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The world of IR before learning to rank

I Documents, queries represented in the vector space model

I Term frequency TF, (inverse) document frequency IDF

I Cosine match and BM25 match

BM25(q, d) =
∑
term t

IDF(t) TF(t, d) (a+ 1)

TF(t, d) + a
(

1− b+ b length(d)
length

)
where length is the average doc length

I You wouldn’t have guessed this form overnight!

I a, b tuned by hand

I Elegant post-facto theory
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Ranking in Web search

I User query q, Web pages {v}
I (q, v) can be represented with a rich feature vector

I Text match score with title, anchor text, headings, bold
text, body text, . . . , of v as a hypertext document

I Exact phrase match, URL match, product/service catalog
match

I Pagerank, topic-specific Pageranks, personalized Pageranks
of v as a node in the Web graph

I Estimated location of user, commercial intent, . . .

I Prior click stats for same/similar queries

I Must we guess the relative importance of these features?

I How to combine these into a single scoring function on
(q, v) so as to induce a ranking on {v}?
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Ranking for ad and link placement

I Here, the “query” is the surfer’s contextual information

I More noisy than queries, which are noisy enough!

I Plus page and site contents

I A response is an ad to place, or a link to insert

I Must rank and select from a large pool of available ads or
links
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Ranking in desktop search

I The Web has only a few kinds of hyperlinks: same-host
subdirectory, same-host superdirectory, same-host
across-path, different-host same-domain, different-domain
etc.

I Often differentiated by hardwired policy, e.g, HITS
completely ignores same-host links

I Entity-relationship (ER) graphs are richer

I E.g. A personal information management (PIM) system has
many node/entity types (person, organization, email, paper,
conference, phone number) and edge/relation types
(works-for, sent, received, authored, published-in)

I Ranking needs to exploit the richer type system

I Don’t want to guess the relative importance of edge types
(may be dependent on queries)
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Desktop/enterprise search example

Journal editor J must find reviewer R from a company for a
submitted paper P

I P shares words with papers P ′ written by R

I P cites papers P ′ written by R

I R works for organization O is-a company

I R and J have exchanged many emails

XML

index

holistic
hasWord hasWord

cites worksFor

wrote
sent

received

wrote
companyisA

P P′ R

J
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Relevance feedback for ranking in graphs

I Relevance feedback is well-explored in traditional IR

I User-assisted local modification of ranking function for
vector-space models

I How to extend these to richer data representations that
incorporate entities, relationship links, entity and relation
types?

I Surprisingly unexplored area
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Preliminaries

I Training and evaluation scenarios

I Measurements to evaluate quality of ranking
I Label mismatch loss functions for ordinal regression
I Preference pair violations
I Area under (true positive, false positive) curve
I Average precision
I Rank-discounted reward for relevance
I Rank correlations

I What’s useful vs. what’s easy to learn
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Ranking in vector spaces

Instance v is represented by a feature vector xv ∈ Rd

I Itemwise, pairwise, listwise paradigms

I Regression, gradient boosting

I Discriminative max-margin ranking (RankSVM)

I Linear-time max-margin approximation

I Probabilistic ranking in vector spaces (RankNet)

I Sensitivity to absolute rank and cost of poor rankings

I Max-margin and conditional listwise approaches

I Local learning for query classes (navigational, informational)

I Diversity in ranking
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Ranking in graphs

Instance v is a node in a graph G = (V,E)

I The graph-Laplacian approach
I Assign scores to nodes to induce ranking
I G imposes a smoothness constraint on node scores
I Large difference between neighboring node scores penalized

I The Markov walk approach
I Random surfer, Pagerank and variants; by far most popular

way to use graphs for scoring nodes
I Walks constrained by preferences
I How to incorporate node, edge types and query words

I Connections between the two approaches
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Forms of training input
Regression: For each entity x, an absolute real score y

(unrealistic to expect users to assign absolute scores)

Ordinal regression: For each entity x, a score y from a
discrete, ordered domain, such as a r-point scale
(implemented in many sites like Amazon.COM)

Bipartite ranking: Ordinal regression with r = 2

Pairwise preferences: A (possibly inconsistent) partial order
between entities, expressed as a collection of “u ≺ v”
meaning “u is less preferred than v” (low cognitive load on
users, can be captured from click-logs and eye-tracking
data)

Complete rank order: A total order on the entities but no
scores (highly impractical for large entity sets)

Prefix of rank order: A total order on the top-k entities,
meaning that all the other entities are worse (iffy)
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Evaluation of ranking algorithms

Error on score vectors: In case of standard regression, if f̂ is
the score assigned by the algorithm and f is the “true
score”, measure ‖f̂ − f‖1 or ‖f̂ − f‖2.

Ordinal reversals: If yu > yv and f̂(u) < f̂(v) then u and v
have been reversed. Count the number of reversed pairs.

Precision at k: For a specific query q, let T qk and T̂ qk be the

top-k sets as per f and f̂ scores. The precision at k for
query q is defined as |T qk ∩ T̂

q
k |/k ∈ [0, 1]. Average over q.

Relative aggregated goodness (RAG): For a specific query q,

RAG(k, q) =

∑
v∈T̂ q

k
f(v)∑

v∈T q
k
f(v)

∈ [0, 1]

Note that f̂ is not used! Average over q.
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Evaluation of ranking algorithms (2)

Mean reciprocal rank (MRR): For each query there is one or
more correct responses. Suppose for specified query q, the
first rank at which a correct response occurs is R(q). Then
MRR is

1

|Q|
∑
q∈Q

1

R(q)

Normalized discounted cumulative gain (NDCG): For a
specific query q,

Nq

k∑
i=1

2rating(i) − 1

log(1 + i)

Here Nq is a normalization factor so that a perfect
ordering gets NDCG score of 1 for each query, k is the
number of top responses considered, and rating(i) is the
evaluator rating for the item returned at position i.
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Evaluation of ranking algorithms (3)

Pair preference violation: If u ≺ v and f̂(u) > f̂(v) a pair has
been violated. Count the number of pair violations.

Rank correlation: Order entities by decreasing f(u) and
compute a rank correlation with the ground truth ranking.
Impractical if a full ground truth ranking is expected.

Prefix rank correlation: Let exact and approximate scores be
denoted by Skq (v) and Ŝkq (v) respectively for items v,

where the scores are forced to zero if v 6∈ T qk and v 6∈ T̂ qk .

A node pair v, w ∈ T qk ∪ T̂
q
k is concordant if

(Skq (v)− Skq (w))(Ŝkq (v)− Ŝkq (w)) is strictly positive, and
discordant if it is strictly negative. It is an exact-tie if
Skq (v) = Skq (w), and is an approximate tie if

Ŝkq (v) = Ŝkq (w). If there are c, d, e and a such pairs
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Evaluation of ranking algorithms (4)

respectively, and m pairs overall in T qk ∪ T̂
q
k , then Kendall’s

τ is defined as

τ(k, q) =
c− d√

(m− e)(m− a)
∈ [−1, 1].

Average over q.

I Theoretically sound and scalable rank learning techniques
typically address simpler evaluation objectives

I Designing learning algorithms for the more complicated,
non-additive evaluation objectives is very challenging

I Sometimes, we are lucky enough to establish a connection
between the two classes of objectives
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Area under the curve (AUC)
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I Good = 1, bad = 0

I For perfect ordering 1, 1, 0, 0, 0 plot passes through
(1, 0), (1, 1), (2, 1), (2, 2), (3, 2), (4, 2), (5, 2)

I For imperfect ordering 0, 1, 0, 1, 0, plot passes through
(1, 0), (2, 0), (2, 1), (3, 1), (4, 1), (4, 2), (5.2)

I Area between two plots related to number of pair inversions
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Bipartite ranking and AUC
I In bipartite ranking labeled data is of the form (x, y) where
y ∈ {−1, 1}

I Algorithm orders instances by decreasing f(x)
I For i = 0, 1, . . . , n

I Assign label +1 to the first i instances
I Assign label −1 to the rest
I True positive rate at i

number of positive instances labeled positive

number of positive instances

I False positive rate at i

number of negative instances labeled positive

number of negative instances

I Plot y = TruePosRate vs. x = FalsePosRate

I Measure area under curve
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AUC and pair preference violations

I m positive and n negative examples

I Area under curve (AUC) using f for ranking can also be
written as

Â(f, T ) =
1

mn

∑
i:yi=+1
j:yj=−1

(
[[f(i) > f(j)]] +

1

2
[[f(i) = f(j)]]

)
where T is the training set

I The important part is the fraction of satisfied pair
preferences between positive and negative instances

I Optimizing AUC is different from optimizing 0/1 error

yi −1 −1 −1 −1 +1 +1 +1 +1
f1(xi) −2 −1 3 4 1 2 5 6
f2(xi) −2 −1 5 6 1 2 3 4
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Concordant and discordant instance pairs

I Suppose there are R relevant documents in response to a
query

I The search engine creates a ranking rengine which lists them
at ranks p1 < p2 < · · · < pR

I An ideal system creates a ranking rideal that lists all relevant
documents before any irrelevant document

I But keeps the relative ordering within the relevant and
irrelevant subsets the same

rengine = d+1 , d
−
2 , d

+
3 , d

+
4 , d

−
5 , d

−
6 , d

+
7 , d

−
8

rideal = d+1 , d
+
3 , d

+
4 , d

+
7 ; d−2 , d

−
5 , d

−
6 , d

−
8

I Let there be Q discordant pairs in rengine compared to rideal
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Relating ranks and discordant pairs

I Account for Q as follows: First consider the relevant
document at position p1 in rengine. Because it has been
pushed out from position 1 to position p1, the number of
inversions introduced is p1 − 1.

I For the document at position p2 in rengine, the number of
inversions introduced is p2 − 1− 1, the last “−1” thanks to
having the first relevant document ahead of it.

I Summing up, we get
R∑
i=1

pi − 1− (i− 1) = Q, or

R∑
i=1

pi = Q+
R∑
i=1

i = Q+
R(R + 1)

2
= Q+

(
R + 1

2

)
.
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Average precision

I The average precision of rengine wrt rideal is defined as

AvgPrec(rengine, rideal) =
1

R

R∑
i=1

i

pi

I Like NDCG, average precision rewards the search engine if
all pi are as small as possible

I Intuitively, if Q is small, AvgPrec(rengine, rideal) should be
large.

I This can be formalized by framing an optimization problem
that gives a lower bound to AvgPrec(rengine, rideal) given a
fixed Q (and R)

Soumen Chakrabarti 21



Bounding average precision given Q

I To lower bound average precision, optimize:

min
p1,...,pR

1

R

R∑
i=1

i

pi
such that

p1 + · · ·+ pR = Q+

(
R + 1

2

)
1 ≤ p1 < p2 < · · · < pR

p1, . . . , pR are positive integers

I Relaxing the last two constraints can only decrease the
optimal objective, so we still get a lower bound

I The relaxed optimization is also convex because 1/pi is
convex in pi, as far as pi is concerned the numerator i is a
“constant”, and sum of convex functions is convex
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Solving the relaxed optimization

I Using the Lagrangian method, we get

L(p1, . . . , pR;λ) =
1

R

R∑
i=1

i

pi
+ λ

(
R∑
i=1

pi −Q−
(
R + 1

2

))

∴
∂L
∂pi

= − i

Rp2i
+ λ

set
= 0 to get p∗i =

√
i

Rλ
.

I Replace back in the Lagrangian, set the derivative wrt λ to
zero, and again substitute in the Lagrangian to get the
optimal objective (in the relaxed optimization) as

AvgPrec(rengine, rideal) ≥

(∑R
i=1

√
i
)2

R
(
Q+

(
R+1
2

))
I Q and the lower bound on average precision are inversely

related, which makes sense.
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Broad learning techniques

Itemwise: For query q, each feature vector xqi has an
associated relevance zqi ∈ R.

I Try to learn a regression f from xqi to zqi
I Ordinal regression, McRank
I Loss may look like

∑
i(f(xqi)− zqi)2

Pairwise: For query q, try to learn to order document pairs
i, j, i.e., whether i ≺q j or j ≺q i
I RankSVM, RankNet, RankBoost
I Loss may look like

∑
g,b~f(xqg) < f(xqb)�

Listwise: For each query q, try to make a structured prediction
of the ideal permutation yq of documents, given all their
feature vectors xq. SVMauc, SVMmap, DORM, . . .
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Warmup: standard regression

I Inputs X ∈ Rn×d and y ∈ Rn

I Want w ∈ Rd to minimize ‖Xw − y‖2
I Equivalently minimize (Xw − y)>(Xw − y) wrt w

I Objective simplifies to w>X>Xw − 2w>X>y + const.

I Setting derivative wrt w to 0, we get ŵ = (X>X)−1X>y

I Linear least square fit

I What if (X>X)−1 does not exist?

I Regularize the objective

I One popular option is to add 1
2
λw>w

I Solution changes to w̃ = (X>X + λI)−1X>y
I May instead add λ‖w‖1
I Quadratic program, gives sparse w
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Ordinal regression

I Items assigned ratings on a discrete r-point scale, e.g.,
items for sale at Amazon.COM

I The task is to regress instance x ∈ X to label y ∈ Y where
Y is typically small

I Bipartite ranking is a special case with |Y| = 2 so we can
write Y = {−1,+1}

Ordinal regression is different from plain classification because

I Unlike in classification, where labels in Y are incomparable,
here they have a total order imposed on them. (In standard
regression, Y = R.)

I The accuracy measures of practical interest here are
different from those (0/1 error, recall, precision, F1) used in
classification.
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Max-margin ordinal regression

I Apart from β, we will optimize over r − 1 thresholds

−∞ = b0 ≤ b1 ≤ b2 ≤ · · · ≤ br−2 ≤ br−1 ≤ br = +∞
I Let j ∈ {1, . . . , r} index score levels, and the ith instance in

the j level be denoted xji
I We wish to pick β such that, for any xji ,

bj−1 < β>xji < bj

I Using the max-margin principle, we will insist that

bj−1 + 1 < β>xji < bj − 1
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Max-margin ordinal regression (2)

I To avoid infeasibility, introduce lower slacks sji ≥ 0 and
upper slacks sji ≥ 0, and relax the above inequalities to

bj−1 + 1− sji ≤ β>xji ≤ bj − 1 + sji

b
1
-1 b

1
b
1
+1 b

2
-1 b

2
b
2
+1

β¨x

1

is

1

is

2

is

2

is

1=y 2=y 3=y

I The objective to minimize is modified to

min
β,b,s≥~0,s≥~0

1
2
β>β +B

∑
j,i

(sji + sji ),
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Max-margin ordinal regression (3)

I Yet another quadratic program with linear inequalities

I Training time scales roughly as n2.18–2.33 where n is the
number of training instances

I More accurate than replacing ordinal regression with plain
regression
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Regression trees

I A regression tree maps xqi ∈ Rd to R, trying to learn a
function

I Rd chopped up using successive guillotine cuts into
(possibly open) hyper-rectangles

I Tree node corresponds to hyper-rectangle and a cut leading
to children

I Within each leaf node, function is approximated with a
constant value
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Encoding the ranking problem

I We will use a unary representation of the K target relevance
scores zi ∈ {0, 1, . . . , K − 1}, using a bit vector

yik =

{
1, zi = k,

0, otherwise

I We will regard yik as some kind of Pr(Zi = k|xi)
I For each k = 0, 1, . . . , K − 1, we will build a module which,

given xi, will output a real number Fk(xi)

I We will then set empirical probabilities

pik =
exp(Fk(xi))∑
κ exp(Fκ(xi))

,

as in logistic regression

I We will say that ps are functions of F , denoted p(F )

I The purpose of training is to bring pik close to yik
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Loss function, training and testing

I A reasonable loss objective to minimize is

loss(y, F ) =
∑
i

∑
k

−yik log pik. (1)

I We will train the modules in stages numbered
m = 0, 1, . . . ,M − 1

I Specifically, in the mth stage we will train K regression
trees Tmk, k = 0, . . . , K − 1

I When instance x is submitted to tree Tmk, we get output
f
(m)
k (x) from the tree

I For training instance x = xi, shorthand f
(m)
k (xi) with f

(m)
i,k .
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Greedy training

I After all trees are trained, we will regard the response for
input x to be

Fk(x) =
∑

0≤m<M

f
(m)
k (x);

equivalently, we can write the recurrence

F
(0)
k (x) = 0

F
(m)
k (x) = F

(m−1)
k (x) + f

(m)
k (x).

I As we increment m, we will greedily optimize f using the
gradient of the loss (1)
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Gradient boosting

I In other words, we will set

f
(m)
k (x) = −ηmk

[
∂ loss(y, F )

∂Fik

]
F=F (m−1)

= ηmk

[∑
ı

∑
κ

yıκ
∂ log pıκ
∂Fik

]
F=F (m−1)

which can be verified to be ηmk(yik − pik) HW

I Here ηmk is a suitable step size
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Step size

I Suppose regression tree Tmk has leaf nodes indexed by l

I Let “i : xi ∈ Tmkl” denote the set of training instances that
belong to leaf l in tree Tmk

I Then we should use

ηmkl = arg min
η

∑
i:xi∈Tmkl

−yik log p(F
(m−1)
k (xi) + η)

I No closed form

I Friedman’s approximation [2]:

ηmkl =
K − 1

K

∑
i:xi∈Tmkl

(yik − pik)∑
i:xi∈Tmkl

|yik − pik(F (m))| (1− |yik − pik(F (m))|)
(2)
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McRank pseudocode

1: F
(0)
ik ← 0 for all instances i, class labels k

2: for m = 1, 2, . . . ,M − 1 do
3: pik ← exp(F

(m−1)
ik )/

∑
κ exp(F

(m−1)
iκ ) for all i, k

4: for k = 0, 1, . . . , K − 1 do
5: induce regression tree Tmk on (xi, yik − pik) over

all instances i
6: for leaf l in Tmk do
7: calculate step size ηmkl as in (2)
8: update
F

(m)
ki ← F

(m−1)
ki +

∑
l∈Tmk

ηmkl[[xi ∈ Tmkl]]
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Ranking to satisfy preference pairs

I Suppose x ∈ X are instances and φ : X → Rd a feature
vector generator

I E.g., x may be a document and φ maps x to the “vector
space model” with one axis for each word

I The score of instance x is β>φ(x) where β ∈ Rd is a weight
vector

I For simplicity of notation assume x is already a feature
vector and drop φ

I We wish to learn β from training data ≺: “i ≺ j” means
the score of xi should be less than the score of xj, i.e.,

β>xi ≤ β>xj
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Soft constraints

I In practice, there may be no feasible β satisfying all
preferences ≺

I For constraint i ≺ j, introduce slack variable sij ≥ 0

β>xi ≤ β>xj+sij
I Charge a penalty for using sij > 0

min
sij≥0;β

1

|≺|
∑
i≺j

sij subject to

β>xi ≤ β>xj+sij for all i ≺ j
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A max-margin formulation
I Achieve “confident” separation of loser and winner:

β>xi+1 ≤ β>xj + sij
I sij ≥ 0 and sij ≥ 1− (β>xj − β>xi) together mean
sij ≥ max{0, 1− (β>xj − β>xi)}

I Because of
∑

i≺j sij term in objective, optimizer will pick

sij = max{0, 1− (β>xj − β>xi)}
I If β>xi ≥ β>xj, sij ≥ 1

I I.e.,
∑

i≺j sij is an upper bound on the number of violated
training pair preferences

I Problem: Can achieve this by scaling β arbitrarily; must be
prevented by penalizing ‖β‖

min
sij≥0;β

1

2
β>β+

B

|≺|
∑
i≺j

sij subject to

β>xi+1 ≤ β>xj + sij for all i ≺ j
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A max-margin formulation (2)

I B is a magic parameter that balances violations against
model strength
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Solving the optimization

I β>xi + 1 ≤ β>xj + sij and sij ≥ 0 together mean
sij = max{0, β>xi − β>xj + 1} (“hinge loss”)

I The optimization can be rewritten without using sij

min
β

1

2
β>β +

B

|≺|
∑
i≺j

max{0, β>xi − β>xj + 1}

I max{0, t} can be approximated by a number of smooth
functions
I et – growth at t > 0 too severe
I log(1 + et) – much better, asymptotes to y = 0 as t→ −∞

and to y = t as t→∞
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Approximating with a smooth objective

I Simple unconstrained optimization, can be solved by
Newton method

min
β∈Rd

1

2
β>β +

B

|≺|
∑
i≺j

log(1 + exp(β>xi − β>xj + 1))

I If β>xi − β>xj + 1� 0, i.e., β>xi � β>xj, then pay little
penalty

I If β>xi − β>xj + 1� 0, i.e., β>xi � β>xj, then pay large
penalty
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Performance issues

I Common SVM implementations will take time almost
quadratic in the number of training pairs

I Consider a TREC-style relevance judgment: for each query,
we are given, say, 10 relevant and (implicitly) 1M− 10
irrelevant documents

I Don’t really need to train RankSVM with 10M xi ≺ xj pairs

I E.g., if β>x0 ≤ β>x1 and β>x0 ≤ β>x2, then
β>x0 ≤ λβ>x1 + (1− λ)β>x2 for λ ∈ [0, 1]

I Cannot, in general, say ahead of time which preferences will
be redundant
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A probabilistic interpretation of “ranking loss”

I Apart from xi ≺ xj, trainer gives target probability p̄ij with
which trained system should rank i worse than j

I The score of xi is f(xi) ∈ R; f(xi) induces a ranking on
{xi}

I The modeled posterior pij is assumed to have a familiar
log-linear form

pij =
exp(f(xj)− f(xi))

1 + exp(f(xj)− f(xi))

I If f(xj)� f(xi), pij → 1; if f(xj)� f(xi), pij → 0

I Goal is to design f to minimize divergence between
trainer-specified p̄ and modeled p, e.g.,

`(p̄ij, pij) = −p̄ij log pij − (1− p̄ij) log(1− pij)
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Consistency requirements on p̄ij

I Trainer cannot assign p̄ij arbitrarily

I p̄ij must be consistent with some ideal node-scoring
function f̄ such that

p̄ij =
exp(f̄(xj)− f̄(xi))

1 + exp(f̄(xj)− f̄(xi))
I Using above, can show that

p̄ik =
p̄ij p̄jk

1 + 2p̄ij p̄jk − p̄ij − p̄jk
I Consider p̄ik if p̄ij = p̄kj = p, in particular p = 0, .5, 1

I Perfect uncertainty and perfect certainty propagate
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Fitting f using gradient descent

I Model f(xi) = β>xi for simplicity

I During training we are given (i ≺ j with) a target p̄ij
I We want to fit β so that

p̄ij =
exp(β>xi − β>xj)

1 + exp(β>xi − β>xj)
I We can cast this as, say,

min
β

∑
i≺j

(
p̄ij −

exp(β>xi − β>xj)
1 + exp(β>xi − β>xj)

)2

and use gradient descent

I Or we can use more complex forms of f(x), like a neural
network
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RankBoost
I Given partial orders with preference strengths φ(i, j) ≥ 0: if

positive, i � j, otherwise impartial

I Input pair distribution D over X × X
I Weak learner indexed by t gets input pairs as per a

distribution Dt and outputs a weak ranking ht : X → R
I Initialize D1 = D
I For t = 1, . . . , T

I Train tth weak learner using Dt
I Get weak ranking ht : X → R
I Choose αt ∈ R
I Update

Dt+1(xi, xj) ∝ Dt(xi, xj) exp
(
αt(ht(xi)− ht(xj))

)
while scaling by Zt+1 =

∑
i,j · · ·

I Final scoring function H(x) =
∑T

t=1 αtht(x)
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Some properties of RankBoost

I The ranking loss RD(H) is defined as∑
xi,xj

D(xi, xj)[[H(xi) ≤ H(xj)]] = Pr(xi,xj)∼D[[H(xi) ≤ H(xj)]]

I RD(H) ≤
∏T

t=1 Zt
I By suitably choosing αt we can ensure Zt ≤ 1

I E.g., if h : X → {0, 1}, we can minimize Zt analytically:
I For b ∈ {−1, 0,+1}, define

Wb =
∑
xi,xj

D(xi, xj)[[h(xi)− h(xj) = b]]

I Zt is minimized when α = 1
2 ln(W−1/W+1) HW
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Potential limitations of pairwise loss
I Loss is the number of pair violations
I Take an “ideal” ranking and swap docs at 45 and 56 —

hardly anyone cares
I Swap docs at 2 and 12 — big difference! —How to model?
I Loss no longer additive over items or pairs
I Loss is a function of permutation induced by scoring model
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A linear-time RankSVM approximation

I The primal optimization can be reformulated as

min
β,s≥0

1

2
β>β +Bs such that (RankSVM2)

∀~c ∈ {0, 1}|≺| : 1

|≺|
β>
∑
u≺v

cuv(xv − xu) ≥
1

|≺|
∑
u≺v

cuv − s

I Only one slack variable s, but 2|≺| primal constraints and
corresponding 2|≺| dual variables

I (But if most primal constraints are redundant, most dual
variables will be inactive, i.e., 0)

I Compare with

min
β,{suv≥0:u≺v}

1

2
β>β +

B

|≺|
∑
u≺v

suv (RankSVM1)

such that ∀u ≺ v : β>xu + 1 ≤ β>xv + suv
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Correctness

Any solution to (RankSVM2) corresponds to a solution to
(RankSVM1), and vice versa

I Fix a β0 in (RankSVM1)

I For optimality, must pick s∗uv = max{0, 1 + β>0 xu − β>0 xv}
I Fix the same β0 for (RankSVM2)

I For optimality, must pick

s∗ = max
~c∈{0,1}|≺|

{
1

|≺|
∑
u≺v

cuv
(
1 + β>0 xu − β>0 xv

)}
I Pick ~c element-wise: c∗uv = [[1 + β>0 xu − β>0 xv ≥ 0]]

I In other words, if u ≺ v is not given adequate margin it’s a
violation, so set cuv = 1

I Otherwise β0 satisfies u ≺ v with a margin, so set cuv = 0
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Correctness (2)

I Can verify HW that objectives of (RankSVM1) and
(RankSVM2) will be equal using β0, {s∗uv}, s∗, {c∗uv}

I However, starting from d+ |≺| variables and 2|≺|
constraints, we now have d+ 1 variables but 2|≺| + 1
constraints

I Next: how to avoid asserting all the constraints
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Cutting plane method: General recipe
I Primal: minx f(x) subject to g(x) ≤ ~0 (g is a vector-valued

function)

I Dual:

max
z,u

z

subject to z ≤ f(x) + u>g(x) ∀x
u ≥ 0

I “∀x” is generally infinite

I Let zk, uk be a solution

I Find minx f(x) + u>k g(x), let solution be xk
I If zk ≤ f(xk) + u>k g(xk), terminate

I Otherwise add kth constraint z ≤ f(xk) + u>g(xk)

I To approximate and terminate faster, continue only if
zk > f(xk) + u>k g(xk) + ε
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Gradual dual variable inclusion
I Instead of all {0, 1}|≺|, start with W ⊂ {0, 1}|≺|, typically
W = ∅

I Solve (RankSVM2) with W instead of {0, 1}|≺| to get the
current β0, s

∗

I Look for a violator c∗ such that
1

|≺|
β>0
∑
u≺v

c∗uv(xv − xu) <
1

|≺|
∑
u≺v

c∗uv − s∗ − ε

I If no such c∗ found, exit with an objective that is at most
the optimal objective plus ε

I Otherwise add c∗ to W and repeat

I For fixed (constant) ε, B and max ‖xv‖2, the number of
inclusions into W before no further c∗ is found is constant

I Each loop above can be implemented in O(n log n) vector
operations in Rd where all xv ∈ Rd
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Linear-time (RankSVM2) performance

I Almost linear scaling in
practice too

I Dramatic improvement over
(RankSVM1)

I (RankSVM1) scales roughly
as n3.4 (not shown)

) SVM-Perf (Ord. Regr.)
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General listwise training recipe
I For each query q, we know feature vectors xq
I And ideal ranking, represented as y∗q
I Define a loss function ∆(y∗q , y) ≥ 0

I Define a feature map φ(x, y)

I Solve the optimization

min
ξ≥~0;w

w>w +B
∑
q

ξq s.t.

∀q,∀y 6= y∗q : w>φ(xq, y
∗
q )− w>φ(xq, y) ≥ ∆(y∗q , y)− ξq

using a cutting plane technique

I Key is to design a good φ and then design an algorithm for

arg max
y
w>φ(xq, y) + ∆(y∗q , y)

I After model w is trained, for test queries, predict
arg maxy w

>φ(xq, y)
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Listwise training for AUC
I AUC is directly related to the number of violated pair

preferences

I g is a good (relevant) document; b is a bad (irrelevant)
document

I Encode y and ∆AUC as follows:

ygb =

{
1, if g is before b,

−1, if g is after b

AUC(y) =
1

n+n−

∑
g,b

1 + ygb
2

,

so ∆AUC(y∗, y) =
1

n+n−

∑
g,b

1− ygb
2

I Here n+ (n−) is the number of good (bad) documents for
the given query
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Feature map for AUC

I A natural feature map is

φ(x, y) =
1

n+n−

∑
g,b

ygb(xg − xb)

I Note that at test time, for query q, it suffices to sort
documents in decreasing order of w>xqi to maximize
w>φ(xq, y) over y HW
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Argmax for cutting plane AUC training

I Goal of argmax subroutine at training time is to

arg max
y
w>φ(x, y) + ∆AUC(y∗, y)

= arg max
y

∑
g,b

ygb(w
>xg − w>xb) +

∑
g,b

1− ygb
2

= arg max
y

∑
g,b

ygb
(
w>xg − w>xb − 1

2

)
I Can optimize each ygb separately:

yg,b =

{
1, if w>xg − w>xb − 1

2
> 0,

−1, otherwise

i.e., yg,b = sign(w>xg − w>xb − 1
2
)

I Can find an implicit representation of the best y in
O(n log n) time, where n = n+ + n−
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MRR is simpler than AUC

I Recall MRR is reciprocal of rank of first good doc

I 1, 1/2, 1/3, 1/k, 0 only possible values of ∆mrr

I For a given value of MRR, say 1/r, first good doc must be
at rank r

I For a given configuration b, . . . , b︸ ︷︷ ︸
r−1

, g︸︷︷︸
r

, ?, ?, . . .︸ ︷︷ ︸
rest

need to fill

good and bad slots to maximize w>φ

I Bad docs b at 1, . . . , r − 1 with largest w>xb
I Good doc g with smallest w>xg at position r

I Add up ∆ and w>φ for each possible ∆ and take maximum

I (MRR = 0 handled separately)
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Generic template to max w>φ + ∆

I Assume two levels of relevance zqi ∈ {0, 1}
I ∆ unchanged if two good (or bad) docs swapped

∴ There exists an optimal y that can be formed by merging
good and bad in decreasing score order

Bad docs in decreasing score order 

0 b k−1 ≥k … n−−1

G
o

o
d
 d

o
c
s
 in

 d
e
c
re

a
s
in

g
 

s
c
o

re
 o

rd
e
r 


0



g

k−1



n+−1

• gth good just before bth bad doc

• I.e., g+b docs before gth good

• Update contribs to and 

based on previous row
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Is training on “true” ∆ always best?
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MRR 0.80 0.62 0.57 0.63 0.41 0.33 0.63 0.44 0.38 0.67 0.41 0.24 0.64 0.43 0.23

NDCG* 0.82 0.64 0.58 0.60 0.40 0.31 0.61 0.49 0.40 0.69 0.46 0.27 0.62 0.44 0.26

DORM 0.81 0.64 0.58 0.59 0.36 0.29 0.47 0.34 0.30 0.66 0.41 0.24 0.62 0.44 0.25

MAP 0.81 0.64 0.59 0.62 0.41 0.31 0.61 0.50 0.41 0.70 0.47 0.28 0.64 0.45 0.27

OHSUMED TD2003 TD2004 TREC2000 TREC2001

MRR: Max mean reciprocal rank of #1 good doc

NDCG: Maximize NDCG

DORM: Ditto; Hungarian docs-to-ranks assignment
(Chapelle+ 2007)

MAP: Maximize mean average precision (Yue+ 2007)
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Hedging our (loss function) bets

What use is a library of perfect loss functions, if we have no
idea which ∆ users want?

I MRR suited for navigational queries

I MAP, NDCG suited for researching a topic

I “I’m feeling lucky” = precision at rank 1
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Train for multiple ∆s: SVMcombo

I Can a single w to do well for many ∆s?

arg minw;ξ≥~0w
>w +

∑
`C`

1
|Q|
∑

q ξ
`
q s.t.

∀`, q,∀y 6= y∗q : w>δφq(y) ≥ ∆`(y
∗
q , y)− ξ`q

` ranges over loss types NDCG, MRR, MAP, . . .

I Empirical risk (training error)
R(w,∆) = 1

|Q|
∑

q ∆(y∗q , fw(xq))

I Can show∑
`C`

1
|Q|
∑

q ξ
`
q ≥

∑
`R(w,∆`) ≥ R(w,max` ∆`)

I I.e. learning minimizes upper bound on worst loss
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AUC .799 .635 .582 .510 .349 .256 .639 .501 .420 .607 .448 .267 .632 .441 .264

MAP .808 .642 .586 .618 .411 .314 .614 .496 .412 .696 .469 .277 .636 .450 .272

NDCG .790 .636 .581 .587 .372 .302 .631 .457 .374 .517 .323 .175 .608 .356 .171

NDCG-NC .818 .640 .582 .595 .404 .306 .611 .486 .404 .685 .455 .265 .624 .443 .264

MRR .795 .623 .570 .628 .405 .330 .629 .441 .383 .670 .410 .244 .643 .426 .230

COMBO .813 .635 .578 .667 .434 .345 .647 .458 .384 .695 .465 .277 .647 .449 .272

DORM .807 .637 .583 .587 .362 .290 .474 .340 .297 .662 .413 .243 .621 .435 .250

McRank .701 .565 .527 .650 .403 .232 .588 .529 .453

TREC2001OHSUMED TD2003 TD2004 TREC2000

Test accuracy vs. training loss function

I Row: training ∆s, column: test criterion

I SVMcombo, SVMmap good across the board

I Did not tune C` yet

I Listwise ∆s better than elementwise or pairwise
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SVMndcg speed and scalability
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OHSUMED 1034 67 1102 4.8 30.6
TD2003 9730 383 10113 14.9 125
TD2004 8760 548 9308 19.1 148

SVMcombo is

I 15× faster than DORM

I 100× faster than
McRank

while being more accurate in
over 75% of data sets
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ListNet: Notation

I Queries Q = {q(1), . . . , q(m)}
I ith query associated with documents
d(i) = (d

(i)
1 , . . . , d

(i)
j , . . . , d

(i)

n(i))

I jth candidate document for ith query

I Ground truth/gold relevance judgments

y(i) = (y
(i)
1 , . . . , y

(i)
j , . . . , y

(i)

n(i))

I Feature vector x
(i)
j = Ψ(q(i), d

(i)
j ) for one doc;

x(i) = (x
(i)
1 , . . . , x

(i)
j , . . . , x

(i)

n(i)) over all candidates for
query i

I Score f(x
(i)
j ) for one doc; z(i) =

(
f(x

(i)
1 ), . . . , f(x

(i)

n(i))
)

over all candidates

I Ranking loss is
∑m

i=1 L
(
y(i), z(i)

)
where L is a listwise loss

function
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ListNet: Intuition

I To be listwise, L(y, z) must get info from sorted order over
y and z

I But sorting makes L not continuous or differentiable
everywhere wrt f (and its internal model weights)

I Instead of depending on two sorted orders by y and by z,
express loss as a sum over many/all orders

I Over every possible permutation π:
I Find (smooth) compatibility between π and y
I Ditto between π and z
I Combine these compatibilities into a smooth loss

. . . while aggregating over all possible permutations

I If this is too expensive, aggregate over only top-k positions,
and the sets of permutations consistent with top-k
assignments
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ListNet: Permutation probability

I Consider a set of n candidate docs with scores (s1, . . . , sn)

I π is a permutation over these; its probability is modeled as

Pr s(π) =
n∏
j=1

φ(sπ(j))∑n
k=j φ(sπ(k))

for a suitable transformation φ of score s

I Item score divided by sum of scores of suffix

I HW For any score s, Prs(π) > 0 for all permutations π and∑
π Prs(π) = 1

I HW If s1 > · · · > sn, then the permutation with largest
probability is (1, 2, . . . , n) and the permutation with lowest
probability is (n, n− 1, . . . , 2, 1)
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ListNet: Top-k probability
I Given docs j1, . . . , jk, top-k subgroup Gk(j1, . . . , jk) are all

permutations in which these are in the top-k positions in
that order

I Gk is the collection of all top-k subgroups; there are n!
(n−k)!

subgroups in the collection

I Top-k probability of docs (j1, . . . , jk) is the probability of
Gk(j1, . . . , jk), i.e., the total probability than a random π is
from Gk(j1, . . . , jk):

Pr s(Gk(j1, . . . , jk)) =
∑

π∈Gk(j1,...,jk)

Pr s(π)

HW Pr s(Gk(j1, . . . , jk)) =
k∏
t=1

φ(sjt)∑n
`=t φ(sj`)

HW

∑
j1,...,jk

Pr s(Gk(j1, . . . , jk)) = 1
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ListNet: Top-k probability (2)

I Given ju, jv with u 6= v, sju > sjv ,

Pr s(Gk(j1, . . . , ju, . . . , jv, . . . , jk))
> Pr s(Gk(j1, . . . , jv, . . . , ju, . . . , jk))
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ListNet: Loss and training

I Given two lists of scores: gold y and system z

I Let g ∈ Gk
I y induces a distribution over these gs, given by Pry(g)

I Likewise z induces Prz(g)

I Loss is the cross entropy between these:

L(y, z) = −
∑
g∈G

Pr y(g) log Pr z(g)

I y is fixed, z is returned by scoring function f

I f is parameterized by model weights w and can be
differentiated wrt w

I Then loss is differentiable wrt w

I Gradient descent, nonconvex
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ListNet: Performance highlights

Algorithm → ListNet RankBoost RankSVM
TREC 0.216 0.174 0.193
OHSUMED 0.305 0.297 0.297Learning to Rank: From Pairwise Approach to Listwise Approach

Figure 1.Ranking accuracies in terms of NDCG@n on TREC

Figure 2.Ranking accuracies in terms of NDCG@n on
OHSUMED

the performance measures of NDCG and MAP. By con-
trast, the listwise loss function used in the listwise ap-
proach can more properly represent the performance mea-
sures. This appears to be another reason that ListNet out-
performs RankNet, etc. To verify the correctness of the
claim, we further examined the optimization processes of
the two methods. We looked at the correlations between
the loss functions used by ListNet and RankNet and the
measure of NDCG during the learning phase. Note that the
major difference between the two methods is the loss func-
tion. The results using the TREC data are shown in Figures
4 and 5. From the figures, we can see that the pairwise loss
of RankNet does not inversely correlate with NDCG. From
iteration 20 to iteration 50, NDCG@5 increases while the
pairwise loss of RankNet decreases. However, after iter-
ation 60, NDCG@5 starts to drop, although pairwise loss
is still decreasing. In contrast, the listwise loss of ListNet
completely inversely correlates with NDCG. More specif-
ically, from iteration 20 to iteration 50, listwise loss de-
creases, NDCG@5 increases accordingly. After iteration
50, listwise loss reaches its limit, while NDCG@5 also
converges. Another point is that pairwise loss converges
more slowly than listwise loss, which means RankNet
needs run more iterations in training than ListNet. Simi-
lar trends were observed on the results evaluated in terms
of MAP.

Figure 3.Ranking accuracies in terms of NDCG@n on CSearch

Table 2.Document-pair number distribution

P N Q N
<5000 61
<10000 29
<15000 8
<20000 6
>=20000 2

We conclude that the listwise approach is more effective
than the pairwise approach for learning to rank.
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Figure 4.Pairwise loss v.s. NDCG@5 in RankNet

7. Conclusions

In this paper, we have proposed a new approach to learning
to rank, referred to as the listwise approach. We argue that
it is better to take this approach than the traditional pair-
wise approach in learning to rank. In the listwise approach,
instead of using object pairs as instances, we use list of ob-
jects as instances in learning.

The key issue for the listwise approach is to define a
listwise loss function. In this paper, we have proposed
employing a probabilistic method to solve the problem.
Specifically, we make use of probability models: permuta-
tion probability and topk probability to transform ranking
scores into probability distributions. We can then utilize
any metric between probability distributions (e.g., Cross

135

Rank →
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Local learning
I Queries q ∈ Q, good, bad documents
Dq = D+

q ∪D−q
I Query + document → feature vector xqi
I Dq interpreted as a point cloud

I Usually, learn a scoring model w

I Sort by decreasing score = w>xqi
I Diverse queries, navigational,

informational, transactional

I Different features of xqi more important
for different query clusters

∴ Same w not appropriate for all q

I How to learn local models customized to
query clusters?

I Avoid error-prone query classification
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Recent approaches

Lazy projection [9]:

I Compute PCA of test cloud

I Project all training clouds to principal directions

I Train model and apply to test cloud to rank

	 Lazy learning, impractical test-time computation

kNN query clustering [10]:

I Represent each training query q as a feature vector

I Train separate model for each q using Dq and clouds of
nearby queries

	 Training is expensive, as many models as queries

I Given test query use model of nearest training query

⊕ Reasonably fast testing
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Point cloud similarity
I How similar are queries q and q′?
I How similar are point clouds Dq and Dq′?
I Order of presenting points in Dq, Dq′ irrelevant
I Shifting and scaling clouds should not matter
I Rotation does matter
I Natural idea

I Assume each cloud generated from parametric distribution
I Estimate parameters (µ,Σ, skew) for each distribution
I Compare distributions using parameters

I Comparison methods
I Compare parameters informally (dot product etc.)
I Compute divergence: KL, Jensen-Shannon
I Compute kernel between distributions: Bhattacharyya,

Wolf-Shashua

	 Not shift- or scale- invariant

	 Can be expensive to compute
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A different point-cloud similarity proposal

I Let U = (u1, . . . , uP ) be the sequence of P principal
components of points in cloud D

I (u1, . . . , uP ) are in order of decreasing eigen value

I Start by defining similarity between clouds D and D′ as

sim(Dq, Dq′) =
1

P

P∑
p=1

u>p u
′
p

I If u is a principal component of D, then so is −u
	 If the pth p.c. of D is u and the pth p.c. of D′ is −u,
u>p u

′
p = −1, detracts from similarity

I Fix: take absolute values:

sim(Dq, Dq′) =
1

P

P∑
p=1

∣∣u>p u′p∣∣
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Properties

I Translation Invariance

sim(D,D′) = sim(D,D′ + η),

I Scale Invariance

sim(D,D′) = sim(D,αD′) ∀α 6= 0

I PCA on all query cloud takes

O
(∑

q d
2nq +

∑
q d

3
)

= O(d2
∑

q nq + d3|Q|) time where

nq = |Dq|
I Time for all pairs cloud comparisons is O(d|Q|2)
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Generic clustered training

1: Input: training queries Q, number of clusters C
2: Output: C clusters and their corresponding models
3: for each q ∈ Q do
4: find a representation of q

5: cluster Q into C clusters based on the query
representation and a similarity measure

6: for each cluster c do
7: train a model using queries Qc belonging to cluster c
8: save model wc obtained by training on cluster c

For our proposed representation and similarity,

I Complete link better than single link clustering

I Our sim(D,D′) does not readily let us summarize clusters
as aggregated points

I Therefore use agglomerative, not kmeans
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Generic clustered testing

1: Input: documents Dt for test query t, C models with train-
ing clusters

2: Output: ranked list of documents in Dt

3: compute proposed representation of query t
4: find cluster c∗ = arg maxc maxq∈Qc sim(Dt, Dq), where
sim(Dt, Dq) gives the similarity between t and q

5: use wc to rank Dt

How to find quickly with large Q . . . later

Experiments

I First: does LocalRank improve accuracy?

I Data sets: LETOR, Yandex

I Baseline algos: SVMmap [11], RankBoost [6],
KNN [10], D&K [9]
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Clustering helps
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Clairvoyant

Figure: TD2003 test MAP vs. C, the number of clusters.

I C = 1 =⇒ our algorithm same as baseline
I Peak accuracy occurs at C > 1, ∴ clustering is clearly

helpful
I As C increases further, accuracy decreases
I Clusters become too small to build reliable models
I “Clairvoyant” = post-hoc best cluster, unactionable upper

bound
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Effect of C on NDCG@1, NDCG@5
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Figure: NDCG@1 vs. C for
HP2004.
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Figure: NDCG@5 vs. C for
HP2004.

I Similar to MAP, best at
C ≈ 5 . . . 7

I Best C corresponds well to
established ideas of query
diversity

I Accuracy better than best
baseline
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Simple cloud aggregate based similarity

TD2003 HP2003 HP2004 TD2003 HP2003 HP2004 TD2003 HP2003 HP2004

Mean 0.275 0.785 0.765 0.407 0.773 0.681 0.327 0.828 0.855

Variance 0.294 0.777 0.750 0.344 0.751 0.680 0.370 0.823 0.839

Skewness 0.301 0.777 0.760 0.424 0.758 0.694 0.357 0.824 0.827

LocalRank 0.333 0.798 0.769 0.447 0.787 0.707 0.395 0.843 0.859

MAP NDCG@1 NDCG@5

Figure: PCA-based cloud similarity better than moment-based
notions of cloud similarity

Divergence and kernels

TD2003 HP2003 HP2004 TD2003 HP2003 HP2004 TD2003 HP2003 HP2004

KL-Divergence 0.313 0.782 0.751 0.427 0.765 0.680 0.371 0.837 0.834

Bhattacharyya 0.265 0.784 0.741 0.367 0.765 0.678 0.331 0.835 0.837

LocalRank 0.333 0.798 0.769 0.447 0.787 0.707 0.395 0.843 0.859

MAP NDCG@1 NDCG@5

Figure: PCA-based cloud similarity better than symmetric KL
divergence and Bhattacharyya kernel
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Overall accuracy comparison
TD2003 TD2004 HP2003 HP2004 NP2003 NP2004 OHSUMED YANDEX

SVMmap 0.364 0.493 0.765 0.665 0.591 0.573 0.676 0.664
Rankboost 0.360 0.453 0.714 0.653 0.636 0.530 0.617 0.576
D&K 0.424 0.480 0.699 0.672 0.636 0.538 0.588 x
KNN 0.313 0.324 0.762 0.578 0.584 0.499 0.638 0.661
LocalRank 0.404 0.493 0.765 0.693 0.623 0.530 0.647 0.663

SVMmap 0.368 0.363 0.829 0.835 0.801 0.830 0.621 0.763
Rankboost 0.325 0.349 0.854 0.821 0.816 0.768 0.597 0.709
D&K 0.366 0.378 0.848 0.798 0.836 0.805 0.577 x
KNN 0.369 0.320 0.817 0.806 0.807 0.770 0.616 0.767
LocalRank 0.383 0.348 0.837 0.856 0.791 0.828 0.623 0.761

SVMmap 0.385 0.343 0.840 0.845 0.821 0.847 0.601 0.824
Rankboost 0.347 0.340 0.868 0.845 0.836 0.806 0.582 0.781
D&K 0.367 0.350 0.862 0.826 0.860 0.823 0.572 x
KNN 0.322 0.324 0.831 0.829 0.817 0.836 0.580 0.826
LocalRank 0.392 0.336 0.850 0.868 0.815 0.847 0.611 0.823

SVMmap 0.269 0.259 0.781 0.746 0.707 0.709 0.563 x
Rankboost 0.277 0.263 0.782 0.739 0.740 0.664 0.545 x
D&K 0.298 0.265 0.770 0.742 0.749 0.678 0.529 x
KNN 0.232 0.242 0.762 0.714 0.702 0.668 0.547 x
LocalRank 0.327 0.251 0.789 0.759 0.717 0.687 0.558 x

N
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Figure: Summary of MAP and NDCG accuracies for all algorithms
and various datasets
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Comments on accuracy comparison

LocalRank . . .

I Comparable to (±0.001 or better) SVMmap 65% of the
time

I Better than RankBoost 74% of the time

I Better than KNN 87% of the time

I Better than D&K 61% of the time

I (D&K has impractical test time)

I Overall best 42% of the time
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Diversity in ranking

I Users do not sufficiently express information need in
telegraphically short queries

I Queries become ambiguous, e.g., person name, common
names as products (jaguar, apple)

I Diversify top-k responses to minimize abandonment risk

I Recall the cluster hypothesis in IR: If docs i and j are very
similar to each other, and i is very relevant to the query,
then so is j

I Even if that were the case, it does not mean the user would
be interested in inspecting i after inspecting j

I A matter of marginal utility

I Diametrically opposite pov from pseudo relevance feedback
(PRF) which can be solved by graph Laplacian technique
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Max marginal relevance (MMR)

I Extreme lack of confidence: Report top k, assume they are
all unwanted, choose (k + 1)st doc

I (k + 1)st doc should still be similar to query, but dissimilar
to all preceding docs

I Greedily choose

arg max
d 6∈S

λ sim1(d, q)− (1− λ) max
d′∈S

sim2(d, d
′)

as next doc

I For suitably designed similarity functions sim1, sim2 and
tuned parameter λ
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Graph cuts

I Represent docs as nodes V in a graph

I Edge weights wij represent similarity

I Find subset S ⊂ V to maximize
∑

i∈S,j∈V \S wij
I While minimizing the redundancy or self-similarity∑

i,j∈S,i6=j wij
I Overall objective is one minus the other, like MMR:

arg max
S⊂V

∑
i∈S,j∈V \S

wij − λ
∑

i,j∈S,i6=j

wij

I This is a submodular function (diminishing payoffs):

A ⊆ B =⇒ f(A ∪ v)− f(A) ≥ f(B ∪ v)− f(B)

I Can be approximated by greedy algorithms
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Grasshopper

I Items are nodes in a graph

I Edge weights represent similarity

I If TFIDF cosine is above a threshold then 1, else 0

I From weights to conductance as usual

I Node u1 with largest PageRank (uniform teleport) is #1

I Now make u1 a sink

I Walk is no longer irreducible; PageRanks of all other nodes
are zero

I Absorbing Markov chain

I Measure expected number of visits before ending up in sink

I Let S be the current set of sinks

I Transition probability matrix looks like

[
IS 0
R Q

]
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Grasshopper (2)

I Consider the matrix N = (I−Q)−1

I If we start at i, the expected number of visits to j before
absorption is Nij HW

I u2 is the node with the largest expected number of visits

I Now make both u1 and u2 sink nodes

I . . . and repeat

I Easy to implement, but involves matrix inversions

I Semantics unclear compared to PageRank
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DivRank

I Random walk with time-variant transition probabilities
CT (j|i) at time T :

CT (j|i) = (1− λ)r(j) + λ
C0(j|i)NT (j)∑
k C0(k|i)NT (k)

where NT (j) is the (random) number of times node j has
been visited up to time T and r is a multinomial teleport
distribution.

I This translates into

pT+1(j) = (1− λ)r(j) + λ
∑
i

C0(j|i)NT (j)∑
k C0(k|i)NT (k)

pT (i)

I Unfortunately NT (i) must be approximated with point
estimates to keep the computation practical

I Claimed to implement a “rich gets richer” effect as in
preferential attachment
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DivRank (2)

I Through random choice and/or asymmetry in the graph
neighborhood, one node will emerge the “winner” in each
tightly connected subgraph

I Unclear why “rich gets richer” is relevant here
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Associative vs. dissociative

I Conflict between a dissociative goal (diversity) and
associative graph representations

I Could instead model diversity as a graphical model with
dissociative edge potentials
I Node label is not “relevant” vs. “irrelevant” but “show” vs.

“do not show”
I Pages i, j similar and both good for query means avoid

showing both

I Unfortunately, dissociative graphical models are notoriously
intractable (max cut etc.)

I Is there a natural dissociative model for diversity that
leverages off associative graphs?
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Random vs. search-driven surfer

I PageRank is explained/motivated/rationalized using the
random surfer model

I Today, most Web surfers are guided by search engines, not
(just) the other way around

I Surfer asks a query, engine responds with 10 links, surfer
explores out, perhaps returns back to engine response and
starts afresh

I May use vocabulary from pages to ask new/modified queries
and thus access more related pages
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Learning to rank review

I In pre-Web IR, features were few in number and
hand-crafted ranking was common

I Web documents exploded the feature space and its
complexity
I Query match with title, headings, anchor text, body, . . .
I PageRank, topic-specific PageRank, spamminess, . . .
I Click statistics collected from past (query, page) data

I Even more complex features from knowledge graphs,
personalization, . . .

I Hand-crafted ranking no longer practical

I Query q, document d together gives feature vector x

I Multiple feature vectors {xi}, must (score and) rank them

I Rapidly decreasing user attention as they go down ranked
lists
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Learning to rank review (2)
I Three major loss paradigms: itemwise, pairwise, listwise

I The first two losses give simpler decomposable objectives
I Listwise loss sensitive to real user attention, but harder to

optimize

I For itemwise loss, prediction output is a real relevance score
I Can use comlicated decision surfaces/functions, such as

nonlinear SVOR and boosted regression trees

I The pairwise loss case reduces to learning w to always score
w · (xgood − xbad) > 0 (or 1, as margin)

I This is RankSVM, still widely used, works quite well

I Can still introduce nonlinear scoring function, if willing to
tolerate nonconvex optimization
I Instead of w · x, design a smooth f(x)
I Define Pr(i ≺ j) = σ(f(xj)− f(xi))
I Fit f with cross-entropy and gradient descent
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Learning to rank review (3)

I None of the above capture that the loss because of
swapping #1 and #12 is much more than that of swapping
#12 and #13

I Main technical hurdle is that a single f(xi) (or even a pair)
gives no clue of the rank of doc #i

I Even given all f(xi) together, rank of #i is not a continuous
or differentiable quantity in the model parameters inside f
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Learning to rank review (4)

I Two major approaches
I Structured max-margin learning (design feature map and

loss-augmented inference routine for preferred loss)
I Turn deterministic scores into a probability of a permutation,

contrast (cross-entropy) with ideal permutation

I The structured max-margin approach:
I Represent partial or total order over docs as yyy
I And all feature vectors collectively as xxx
I Design feature map φ(xxx,yyy) and loss ∆(yyy) (wrt ideal ranking)
I Write routine to solve arg maxŷyy w · φ(xxx, ŷyy) + ∆(ŷyy)
I Demonstrated for AUC, MRR, NDCG and (sort of) MAP

I Remaining topics in ranking are best covered after
introducing graphs in search
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