seeing latest value high_i
Remaining distribution bounded in [0,high_i]

For two random variables S1 and S2

Density functions f1(dx)=1/high1 and f2(dx)=1/high2

Consider convolution

Each factor is non-zero in 0  z  high1 and 0  x-z  high2

  copious case differentiations

Instead, consider moment-generation functions

Of the form

Consider convolution

Apply Chernoff-Hoeffding bounds

Guessing the remaining accumulation

1 20() () ()xf x f z f x z dz 

0() ()s sSsx i
i iM s e f x dx E e  

  


() ()iiM s M s

0inf { ()}s
i i sP S e M s 

   

	Relevance Ranking
	Ranked retrieval
	The need for relevance ranking
	Problem with Boolean search: feast or famine
	Ranked retrieval models
	Scoring as the basis of ranked retrieval
	Feast or famine: not a problem in ranked retrieval
	Eye tracking study on search results
	Yahoo, MSN, Google
	Eye tracking summary
	Forms of supervision
	Loss and reward
	Losses and rewards, cont’d
	Losses and rewards, cont’d
	Binary relevance
	Recall and precision
	Recall-precision tradeoff
	Mean reciprocal rank (MRR)
	ROC curve
	Area under ROC curve (AUC)
	Another AUC example
	Concordant and discordant pairs
	Relating ranks pi and discordant pairs Q
	Average precision
	Bounding average precision given Q
	Normalized discounted cumulative gain
	This is all fine, but…
	The “vector space model”
	Comparing query to docs
	TFIDF representation
	TFxIDF representation
	Query processing using inverted lists
	Basic TFIDF vector space scoring
	Where is time spent?
	Score/impact ordering
	Quit and continue heuristics
	Quit, continue, prune
	Term impact
	Term impact order -- results
	Formalize as branch and bound
	Generic pseudocode
	Some properties
	Guaranteed vs. probabilistic pruning
	Guessing the remaining accumulation

