
Chapter 7

The Singular Value Decomposition (SVD)

✬

✫

✩

✪

1 The SVD produces orthonormal bases of v’s and u’s for the four fundamental subspaces.

2 Using those bases, A becomes a diagonal matrix Σ andAvi = σiui : σi = singular value.

3 The two-bases diagonalizationA = UΣV T often has more information than A = XΛX−1.

4 UΣV T separates A into rank-1matrices σ1u1v
T
1 + · · ·+ σrurv

T
r . σ1u1v

T
1 is the largest!

7.1 Bases and Matrices in the SVD
The Singular Value Decomposition is a highlight of linear algebra. A is anym by nmatrix,
square or rectangular. Its rank is r. We will diagonalize this A, but not by X−1AX .
The eigenvectors in X have three big problems: They are usually not orthogonal, there
are not always enough eigenvectors, and Ax = λx requires A to be a square matrix. The
singular vectors of A solve all those problems in a perfect way.

Let me describe what we want from the SVD : the right bases for the four subspaces.
Then I will write about the steps to find those bases in order of importance.

The price we pay is to have two sets of singular vectors, u’s and v’s. The u’s are in
Rm and the v’s are in Rn. They will be the columns of an m by m matrix U and an n by
n matrix V . I will first describe the SVD in terms of those basis vectors. Then I can also
describe the SVD in terms of the orthogonal matrices U and V .

(using vectors) The u’s and v’s give bases for the four fundamental subspaces :

u1, . . . ,ur is an orthonormal basis for the column space
ur+1, . . . ,um is an orthonormal basis for the left nullspace N (AT)
v1, . . . ,vr is an orthonormal basis for the row space
vr+1, . . . ,vn is an orthonormal basis for the nullspace N (A).
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382 Chapter 7. The Singular Value Decomposition (SVD)

More than just orthogonality, these basis vectors diagonalize the matrix A :

“A is diagonalized” Av1 = σ1u1 Av2 = σ2u2 . . . Avr = σrur (1)

Those singular values σ1 to σr will be positive numbers : σi is the length of Avi.
The σ’s go into a diagonal matrix that is otherwise zero. That matrix is Σ.

(using matrices) Since the u’s are orthonormal, the matrix U with those r columns has
UTU = I . Since the v’s are orthonormal, the matrix V has V TV = I . Then the equations
Avi = σiui tell us column by column thatAVr = UrΣr:

(m by n)(n by r)
AVr = UrΣr

(m by r)(r by r)
A


 v1 · · vr


 =


 u1 · · ur






σ1

·
·

σr


 . (2)

This is the heart of the SVD, but there is more. Those v’s and u’s account for the row
space and column space of A. We have n − r more v’s and m − r more u’s, from the
nullspace N(A) and the left nullspace N (AT). They are automatically orthogonal to the
first v’s and u’s (because the whole nullspaces are orthogonal). We now include all the
v’s and u’s in V and U , so these matrices become square. We still haveAV = UΣ.

(m by n)(n by n)
Av equals UΣ
(m bym)(m by n)

A


v1 · · vr · · vn


 =


u1 · · ur · · um





σ1 · ·

σr


 . (3)

The new Σ is m by n. It is just the r by r matrix in equation (2) with m − r extra zero
rows and n − r new zero columns. The real change is in the shapes of U and V . Those
are square orthogonal matrices. So AV = UΣ can become A = UΣV T. This is the
Singular Value Decomposition. I can multiply columns uiσi from UΣ by rows of V T :

SVD A = UΣV T = u1σ1v
T
1 + · · ·+ urσrv

T
r . (4)

Equation (2) was a “reduced SVD” with bases for the row space and column space.
Equation (3) is the full SVD with nullspaces included. They both split up A into the same
r matrices uiσiv

T
i of rank one: column times row.

We will see that each σ2
i is an eigenvalue of ATA and also AAT. When we put the

singular values in descending order, σ1 ≥ σ2 ≥ . . .σr > 0, the splitting in equation (4)
gives the r rank-one pieces of A in order of importance. This is crucial.

Example 1 When is Λ = UΣV T (singular values) the same as XΛX−1 (eigenvalues) ?

Solution A needs orthonormal eigenvectors to allow X = U = V . A also needs
eigenvalues λ ≥ 0 if Λ = Σ. So A must be a positive semidefinite (or definite) symmetric
matrix. Only then will A = XΛX−1 which is also QΛQT coincide with A = UΣV T.
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Example 2 If A = xyT (rank 1) with unit vectors x and y, what is the SVD of A?

Solution The reduced SVD in (2) is exactly xyT, with rank r = 1. It has u1 = x and
v1 = y and σ1 = 1. For the full SVD, complete u1 = x to an orthonormal basis
of u’s, and complete v1 = y to an orthonormal basis of v’s. No new σ’s, only σ1 = 1.

Proof of the SVD
We need to show how those amazing u’s and v’s can be constructed. The v’s will be
orthonormal eigenvectors of ATA. This must be true because we are aiming for

ATA = (UΣV T)T(UΣV T) = V ΣTUTUΣV T = V ΣTΣV T. (5)

On the right you see the eigenvector matrix V for the symmetric positive (semi) definite
matrix ATA. And (ΣTΣ) must be the eigenvalue matrix of (ATA) : Each σ2 is λ(ATA) !

Now Avi = σiui tells us the unit vectors u1 to ur . This is the key equation (1).
The essential point—the whole reason that the SVD succeeds—is that those unit vectors
u1 to ur are automatically orthogonal to each other (because the v’s are orthogonal) :

Key step uT
i uj =


Avi

σi

T
Avj

σj


=

vT
i A

TAvj

σiσj
=

σ2
j

σiσj
vT
i vj = zero. (6)

The v’s are eigenvectors of ATA (symmetric). They are orthogonal and now the u’s are
also orthogonal. Actually those u’s will be eigenvectors of AAT.

Finally we complete the v’s and u’s to n v’s and m u’s with any orthonormal bases
for the nullspaces N(A) and N (AT). We have found V and Σ and U in A = UΣV T.

An Example of the SVD
Here is an example to show the computation of three matrices in A = UΣV T.

Example 3 Find the matrices U,Σ, V for A =


3 0
4 5


. The rank is r = 2.

With rank 2, this A has positive singular values σ1 and σ2. We will see that σ1 is larger
than λmax = 5, and σ2 is smaller than λmin = 3. Begin with ATA and AAT :

ATA =


25 20
20 25


AAT =


9 12

12 41



Those have the same trace (50) and the same eigenvalues σ2
1 = 45 and σ2

2 = 5. The square
roots are σ1 =

√
45 and σ2 =

√
5. Then σ1σ2 = 15 and this is the determinant of A.

A key step is to find the eigenvectors of ATA (with eigenvalues 45 and 5) :


25 20
20 25


1
1


= 45


1
1


25 20
20 25


−1
1


= 5


−1
1



Then v1 and v2 are those (orthogonal!) eigenvectors rescaled to length 1.
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Right singular vectors v1 =
1√
2


1
1


v2 =

1√
2


−1
1


. ui = left singular vectors.

Now compute Av1 and Av2 which will be σ1u1 =
√
45u1 and σ2u2 =

√
5u2 :

Av1 =
3√
2


1
3


=

√
45

1
√
10


1
3


= σ1 u1

Av2 =
1√
2


−3
1


=

√
5

1
√
10


−3
1


= σ2 u2

The division by
√
10 makes u1 and u2 orthonormal. Then σ1 =

√
45 and σ2 =

√
5

as expected. The Singular Value Decomposition is A = UΣV T :

U =
1√
10


1 −3
3 1


Σ =

 √
45 √

5


V =

1√
2


1 −1
1 1


. (7)

U and V contain orthonormal bases for the column space and the row space (both spaces
are just R2). The real achievement is that those two bases diagonalize A : AV equals UΣ.
Then the matrixUTAV = Σ is diagonal.

The matrix A splits into a combination of two rank-one matrices, columns times rows :

σ1u1v
T
1 + σ2u2v

T
2 =

√
45

√
20


1 1
3 3


+

√
5

√
20


3 −3

−1 1


=


3 0
4 5


= A.

An Extreme Matrix
Here is a larger example, when the u’s and the v’s are just columns of the identity matrix.
So the computations are easy, but keep your eye on the order of the columns. The matrix
A is badly lopsided (strictly triangular). All its eigenvalues are zero. AAT is not close to
ATA. The matrices U and V will be permutations that fix these problems properly.

A =




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0




eigenvalues λ = 0, 0, 0, 0 all zero !
only one eigenvector (1, 0, 0, 0)
singular values σ = 3, 2, 1
singular vectors are columns of I
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We always start with ATA and AAT. They are diagonal (with easy v’s and u’s):

ATA =




0 0 0 0
0 1 0 0
0 0 4 0
0 0 0 9


 AAT =




1 0 0 0
0 4 0 0
0 0 9 0
0 0 0 0




Their eigenvectors (u’s for AAT and v’s for ATA) go in decreasing order σ2
1 > σ2

2 > σ2
3

of the eigenvalues. These eigenvalues σ2 = 9, 4, 1 are not zero!

U =




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


 Σ =




3
2

1
0


 V =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




Those first columns u1 and v1 have 1’s in positions 3 and 4. Then u1σ1v
T
1 picks out the

biggest number A34 = 3 in the original matrix A. The three rank-one matrices in the SVD
come exactly from the numbers 3, 2, 1 in A.

A = UΣV T = 3u1v
T
1 + 2u2v

T
2 + 1u3v

T
3 .

Note Suppose I remove the last row of A (all zeros). Then A is a 3 by 4 matrix and
AAT is 3 by 3—its fourth row and column will disappear. We still have eigenvalues
λ = 1, 4, 9 in ATA and AAT, producing the same singular values σ = 3, 2, 1 in Σ.

Removing the zero row of A (now 3 × 4) just removes the last row of Σ together with
the last row and column of U . Then (3× 4) = (3× 3)(3× 4)(4 × 4). The SVD is totally
adapted to rectangular matrices.

A good thing, because the rows and columns of a data matrix A often have completely
different meanings (like a spreadsheet). If we have the grades for all courses, there would
be a column for each student and a row for each course: The entry aij would be the grade.
Then σ1u1v

T
1 could have u1 = combination course and v1 = combination student.

And σ1 would be the grade for those combinations : the highest grade.
The matrix A could count the frequency of key words in a journal : A different article

for each column of A and a different word for each row. The whole journal is indexed
by the matrix A and the most important information is in σ1u1v

T
1 . Then σ1 is the largest

frequency for a hyperword (the word combination u1) in the hyperarticle v1.
I will soon show pictures for a different problem: A photo broken into SVD pieces.

Singular Value Stability versus Eigenvalue Instability
The 4 by 4 example A provides an example (an extreme case) of the instability of eigen-
values.Suppose the 4,1 entry barely changes from zero to 1/60, 000. The rank is now 4.
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A =




0 1 0 0
0 0 2 0
0 0 0 3
1

60, 000
0 0 0




That change by only 1/60, 000 produces a
much bigger jump in the eigenvalues of A

λ = 0, 0, 0, 0 to λ =
1

10
,

i

10
,
−1

10
,
−i

10

The four eigenvalues moved from zero onto a circle around zero. The circle has radius 1
10

when the new entry is only 1/60, 000. This shows serious instability of eigenvalues when
AAT is far from ATA. At the other extreme, if ATA = AAT (a “normal matrix”)
the eigenvectors of A are orthogonal and the eigenvalues of A are totally stable.

By contrast, the singular values of any matrix are stable. They don’t change more
than the change in A. In this example, the new singular values are 3,2,1, and 1/60, 000.
The matrices U and V stay the same. The new fourth piece of A is σ4u4v

T
4 , with

fifteen zeros and that small entry σ4 = 1/60, 000.

Singular Vectors ofA and Eigenvectors of S = ATA

Equations (5–6) “proved” the SVD all at once. The singular vectors vi are the eigenvectors
qi of S = ATA. The eigenvalues λi of S are the same as σ2

i for A. The rank r of S equals
the rank r of A. The all-important rank-one expansions (from columns times rows) were
perfectly parallel:

Symmetric S

SVD of A

S = QΛQT = λ1q1q
T
1 + λ2q2q

T
2 + · · ·+ λrqrq

T
r

A = UΣV T = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σrurv

T
r

The q’s are orthonormal, the u’s are orthonormal, the v’s are orthonormal. Beautiful.
But I want to look again, for two good reasons. One is to fix a weak point in the

eigenvalue part, where Chapter 6 was not complete. If λ is a double eigenvalue of S, we
can and must find two orthonormal eigenvectors. The other reason is to see how the SVD
picks off the largest term σ1u1v

T
1 before σ2u2v

T
2 . We want to understand the eigenvalues

λ (of S) and singular values σ (of A) one at a time instead of all at once.

Start with the largest eigenvalue λ1 of S. It solves this problem:

λ1 = maximum ratio
xTSx

xTx
. The winning vector is x = q1 with Sq1 = λ1q1. (8)

Compare with the largest singular value σ1 of A. It solves this problem:

σ1 = maximum ratio
||Ax||
||x|| . The winning vector is x = v1 with Av1 = σ1u1. (9)



7.1. Bases and Matrices in the SVD 387

This “one at a time approach” applies also to λ2 and σ2. But not all x’s are allowed:

λ2 = maximum ratio
xTSx

xTx
among all x’s with qT

1 x = 0. The winning x is q2.

(10)

σ2 = maximum ratio
||Ax||
||x|| among all x’s with vT

1 x = 0. The winning x is v2.

(11)
When S = ATA we find λ1 = σ2

1 and λ2 = σ2
2 . Why does this approach succeed?

Start with the ratio r(x) = xTSx/xTx. This is called the Rayleigh quotient. To
maximize r(x), set its partial derivatives to zero: ∂r/∂xi = 0 for i = 1, . . ., n. Those
derivatives are messy and here is the result: one vector equation for the winning x:

The derivatives of r(x) =
xTSx

xTx
are zero when Sx = r(x)x. (12)

So the winning x is an eigenvector of S. The maximum ratio r(x) is the largest eigenvalue
λ1 of S. All good. Now turn to A—and notice the connection to S = ATA!

Maximizing
||Ax||
||x|| also maximizes

 ||Ax||
||x||

2

=
xTATAx

xTx
=

xTSx

xTx
.

So the winning x = v1 in (9) is the top eigenvector q1 of S = ATA in (8).

Now I have to explain why q2 and v2 are the winning vectors in (10) and (11). We
know they are orthogonal to q1 and v1, so they are allowed in those competitions. These
paragraphs can be omitted by readers who aim to see the SVD in action (Section 7.2).

Start with any orthogonal matrix Q1 that has q1 in its first column. The other n − 1
orthonormal columns just have to be orthogonal to q1. Then use Sq1 = λ1q1:

SQ1 = S

q1 q2 . . . qn


=


q1 q2 . . . qn

 λ1 wT

0 Sn−1


= Q1


λ1 wT

0 Sn−1


. (13)

Multiply by QT
1 , remember QT

1 Q1 = I , and recognize that QT
1 SQ1 is symmetric like S:

The symmetry of QT
1 SQ1 =


λ1 wT

0 Sn−1


forcesw = 0 and ST

n−1 = Sn−1.

The requirement qT
1 x = 0 has reduced the maximum problem (10) to size n − 1. The

largest eigenvalue of Sn−1 will be the second largest for S. It is λ2. The winning vector
in (10) will be the eigenvector q2 with Sq2 = λ2q2.

We just keep going—or use the magic word induction—to produce all the eigenvectors
q1, . . . , qn and their eigenvalues λ1, . . . ,λn. The Spectral Theorem S = QΛQT is proved
even with repeated eigenvalues. All symmetric matrices can be diagonalized.

Similarly the SVD is found one step at a time from (9) and (11) and onwards. Section
7.2 will show the geometry—we are finding the axes of an ellipse. Here I ask a different
question: How are the λ’s and σ’s actually computed?
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Computing the Eigenvalues of S and the SVD ofA

The singular values σi of A are the square roots of the eigenvalues λi of S = ATA. This
connects the SVD to the symmetric eigenvalue problem (symmetry is good). In the end we
don’t want to multiply AT times A (squaring is time-consuming: not good). But the same
ideas govern both problems. How to compute the λ’s for S and singular values σ for A?

The first idea is to produce zeros in A and S without changing the σ’s and the λ’s.
Singular vectors and eigenvectors will change—no problem. The similar matrix Q−1SQ
has the same λ’s as S. If Q is orthogonal, this matrix is QTSQ and still symmetric.
Section 11.3 will show how to build Q from 2 by 2 rotations so that QTSQ is symmetric
and tridiagonal (many zeros). We can’t get all the way to a diagonal matrix Λ—which
would show all the eigenvalues of S—without a new idea and more work in Chapter 11.

For the SVD, what is the parallel to Q−1SQ? Now we don’t want to change any
singular values of A. Natural answer: You can multiply A by two different orthogonal
matricesQ1 andQ2. Use them to produce zeros inQT

1 AQ2. The σ’s and λ’s don’t change :

(QT
1 AQ2)

T(QT
1 AQ2) = QT

2 A
TAQ2 = QT

2 SQ2 gives the same σ(A) from the same λ(S).

The freedom of two Q’s allows us to reach QT
1 AQ2 = bidiagonal matrix (2 diagonals).

This compares perfectly to QTSQ = 3 diagonals. It is nice to notice the connection
between them: (bidiagonal)T (bidiagonal) = tridiagonal.

The final steps to a diagonal Λ and a diagonal Σ need more ideas. This problem can’t
be easy, because underneath we are solving det(S − λI) = 0 for polynomials of degree
n = 100 or 1000 or more. The favorite way to find λ’s and σ’s uses simple orthogonal
matrices to approachQTSQ = Λ and UTAV = Σ.We stop when very close to Λ and Σ.

This 2-step approach is built into the commands eig(S) and svd(A).

REVIEW OF THE KEY IDEAS

1. The SVD factors A into UΣV T, with r singular values σ1 ≥ . . . ≥ σr > 0.

2. The numbers σ2
1 , . . .,σ

2
r are the nonzero eigenvalues of AAT and ATA.

3. The orthonormal columns of U and V are eigenvectors of AAT and ATA.

4. Those columns hold orthonormal bases for the four fundamental subspaces of A.

5. Those bases diagonalize the matrix: Avi = σiui for i ≤ r. This isAV = UΣ.

6. A = σ1u1v
T
1 + · · ·+ σrurv

T
r and σ1 is the maximum of the ratio ||Ax|| / ||x||.



7.1. Bases and Matrices in the SVD 389

WORKED EXAMPLES

7.1 A Identify by name these decompositions of A into a sum of columns times rows:

1. Orthogonal columns u1σ1, . . . ,urσr times orthonormal rows vT
1 , . . . ,v

T
r .

2. Orthonormal columns q1, . . . , qr times triangular rows rT1 , . . . , r
T
r .

3. Triangular columns l1, . . . , lr times triangular rows uT
1 , . . . ,u

T
r .

Where do the rank and the pivots and the singular values of A come into this picture?

Solution These three factorizations are basic to linear algebra, pure or applied:

1. Singular Value DecompositionA = UΣV T

2. Gram-Schmidt OrthogonalizationA = QR

3. Gaussian Elimination A = LU

You might prefer to separate out singular values σi and heights hi and pivots di:

1. A = UΣV T with unit vectors in U and V . The singular values σi are in Σ.

2. A = QHR with unit vectors in Q and diagonal 1’s in R. The heights hi are inH .

3. A = LDU with diagonal 1’s in L and U . The pivots di are inD.

Each hi tells the height of column i above the plane of columns 1 to i − 1. The volume
of the full n-dimensional box (r = m = n) comes from A = UΣV T = LDU = QHR:

| detA | = | product of σ’s | = | product of d’s | = | product of h’s |.

7.1.B Show that σ1 ≥ |λ|max. The largest singular value dominates all eigenvalues.

Solution Start from A = UΣV T. Remember that multiplying by an orthogonal matrix
does not change length: Qx = x because Qx2 = xTQTQx = xTx = x2.
This applies to Q = U and Q = V T. In between is the diagonal matrix Σ.

Ax = UΣV Tx = ΣV Tx ≤ σ1V Tx = σ1x. (14)

An eigenvector has Ax = |λ|x. So (14) says that |λ|x ≤ σ1x. Then |λ| ≤ σ1.
Apply also to the unit vector x = (1, 0, . . . , 0). Now Ax is the first column of A.

Then by inequality (14), this column has length ≤ σ1. Every entry must have |aij | ≤ σ1.

Equation (14) shows again that the maximum value of ||Ax||/||x|| equals σ1.

Section 11.2 will explain how the ratio σmax/σmin governs the roundoff error in solving
Ax = b. MATLAB warns you if this “condition number” is large. Then x is unreliable.


