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Document classification

» Applications: email routing, spam detection, Web directory
maintenance, author identification, ...

» Document denoted x € X, class label is a discrete y — could be
+1/ —1, topics, etc.

Model joint distribution of X and Y, use Bayes rule
Model conditional distribution of Y|z

Discriminative classification: argmax, 3" ¢(z,v)

vvyyvyy

For special case y € {—1,1}, can implement arg max, BT o(x,y)
as sign(8 " ¢(x))

» ¢(x) or ¢p(x,y) is a feature vector (to be described)
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Bayesian classification

>
>
4

vVvyyvyy

Estimate a corpus model for each class, Pr(x|y)
E.g., multinomial, Dirichlet, etc.

Prior probability Pr(y) of class y is the fraction of training
documents seen in class y

Given test document z, Pr(y|z) o Pr(y) Pr(z|y)
Out-of-vocabulary words and the need for smoothing
Pr(x|y) is very inaccurate

Decision surface may not be very bad!

Conditional probabilistic classification

4
4
>

Model Pr(y|z) parametrically
Often defined as Pr(y|x) oc exp(w ' ¢(x,y))

: T
Inference remains arg max, w' ¢(x,y)
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Evaluating text classifiers

» Typically, many (thousands possible) classes

v

A document may belong to several classes

» For any class, number of positive documents very small
compared to number of negative documents

v

Each document x has a set of associated classes Y,

» For each class y and each document z, build a 2 x 2 matrix
M , of booleans

M, 4]0,0] = [y € Y, and classifier outputs y]
M, 4]0,1] = [y € Y, and classifier does not output y]
M, [1,0] = [y ¢ Y, and classifier outputs y]
M, [1,1] = [y ¢ Y, and classifier does not output y]
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Recall, precision, micro-, macro-average

>

>

vVvyVvyVvVvVvyyYy Vv

Micro-averaged contingency matrix is M,, = Zm,y M, ,
M,[0,0]

(M,,[0,0] + M,[0, 1)
M,[0,0]

(M,,[0,0] + M1, 0])

If there is class skew, macroaveraging may be preferable

Microaveraged recall is

Microaveraged precision is

Compute per-class contingency matrix My, = > M,
Scale so the four elements of M, add up to 1

Now average over classes

Break-even, F}, as usual

Other loss models: topics may be in tree/DAG
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Outline

Nearest-neighbor classification

Bayesian classification

4
>
» Compression and minimum entropy criterion
» Maximum entropy and logistic regression

4

Discriminative and max-margin classification
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Nearest neighbor classification

Corpus indexed for TFIDF search
Record class label with each (training) doc d
Given a test doc ¢, find most similar docs d

Reuse existing infrastructure
IDF is not necessarily a good device for (soft) feature selection
> w; appears at rate 0.01 uniformly across corpus

» wy appears at rate 0.3 in one topic only
» wsy has lower IDF than wy but is a better feature

ehe

| 2
| 2
>
> Take (weighted) majority vote of classes
s>
©

Test document *
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arg mastim(q, d)[[d is labeled ~] ¢
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& ¢ Documents not about skiing
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@ Test document
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Feature selection

» Unlike low-dimensional data mining and machine learning, the
vector space model frequently has more dimensions than data

points!

» Classifiers can overfit in presence of excessive number of noisy

features

» A complicated subset search problem; typically solved by
accumulation or truncation
» Wrapped around a basic learning black-box

Feature
subset
search

heuristic

Project
to F

T

Accuracy
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set
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Accumulation vs. truncation

Accumulation

» Accumulate: order features by decreasing correlation with class
labels, pick a prefix

» Cheap and simple, but possible to include redundant features
» Classifier may not care (e.g. LR, SVM)

Truncation

» Start with all features F' =T, drop X is X has a “good”
Markov blanket M C T'\ X

» l.e., X is “almost” conditionally independent of
(TuC)\ (MUX) given M

» Presence of M in F renders X unnecessary as a predictor

» May be no exact blankets, need heuristic ordering
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Truncation example

1: Want F' C T the set of all terms
2: while truncated Pr(C|F) is reasonably close to original

Pr(C|T') do
3 for each remaining feature X do
: /* Identify a candidate Markov blanket M: */
5: For some tuned constant k, find the set M of k

variables in F'\ X that are most strongly correlated with X
: /* Estimate how good a blanket M is: */
7: Estimate >, Pr(Xy =2zym, X =2)

KL(C|XM = QZM,X = {L'H C‘XM = .’L‘M)

8: Eliminate the feature having the best surviving Markov
blanket
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Sample results

0.7

0.6 +———

Accuracy
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Number of features

» Even highly biased learners (will explain) like naive Bayes can
overfit

» Number of retained features typically set by cross-validation

© Soumen Chakrabarti



Classification as compression

» Two topics, Sports and Painting with training document sets
DSports and DPamting

» Within each class concat documents and compress (gzip) and
note down compressed lengths £g,,,4s and pginting

» Given test document d, find compressed lengths

fS'ports of DSports concat d

/
> éPainting of DPainting concat d

/ H / L.
> Compare gSports - ESports with gPainting - gPamtmg

» Which class should we assign to d?
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The class-word contingency table

n documents with (single) class labels (d;, ¢;)
n. is the number of documents in class ¢

diw is the number of occurrences of word w in document 3

vVvyyvyy

ke is the number of occurrences of word w over documents
belonging to class ¢

Ko=) kew Ke =) kew

K = Zw K. = ZCKC'

Marginal probability of class ¢ is p. = K../K
Marginal probability of word w is p, = K.,/ K

vVvyyvyyvyy

Conditional probability p,,|. = kew/ K.
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Minimum entropy criterion

» For random variables A, B,
H(A,B) = - Pr(a,b)logPr(a,b)
a,b
H(A|B) = ZPr a, b)log Pr(alb)
ab
H(A,B)=H(A)+ H(B|A) = H(B) + H(A|B)
» In particular for words and classes

S
c ¢ w

» Low entropy means less uncertainty, so we want small H (W, C)
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Classifying a test document

» As in the gzip example, pretend to add the test document to
the corpus, each class in turn

» Suppose word counts in test document are z,, for word w, X
total

» Suppose the tentative class is ¢
» Update probability estimates:

Kot X 4
/ {K+X’ c=c

Pe=19 % .
.
*ix: Otherwise
kew+zw — A
p,:{K‘ﬂLX’ c=c
w|c kecw .
o otherwise

© Soumen Chakrabarti



Classifying a test document, continued

/

w|e

» Finally pick argmin; H.(W, C) as the predicted class

» Classification time is proportional to number of classes times

number of words in vocabulary
Acf racy

» Now compute new HL(W,C) using pl.,p
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Maxent notation setup

» Training examples (d;,¢;), i =1,...,n

» ¢, € C, a flat set with 2 or more classes

» Goal is to directly model Pr(c|d)

» Feature vector ¢(d,c) € R™

» An element is ¢;(d, c) € R, often 0/1 but not necessarily
» j can index over some feature space (to be discussed soon)
» We are interested in fitting a multinomial distribution over

classes Pr(c|d;) for each training document d;

This is just a table p(c|d;)

Later it will turn out that the model can be used with new
documents as well

vy
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Balancing modeled and observed averages

» Empirical probability of document d; is 1/n
» Express E(¢;) in two ways
> B(¢;) = iy Pr(diy ci)d(disci) = 307, 0;(di, i)

> B(0) = Y L Pr(d) X, Pr(cld:)¢;(di, ¢) =
Z:L 1 nZ Pr((‘|d )d’]( c)

» For a reasonable model Pr(c\d) these should be equal:

Z —¢i(dy, ;) :Z ZPr |di) b (di, c)

i=1 c
» Write Pr(c|dz) as a table of parameters p(c|d;) that we need to
fit from data

Vj : D oidici) =D pleldi)g(die) =0
i=1 i=1 c
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The maximum entropy principle

» Many distributions p(c|d;) may satisfy the equalities
» Which one should we prefer?

» If we know nothing about d or class populations, the only
reasonable p(c|d) is the uniform distribution over {c}

» The uniform distribution has the largest possible entropy

» So we will maximize the entropy while satisfying the equalities

max — Pr(d;) p(c|d;) log p(c|d subject to
{p(cldi)>0} Z Z (cldi) log p(e|d) !
—1/n
Z¢j(di7ci) — Zzp(c‘dl)gﬁ](dl,c) = 0 )\]
i=1 =1 ¢
Vi : > pled) —=1=0 ...
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The dual solution
Minimize L({p(c|d:)}; {\j}, {1i})
= Zp c|d;) log p(c|d;)

+ZA( 1 05 ci) = Ty T p(eld)es (di.c))

+ ZM (e pleldi) = 1)

oL

ap(c]d - 1 + logp C‘d ZA]¢] dlac) + /J/Z - 0

J

c.p(eld;) = exp(—1 — p;) exp (Zj \jo;(d;, c))

_ 1 Gde)) = L T o(d,
= 7 exp (Z] )\]qb](dz,c)) = 70 exp(A qb(dz,c)),
where Z(d;) is a scaling factor to make ). p(c|d;) =1
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Dual optimization

» Can show that maximizing entropy in primal is equivalent to
maximizing Y, log Pr(¢;|d;)

» With Pr(c|d;) modeled as p(c|d;) = %exp(ATgﬁ(di,c))

» Therefore the optimization looks like

e Y (ATo(ds, ) —log Z(dy))
=1

Nontrivial because of the Z term

vy

Can be solved using Newton method to get trained A*

» The prediction for a new test document diest is just
arg max. A*¢(dest, €)
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Feature design

> Focus on the term A - ¢(d,c) = Y7, X;;(d, ¢)
First we design a feature space compatible with naive Bayes

v

» Recall in naive Bayes, there is a parameter 6., for each class ¢’

and each word w

v

We will make the number of features and model
weights J = CW

Let 7 range over ¢/, w where ¢ is a class and w is a word

A simple binary feature would be ¢ ,,(d, c) = [c = [w € d]
With d € {0,1}", ¢(d,c) € {0,1}>*W

Can think of ¢(d,c) as a C x W ‘matrix’

cth row is just d, other rows are all zeroes

vVVvyVvYyVvyYyvyy

Consider row class ‘sports’ and column word ‘football’: we
expect Psports football (d, Sports) to be 1 often

> Meanwhile ¢arts,football(dasports) =0
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Feature design (2)

> Also, we expect @arts football (d; arts) to be 0 often

» Note how ¢ is ‘called’ in the objective: with gold class as
&(d;, ¢;) and with all (other) classes as ¢(d;, ¢)

A~ ¢(d;, ci) —log|> . exp(A - ¢(d;, )
» To maximize this, Asports,football 11 and >\arts,football 4
> Just like we expect Osports football to be larger than Oy football

» But we need not be limited to word-based (‘lexical") feature
spaces

» An example of a different kind or feature j is “mentions two
cities and years and topic is history”

» Or, “mentions a dollar amount and is spam mail”

» These synthetic features can coexist side-by-side with lexical
features

» Unlike naive Bayes, highly correlated features do not damage
posterior label probability estimates (as badly)
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Maxent and Logistic Regression (LR)

» Two-class case with C' = {—1,+1}, e.g., Sports and NotSports
» Vocabulary of size W
» j ranges over 21V index positions, and A € R?W

» Say the first W elements correspond to ¢ = —1 and the next W
elements correspond to ¢ = +1, so that we can write
A= (AJr’ A )
» Given our canonical feature design ¢ ., (d, c)
ATé(d, +1) = ALyp(d) and
ATp(d,—1) = ATy(d), where
Y(d) € RY  with 1y, (d) = [w € d].
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Maxent and Logistic Regression (LR) (2)
»> Now we can write

Pr(+1]d) exp(AT¢(d, +1))

exp(AT6(d; +1)) + exp(A T 6(d, —1))
exp(ALy(d))
exp(A[9(d)) + exp(ATv(d))
B 1 B 1
Sl e A=A TR ] eBTY(d)]
» Logistic regression: fit 3 to maximize ), log Pr(c;|d;)
» Under infinite precision arithmetic, if there exists a 5* such that
for all 4, ¢;3*T4)(d;) > 0, then the optimizer will bomb

» To control this, find instead
1
argmgX—T‘QWH% + EZ log Pr(ci|d;)

say

» Equivalent to imposing a Gaussian prior on /3 with zero mean
and variance o2
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Linear discriminants

» Two classes £1

» Naive Bayes compares

T 1H0—1w 5 771H91w, ie.,

logm_1 + wa log 0_1, :: logm + Za:w log 01,4, ie.,

w w

01,0
:log — w L
0 og —i—Zx oge

—1l,w

» Final fomB+3T2<0

» Same can be easily verified for maxent/logistic
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Outline, continued

Discriminative and max-margin classification

Parameter shrinkage in topic hierarchies

4

>

» Bayesian and SVM classifiers for topic hierarchies

» Modeling associative hyperlinks for max-margin classifiers
4

Loopy belief propagation in hyperlink graphs
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From maxent/LR to SVM

Two-class case ¢; € £1
If ¢; = +1, want 8- 4(d;) >0
If ¢; = —1, want 8-9(d;) <0
l.e., want to directly find a 8 such that
Vi : ciBT(d;) >0
without any probabilistic connotation
» Add a margin

vVvyyvyy

Vi : BT y(dy) > 1

Regularization remains similar: minimize |33

v

» Overall optimization

B

1T

min sw w+ — ;  S.t.

w,E>0 2 n Zfz
A

Vi: B (d) +&>1
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Comparison

» In the end, naive Bayes, maxent/LR, and SVM all give linear
discriminants

¢" = argmax fy(d) = sign(8 ' $(d))
for two classes {—1,+1}

» Why is maxent/LR (and SVM) so much better than naive
Bayes?

Precision

—— LSVM
0.24+— ==== Bayes
----- k-NN

T T T T
0 0.2 0.4 0.6 0.8 1.0
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Multiclass, single label per instance

4
>

>
| 4

More than two topics, || > 2

Train an SVM for each topic y € )V, with model weights
wy € RP

Document featurized into z € R”

Predict single class argmax, wy - x
During training with instance (z;,¥;), want wy, - ; > w,/ - x;
for each v/ # y;

l.e. good class score beats each bad class score

With fixed margin 1, we can demand wy, - z; > 1 + w,/ - z; for
each y' # y;

In case not feasible, add slack variables & > 0 for each training
instance: wy, - ;+& > 1 + w,y - x; for each y' # y;

And charge in the objective to be minimized as ), ¢;
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Multiclass, single label per instance (2)

» Equivalent to the following hinge loss

Zmax{O 1+m2xwy Ti — Wy, - ZEZ}

- y'#y
» Same margin of 1 for all y;,1 pairs may be unsatisfactory
» y; = photography, vy’ = painting is less serious error than
= rugby
» Seriousness of mistakes must be provided by trainer as |Y| x ||
loss matrix A(y,y’) >0

» Modify above loss to

Zmax{o IMAX Wy - zi + Ay, y) — wyi.xi}
Y'#Y;

» This objective is convex, unlike the expected loss in case of

logistic regression
>3 Ayi,y) Prylas A)
iy
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Multiple classes and labels

» More than two topics, |)| > 2

v

Each document can have multiple labels

» Can still use one vs. rest, but it won't (sufficiently) exploit
correlations between labels

Structured prediction: ¥ = 2Y

v

» Can use Hamming or Jaccard loss:
Aly,y) =1y \y' I+ 1y \yl
Aly, ) =lyny'l/lyuy|
where y,1' € ¥ are subsets of topics
Design of ¢(z,y)
If z € RY, let p(z,y) € RWI
If v €y, copy = to the yth block of ¢

vVvyyvyy

Enumerating through ¥ is not practical, how to train/test?
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Topic hierarchy

» Very common in document classification

» For now, trees only, assume subsumption

» May hurt if we take a sequence of unreliable decisions

» May help in parameter estimation and scalability

Communication

(200)

Patents
(950)

Electricity
(400)

Electronics

(800)

Antenna
Modulator
Demodulator
Telephony
Transmission
Motors
Regulation
Heating
Oscillator
Amplifier
Reesistor
System

Classifier

Flat Best-First

Number of features

Approximate total number of parameters
Accuracy

Time/document

250
2651
0.60
15 ms

Shown in parentheses
2649
0.63
6 ms
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Probabilistic classification into hierarchy

1. Initialize frontier min-heap F' to {(root,0)}
2: Initialize output leaf set L to the empty set
3: while |L| < m and F is not empty do

4 Remove (cg, £p) from F' with smallest ¢
5: if ¢g is a leaf node then

6 Insert cqg into L

7 else

8 for each child ¢; of ¢y do

0: Evaluate Pr(c¢;|co, d)

10: Insert (ci, o — log Pr(c;|co, d)) into F
11: Return L
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Parameter smoothing

» Uniform prior and Laplace smoothing
» Lidstone smoothing
» Beta prior

From smoothing to shrinkage
» Given a hierarchy, uniform prior is suboptimal, loses info
» Nodes near the top have plenty of training data, low variance

» Nodes near the leaves with sparse training data can benefit from
estimates higher up

ch',t = )\i(gL\?kE + -+ )\192be —+ /\OHM[}E
where Y\, =1
> s estimated by an EM-like procedure
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Shrinkage pseudocode

hold out some portion H,, of the training set for class ¢,
using the remaining data find QMLE fori=1,...,n
initialize all A\; to some positive value sothat ), A\ =1
while Pr(H, {6, :Vt}) increases do
fori=0,1,...,n do
MLE

AOMLE
Calculate 8; = ZteHn s ;MLE, the degree to which

the current estimate of class ¢ predlcts terms in the held-out set
7: readjust the mixing weights \; < 8;/3; B; for
i=0,1,...,n
8: recompute 6, ; for all ¢

A A R o A e
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Maxent /logistic on trees

» For notational simplicity assume all paths to leaves in tree have

same length H

» Label y is now a sequence of H nodes in tree y',... . y" ... y"

(y! is always root)

v

L is the set of leaf nodes, in 1:1 correspondence to possible y
paths

Y is the set of all nodes in label tree
Think similar to an HMM: label at each tree level is a state
Edge potentials ¥ (7y,7)

¥n(v,7") = 0 unless v is a state at level h, 7" at level h + 1, and
~ a parent of '

vVvyyvyy

v

Same doc z emitted at each level

v

Node potentials ¢p(z,7)
» op(z,7) = 0 unless 7 is a label at level h
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Maxent /logistic on trees (2)

» Otherwise, expresses compatibility between x and ~

» Overall probability modeled as

Byt
Pr(y|z) = 7 Hlbh Y

where Z, = Z H W h, h+1

Yy h=1
Learnable parameters a, 3 inside 1,

> E g o e RV W|th T/’h( b oyh ) = exp(a(y”, y" 1))

H
H Un(y" Y = H exp(a(yh,y“l)) = exp (Z a(yh,y“l))
h=1 h=1 h=1
» Abusing notation, this can be written in a log-linear form

exp(a g(z,y)) (x is not used)

Mo
e

v
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Maxent /logistic on trees (3)

» Likewise, [];, ¥n(x,yp) can be expressed in a log-linear form
exp(8' f(z,y))
» Can combine into single w' ¢(x,%), i.e.,
1
Pr(yle) = ——exp(w’ ¢(x,y))

» w should embed learnable parameters that capture associations

between
» parent and child classes
» class and word

» Rest is same as in standard logistic regression:
arg max,, y ., log Pr(y;|z;)
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Label trees in SVM

» Redesign loss A and feature map ¢
» What is y? A path from root to leaf, say
» A(y,y’) compares two paths
» If paths diverge early, loss is larger
» ¢(x,y) embeds shrinkage-like ideas
» Key idea: Also map labels to vector space ¥(y) € RF
» Familiar special case with k = || and 9, (y) = [y = ¥l
U1(y)x
Sley)=| : | eR?
Vi (y)w

» Aka ¢(x,y) = ¢¥(y) ® = (tensor product)
w € R¥ as well, naturally

v
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Label trees in SVM (2)

» Choice of 1) for label trees? Let k =|)Y|and 0 < A <1
A, 7y is an ancestor of y
%(Z/) - { .
0, otherwise

» Or may be A raised to a power that is the path length between ~
and y?

» Let w, be the block of w corresponding to label v
» Easy to see that

wlo(z,y) =Y Py (y)w,
Y

» Intuitive: borrow feature vector x into positions y guided by
ancestor-descendant relation

» Dual training etc. goes through fine
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Labeling Web documents

» Many Web documents are short compared to IR corpora

» Depend on hyperlinks, images, flash, Javascript, to lead the user

to content

> Topics are often associative across hyperlinks (birds of a feather)

» Key parameter: Pr(neighbor red|l am blue)

0.6 0.4

0.25 0.7
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Associative model

First, an undirected model

f:V = Y is a labeling of nodes

L(u, f(u)) is the cost of assigning label f(u) to node u
Think L(u,y) = —logPr(Y, =y)

Affinity matrix A(vy,7'), A € R'f'xlyl

It {u, v} € B, you pay A(f(u), f(v))

Overall optimization

argm]}nZL(uaf(U))Jr > A(f(w), f(v)

ueV {u,v}eFr

VVYyVY VYVYVY

Also, marginal probability of red and blue
A coloring problem with soft constraints
NP-hard

All topics link to Yahoo!

vVvyyvyy
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Smoothing on edges

» M labels, N nodes

Feature vector of node n is z, € RP, collectively X € RV*P

v

» In the absence of edges, might use multiclass Logistic regression
Yn = softmax(x, W) with W € RP*M

» Collectively, Y = softmax(X W) where softmax normalization
applies separately over each row

» Gold labels of all nodes in N x M matrix Y* with 1-hot rows
» Want small prediction error Y Lnode(Yn, ¥y)

» Node adjacency matrix A € RfXN with non-negative edge
weights

» Also want roughness Z” A(i, j) Ledge(Yi, Y;) to be small
Works out nicely for some choices of Ljode and Legge, €.8.
Lnode (Y, ¥*) = 2nepr (y[m] — y*[m])* and
Ledge(yi7 yj) = Zm(y’b [m] —Yj [m])2
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A belief propagation approach

» VK C V are nodes with known labels f(v)
ur is the (known) text of node u; V7 is all node text

v

» Bayesian goal would be to

maxy Pr(f(V)) Pr(E, {ur,u € V}|f(V))
N (v) are immediate neighbors of V'

» NY(v) ... with unknown labels

\4

Pr(f(v)|E, VT, f(VK))

= > Pr(f NY)|E, VT, F(VEY)
f(NU(v))

Z FINY ()| B, VT, f(VE))
N

Pr(f(0)[f(NY(v)), B, VT, f(VT))
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A belief propagation approach (2)

» Naive-Bayes approximation
Pr(f(NY)IE VT f(VE) = T[] Pr(f(w) B VT f(VE))
weNU (v)
» |terative scheme
Pri(f(v) | B,VT, f(VF))

=S Z H Pr, ( )| B, VT, f(VK)>

f(NU(v))€Qy | weNY (v)

Pr(f(o) | SNV (@), BV, f(VE))
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A belief propagation approach (3)

> Next, simplify Pr(f(v) | F(NY (v)), E, VT,f(VK)) via a
Markov assumption

Pr(f@) | J(NY (), B, VT, f(VE))
~ Pr( (o) | FNY (0), B VT, F(V ()
= Pr(f(0) | FN @), V),

where N¥(v) = N(v) N VE

» And finally decouple from other nodes’ text

Pr(f(0)|f(N(©)), V) ~ Pr(f(v)| f(N(v)),vr)
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A belief propagation approach (4)
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» Reduces error, scales gracefully with VX
» Even when VX = &, can improve accuracy (how?)
» Can also use direct conditional models (Lu and Getoor)

» Or a general graphical model, but costly
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