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“We must know−we will know!”

-David Hilbert [5]

1. Introduction

Among his many contributions to the development of mathematics, the German math-
ematician David Hilbert (1862 - 1943) is known for his pioneering work in the field of
functional analysis [6]. One of the cornerstones of functional analysis, the notion of a
Hilbert space, emerged from Hilbert’s efforts to generalize the concept of Euclidean space
to an infinite dimensional space [7]. The theory of Hilbert space that Hilbert and others de-
veloped has not only greatly enriched the world of mathematics but has proven extremely
useful in the development of scientific theories, particularly quantum mechanics. For ex-
ample, the ability to treat functions as vectors in a Hilbert space, as permitted by Hilbert
space theory, has enabled quantum physicists to solve difficult differential and integral
equations by using mere algebra. What is more, the theory and notation of Hilbert space
has become so ingrained in the world of quantum mechanics that it is commonly used
to describe many interesting phenomenon, including the EPR paradox (entanglement),
quantum teleportation, and quantum telecloning.

Unfortunately, much of the deep understanding behind Hilbert space theory is often
lost in the translation from the mathematical world to the world of physicists. Given
the importance of Hilbert space theory to quantum mechanics, a thorough mathematical
understanding of the Hilbert space theory that underpins much of quantum mechanics
will likely aid in the future development of quantum theory. As such, we explore some of
the fundamentals of Hilbert space theory from the perspective of a mathematician and use
our insights gained to begin an investigation of one mathematical formulation of quantum
mechanics called quantum logic.

2. Prerequisites

As we begin our exploration of Hilbert space, the reader is assumed to have some
background in linear algebra and real analysis. Nonetheless, for the sake of clarity, we
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begin with a discussion of three notions that are fundamental to the field of functional
analysis, namely metric spaces, normed linear spaces, and inner product spaces.1

Few definitions are as fundamental to analysis as that of the metric space. In essence, a
metric space is simply a collection of objects (e.g. numbers, matrices, pineapple flavored
Bon Bons covered with flax seeds) with an associated rule, or function, that determines
“distance” between two objects in the space. Such a function is termed a metric. Perhaps
the most intuitive example of a metric space is the real number line with the associated
metric |x − y|, for x, y ∈ R. In general, though, a metric need only satisfy four basic
criteria. More formally:

Definition 2.1 (Metric Space).
A metric space (X, d) is a set X together with an assigned metric function d : X×X → R
that has the following properties:

Positive: d(x, y) ≥ 0 for all x, y, z ∈ X,
Nondegenerate: d(x, y) = 0 if and only if x = y,
Symmetric: d(x, y) = d(y, x) for all x, y, z ∈ X,
Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Whenever there is little risk for ambiguity, we denote a metric space (X, d) as simply X.

As we show in Theorems 2.1 and 2.2, the next two spaces for which we provide defini-
tions, normed linear spaces and inner product spaces, are simply special cases of metric
spaces. Moreover, an inner product space is a form of a normed linear space.

Definition 2.2 (Normed Linear Space).

A (complex) normed linear space (L, ‖ · ‖) is a linear (vector) space with a function
‖ · ‖ : L→ R called a norm that satisfies the properties:

Positive: ‖v‖ ≥ 0 for all v ∈ L,
Nondegenerate: ‖v‖ = 0 if and only if v = 0.
Multiplicative: ‖λv‖ = |λ| ‖v‖ for all v ∈ L and λ ∈ C,
Triangle Inequality: ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ L.

Recall that a complex conjugate of a ∈ C is often denoted as a. We use this notation
throughout the remainder of this paper.

Definition 2.3 (Inner Product Space).
If V is a linear space, then a function 〈·, ·〉 : V × V → C is said to be an inner product
provided that

Positive: 〈v, v〉 ≥ 0, for all v ∈ V
Nondegenerate: 〈v, v〉 = 0 if and only if v = 0.

1The study of Hilbert space theory is a subset of the field of functional analysis.
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Multiplicative: 〈λu, v〉 = λ 〈u, v〉, for all u, v ∈ V and λ ∈ C,
Symmetric: 〈u, v〉 = 〈v, u〉, whenever u, v ∈ V ,
Distributive: 〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉, for all u,w, v ∈ V .

A linear space V is defined to be the inner product space (V, 〈·, ·〉) if it has an inner product
defined on it.

The symmetry criterion in Definition 2.3 is sometimes referred to as Hermitian sym-
metry.

For the sake of expediency, a normed linear space (L, ‖ · ‖) is often denoted as L.
Likewise, an inner product space (V, 〈·, ·〉) is commonly denoted V .

In the following two theorems, we formalize our assertions about the relationships be-
tween metric spaces, normed linear spaces, and inner product spaces.

Theorem 2.1.
A normed linear space (L, ‖ · ‖) is a metric space with metric d given by

d(v, w) = ‖v − w‖,

where v, w ∈ L.

Proof. That d satisfies the positive and nondegeneracy requirements of metrics, can be
seen as an immediate consequence of the positive and nondegeneracy properties of norms.
The multiplicative property of normed spaces allows us to make the following simple
calculation:

d(v, w) = ‖v − w‖ = ‖(−1)(w − v)‖ = | − 1| · ‖w − v‖ = ‖w − v‖ = d(w, v),

which demonstrates that d is symmetric.
Finally, we need to show that d satisfies the triangle inequality. To do so, we choose

any three x, y, z ∈ L. Since the vectors x− z and z− y are in L, the triangle inequality of
norms allows us to see that

d(x, y) = ‖x− y‖

= ‖(x− z) + (z − y)‖

≤ ‖x− z‖+ ‖z − y‖

= d(x, z) + d(z, y)

Hence, since d is positive, nondegenerate, symmetric and satisfies the triangle inequality,
we conclude that it is indeed a metric. �

Theorem 2.2.
An inner product space (V, 〈·, ·〉) is a normed linear space with norm

‖v‖ =
√
〈v, v〉,
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for all v ∈ V .

Proof. The positive and nondegenerate properties of inner products guarantees that ‖ · ‖
also has these properties.

A simple consequence of Hermitian symmetry (〈v, w〉 = 〈w, v〉) and the multiplicative
property of inner products is the fact that 〈v, λw〉 = λ 〈v, w〉 whenever v, w ∈ V and
λ ∈ C. Using this equality, we see that

‖λv‖ =
√
〈λv, λv〉 =

√
λλ
√
〈v, v〉 = |λ| · ‖v‖.

To show that ‖ · ‖ satisfies the triangle inequality criterion of norms, we utilize the
Cauchy-Schwartz inequality, which states that if v, w ∈ V , then | 〈v, w〉 | ≤

√
〈v, v〉

√
〈w,w〉.

Since both Karen Saxe [9] and Carol Schumacher [10] provide elegant proofs of the Cauchy-
Schwarz inequality, we will use the Cauchy-Schwarz inequality without providing a proof
in this paper.

Using the distributive property of inner products, we see that for v, w ∈ V ,

‖v + w‖2 = 〈v, v〉+ 〈w,w〉+ 〈v, w〉+ 〈w, v〉 .

According to the Cauchy-Schwarz inequality then,

‖v + w‖2 ≤ ‖v‖2 + ‖w‖2 + ‖v‖‖w‖+ ‖w‖‖v‖

= (‖v‖+ ‖w‖)2 .

So, ‖v + w‖ ≤ ‖v‖+ ‖w‖. We conclude that ‖ · ‖ is a norm on V . �

Before we delve too far into our exploration of inner product spaces and normed linear
spaces, it is useful to pause to examine a couple of interesting examples.

Example 2.1. In this first example we explore the set of all real, bounded sequences,
often termed `∞, and show that `∞ is a normed linear space with norm

‖(xn)‖∞ = sup{|xn| : n ∈ N}.

Since the absolute value function maps from R to R+ ∪ {0} (the set of all non-negative
real numbers), the function ‖ · ‖∞ is always positive. Further, if ‖(xn)‖∞ = 0 for some
(xn) ∈ `∞, then each term in (xn) must equal zero, as the least upper bound of the set
{|xn| : n ∈ N} is zero. Similarly, if a sequence (xn) ∈ `∞ is the zero sequence, then, by
definition, the supremum of the set {xn} must equal zero, which implies that ‖ · ‖∞ is also
non-degenerate.
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The basic properties of the supremum and absolute value allow us to further see that
for sequences (xn), (yn) ∈ `∞ and any complex number λ,

‖(λxn)‖∞ = sup{|λxn| : n ∈ N}

= sup{|λ||xn| : n ∈ N}

= |λ| sup{|xn| : n ∈ N}

= |λ| ‖(xn)‖∞ ,

and

‖(xn + yn)‖∞ = sup{|xn + yn| : n ∈ N}

≤ sup{|xn|+ |yn| : n ∈ N}

≤ sup{|xn| : n ∈ N}+ sup{|ym| : m ∈ N}

= ‖(xn)‖+ ‖(xn)‖ .

Since ‖(xn)‖∞, satisfies all criteria for a norm, `∞ is a normed linear space.

Example 2.2. Another important example of a normed linear space is the collection of all
continuous functions on a closed interval [a, b], denoted C[a, b], with the supremum norm

‖f‖∞ = sup{|f(x)| : x ∈ [a, b]}.

An analogous argument to the one given above for `∞ demonstrates that C[a, b] with norm
‖f‖∞ is indeed a normed linear space.

3. Introduction to the `p spaces

A natural question to ask at this point is: “Are the definitions of of metric space,
normed linear space, and inner product space equivalent?” That is, now that we have
shown

inner product space ⇒ normed linear space ⇒ metric space,

can we reverse the direction of these implications? In short, no, we cannot do so. Consider,
for example, the set T = R/{0}. While this set is certainly a metric space with metric
d(j, k) = |j − k|, for j, k ∈ T , it lacks an additive unity (i.e. 0 /∈ T ), and therefore is
not even a linear space, let alone a normed linear space or an inner product space. That
said, we still need to address the question: does normed linear space imply inner product
space? Again, the answer is a very definitive no. In order to verify this claim, we will
study the historically significant set of lp spaces (pronounced “little ell pea”) in Section 4.
However, our study of the `p spaces requires the use of the Parallelogram Law, to which
we now turn our attention.
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3.1. Parallelogram Law. The proof of the Parallelogram Law for complex normed linear
spaces proceeds in nearly an identical fashion as in the real case−only messier. For this
reason, we omit the more general proof of the Parallelogram Law for complex normed
linear spaces and instead provide the more instructive proof of the Parallelogram Law for
real linear vector spaces.

Lemma 3.1.
Let L be a normed linear space. The norm ‖ · ‖ : L→ R is continuous.

Proof. Let ε > 0 and choose δ = ε. Now pick a point a of L and any x ∈ L such that
d(x, a) = ‖x− a‖. The reverse triangle inequality implies that

d(‖x‖, ‖a‖) =
∣∣‖x‖ − ‖a‖∣∣ ≤ ‖x− a‖ < ε.

Thus ‖ · ‖ is continuous on L. �

Theorem 3.1 (Parallelogram Law).
A normed linear space L is an inner product space if and only if its associated norm (‖ · ‖)
satisfies the parallelogram equality

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2,

for every u, v ∈ L.

Proof. Suppose L is an inner product space with associated norm ‖w‖ =
√
〈w,w〉, for all

w ∈ L. If u, v ∈ L, then

‖u+ v‖2 + ‖u− v‖2 = 〈u+ v, u+ v〉+ 〈u− v, u− v〉

= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉

+ 〈u, u〉+ 〈u,−v〉+ 〈−v, u〉+ 〈−v,−v〉

= 2 〈u, u〉+ 2 〈v, v〉+ (〈u, v〉 − 〈u, v〉)

+(〈v, u〉 − 〈v, u〉)

= 2 ‖u‖2 + 2 ‖v‖2 .

Thus ‖ · ‖ satisfies the parallelogram equality.
Now suppose that L is a normed space whose norm satisfies the parallelogram equality.

Define a function 〈·, ·〉 : L× L→ R by

〈u, v〉 =
1
4

(
‖u+ v‖2 − ‖u− v‖2

)
,

for all u, v ∈ L. We wish to show that 〈·, ·〉 is an inner product. We begin by observing
that 〈u, u〉 = 1

4

(
‖2u‖2 − ‖0‖2

)
, for all u ∈ L. So 〈·, ·〉 is non-negative and non-degenerate.

Further, since

〈u, v〉 =
1
4

(
‖u+ v‖2 − ‖u− v‖2

)
=

1
4

(
‖v + u‖2 − ‖v − u‖2

)
= 〈v, u〉 ,
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the function 〈·, ·〉 is also symmetric.
To see that 〈·, ·〉 satisfies the multiplicative property, notice that for any u, v, w ∈ L,

the parallelogram equality implies

2 ‖v + u‖2 + 2 ‖w‖2 = ‖(v + u) + w‖2 + ‖(v + u)− w‖2 , (1)

and

2 ‖v − u‖2 + 2 ‖w‖2 = ‖(v − u) + w‖2 + ‖(v − u)− w‖2 . (2)

By subtracting equation (2) from equation (1), we see that

2
(
‖v + u‖2 − ‖v − u‖2

)
= ‖(v + w) + u‖2 − ‖(v + w)− u‖2

+ ‖(v − w) + u‖2 − ‖(v − w)− u‖2 ,

which can be rewritten as

2 〈v, u〉 = 〈v + w, u〉+ 〈v − w, u〉 . (3)

If w = v, then 2 〈v, u〉 = 〈2v, u〉, as

〈0, v〉 = 〈u · 0, v,=〉 1
4

(‖0 + v‖ − ‖0− v‖) = 0.

We now use induction to demonstrate that the multiplicative property holds for all positive
integers. Suppose there exists some integer n so that if n > 2, then for every i, where
1 ≤ i ≤ n, the equality i 〈v, u〉 = 〈iv, u〉 holds. So, by an immediate consequence of
Equation (3),

〈(n+ 1)v, u〉 = 〈nv + v, u〉

= 2 〈nv, u〉 − 〈nv − v, u〉

= 2n 〈v, u〉 − (n− 1) 〈v, u〉

= (n+ 1) 〈v, u〉 .

Hence 〈·, ·〉 satisfies the multiplicative criteria for all positive integers. Since

〈−u, v〉 =
1
4

(‖−u+ v‖ − ‖−u− v‖)

=
1
4

(‖u− v‖ − ‖u+ v‖)

= −1 · 〈u, v〉 ,

the function 〈·, ·〉 satisfies the multiplicative property for all integers.
Suppose that r is any rational number. Then there exist integers n and m such that

r = m
n . Since nmn = m, then nmn 〈u, v〉 =

〈
nmn u, v

〉
= n

〈
m
n u, v

〉
, which implies that

m
n 〈u, v〉 =

〈
m
n u, v

〉
, or, equivalently, r 〈u, v〉 = 〈ru, v〉
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Since Q is dense in R, for any x in R, we can find a sequence (rn) of rational numbers
that converges to x. Let ε > 0 and choose N ∈ N so that |xn−x| < ε

|〈u,v〉|+1 for all n > N .
So, since the co-domain of 〈·, ·〉 is R (as the co-domain of any norm is R), we see that for
any u, v ∈ L,

d(〈xnu, v〉 , x 〈u, v〉) = | 〈xnu, v〉 − x 〈u, v〉 |

= |xn 〈u, v〉 − x 〈u, v〉 |

= 〈u, v〉 |xn − x|

< ε.

Lemma 3.1 implies that limn→∞ 〈xnu, v〉 = 〈xu, v〉. Therefore, by the uniqueness of limits,
we conclude that 〈xu, v〉 = x 〈u, v〉.

The final step in this proof is showing that 〈·, ·〉 also satisfies the distributive property.
Choose any three members u, v, w of L, and pick x, y ∈ L given by

x =
u+ w

2
and y =

u− w
2

.

Recall that Equation (3) implies 〈2x, v〉 = 〈x+ y, v〉+ 〈x− y, v〉. So,

〈u+ w, v〉 = 〈2x, v〉

= 〈x+ y, v〉+ 〈x− y, v〉

= 〈u, v〉+ 〈w, v〉 .

Given 〈·, ·〉 satisfies all five criteria of an inner product space, we conclude that L is an
inner product space. �

On page 248 of his book Introduction to Topology and Modern Analysis, George Sim-
mons proves the Parallelogram Law for a complex normed linear space L by using the
inner product 〈u, v〉 = 1

4

(
‖u+ v‖2 − ‖u− v‖2 + i ‖u+ v‖2 − i ‖u− v‖2

)
[11]. Hence, for

the remainder of this paper, we assume that the Parallelogram Law is valid for complex
linear normed vector spaces.

3.2. Introduction to the `p spaces. The `p spaces are a class of normed linear spaces
that seem to hold a special place in the hearts of many functional analysts. For each
p ∈ R, where p > 1, `p is the set of all sequences (xn) such that the series

∞∑
n=1

|xn|p

is convergent. The standard norm ‖ · ‖p for `p is given by

‖(xn)‖p =

( ∞∑
n=1

|xn|p
) 1

p

,
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for each (xn) ∈ `p [9]. We begin our exploration of the `p spaces by first considering two
specific examples, namely the `1 and `2 spaces.

Example 3.1. In this example, we show that the linear space `1 is a normed linear space
but not an inner product space. We begin by showing that `1 is a normed linear space.
The properties of the absolute value function and summations ensure us that ‖ · ‖1 is both
nonnegative and nondegenerate. To see that ‖ · ‖1 is multiplicative, notice that for any
λ ∈ C and (xn) ∈ `1,

‖(λxn)‖1 =
∞∑
n=1

|λxn| =
∞∑
n=1

|λ| |xn| = |λ|
∞∑
n=1

|xn| = |λ| ‖(xn)‖1 .

Finally, the triangle inequality of the absolute value function allows us to make the calcu-
lation

‖(xn + yn)‖1 =
∞∑
n=1

|xn + yn| ≤
∞∑
n=1

|xn|+
∞∑
n=1

|yn| = ‖(xn)‖1 + ‖(yn)‖1 ,

for any (xn), (yn) ∈ `1. Hence, ‖·‖1 also satisfies the triangle inequality. Since ‖·‖1 satisfies
all four criteria of a norm, `1 is a normed linear space.

To see that `1 is not an inner product space, we will examine the counterexample of
(xn) =

(
1

2n−1

)
and (yn) =

(
2

3n−1

)
. Since both (xn) and (yn) are geometric, a simple set of

calculations shows that ‖(xn)‖1 = 2, ‖(yn)‖1 = 3, ‖(xn − yn)‖1 = 4
3 , and ‖(xn + yn)‖1 = 5.

Further arithmetic calculations lead to the conclusion that 2 ‖(xn)‖21 +2 ‖(yn)‖21 = 22, but
‖(xn + yn)‖21 + ‖(xn − yn)‖21 = 239

9 , in violation of the parallelogram equality. We thusly
conclude that `1 is not an inner product space.

We now have verification that an inner product space is a special case of normed space
and that the term “inner product space” is not simply an synonym for “normed space.”

Example 3.2. Here we show that the linear space `2 is an inner product space as well
as a normed linear space. Since `2 is an `p space, we assume that `2 is a normed space
and then use the parallelogram equality to show that `2 is an inner product space as well.
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Suppose (an), (bn) ∈ `2. Then

‖(an + bn)‖22 + ‖(an − bn)‖22 =
∞∑
n=1

|an + bn|2 +
∞∑
n=1

|an − bn|2

=
∞∑
n=1

(
|an + bn|2 + |an − bn|2

)
=

∞∑
n=1

(
a2
n + 2anbn + b2n + a2

n − 2anbn + b2n
)

=
∞∑
n=1

(
2a2

n + 2b2n
)

= 2
∞∑
n=1

|an|2 + 2
∞∑
n=1

|bn|2

= 2 ‖(an)‖22 + 2 ‖(bn)‖22 .

Since ‖ · ‖2 satisfies the Parallelogram Law, `2 is an inner product space.

At this point, it is worth pausing to note the significance of the `2 space. As we
demonstrate in the next section `2 is the only one of the `p spaces that happens to be an
inner product space. Moreover, as Karen Saxe notes in her textbook Beginning Functional
Analysis, this “space” of sequence played an important role in the naming of Hilbert space.
The notion of the `p space comes from none other than David Hilbert, and Hilbert was
known to discuss the `p spaces during some of his lectures. Owing to the `2 space’s
uniqueness from its peers, Hilbert’s students often referred to it as Hilbert’s space, from
which we have the term Hilbert space [9].

4. Properties of the `p Spaces

4.1. Minkowski’s Inequality. In the previous section, we claimed that `2 is the only
`p space that is an inner product space. Since this is such an interesting property, we
formalize this claim by turning it into a theorem in Subsection 4.2. Before doing so,
however, we examine one property that is common to all `p spaces: they are all normed
linear spaces. The proof of this claim relies on Minkowski’s Inequality. The method we
use to prove Minkowski’s Inequality involves concave functions, and is based on Lemma
4.1. The reader may recall that:

Definition 4.1 (Concave Function).
A function g : R+ → R is said to be concave if it satisfies the inequality

λg(x) + (1− λ)g(y) ≤ g(λx+ (1− λ)y),

for all x, y ∈ R+ and all λ that satisfy 0 ≤ λ ≤ 1.
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The following figure demonstrates a geometric interpretation of a concave function.

Figure 1. A geometric interpretation of a concave function. The curve
represents λg(x)+(1−λ)g(y) and the line segment represents g(λx+(1−λ)y.

Lemma 4.1.
Let g : R+ → R be a concave function and define a function f : R2

+ → R by

f(x, y) = y g(x/y).

Then the inequality
n∑
i=1

f(xi, yi) ≤ f

(
n∑
i=1

xi,
n∑
i=1

yi

)
is valid for all positive real numbers x1, . . . , xn and y1, . . . , yn.

Proof. We proceed by induction. Let λ = y1/(y1 + y2). Then the base case is as follows:

f(x1, y1) + f(x2, y2) = y1g(x1/y1) + y2g(x2/y2)

= (y1 + y2)
(

y1

y1 + y2
g(x1/y1) +

y2

y1 + y2
g(x2/y2)

)
≤ (y1 + y2)g

(
(x1 + x2)/(y1 + y2)

)
= f(x1 + x2, y1 + y2),

as 1− λ = y2
y1+y2

. Suppose that the inequality

k∑
i=1

f(xi, yi) ≤ f

(
k∑
i=1

xi,

k∑
i=1

yi

)
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holds for all positive integers k strictly less than some positive integer n. Then
n∑
i=1

f(xi, yi) =
n−1∑
i=1

f(xi, yi) + f(xn, yn)

≤ f

(
n−1∑
i=1

xi,
n−1∑
i=1

yi

)
+ f(xn, yn)

≤ f

(
xn +

n−1∑
i=1

xi, yn +
n−1∑
i=1

yi

)

= f

(
n∑
i=1

xi,
n∑
i=1

yi

)
,

precisely as we wished. �

We are now ready to tackle Minkowski’s Inequality:

Theorem 4.1 (Minkowski’s Inequality).
Let (xi), (yi) be points in `p, where p > 1. Then the following inequality holds:( ∞∑

i=1

|xi + yi|p
) 1

p

≤

( ∞∑
i=1

|xi|p
) 1

p

+

( ∞∑
i=1

|yi|p
) 1

p

.

Proof. We break this proof into three cases:

(1) (xi) and (yi) contain only positive terms,
(2) (xi) and (yi) contain no zero terms, and
(3) (xi) and (yi) contain positive, negative, and zero terms.

Suppose sequences (xi) and (yi) contain only strictly positive terms. Define new se-
quences (si) and (ti) by si = xpi and ti = ypi for all i ∈ N. Consider the function
g(s) = (1 + s1/p)p. Since g′′(s) < 0, we know that g is concave.2 Now define a new
function f : R2

+ → R by f(s, t) = y g(s/t). With some algebraic manipulation we see that
f(s, t) =

(
s1/p + t1/p

)p
. So, if we apply Lemma 4.1, we then see that

n∑
i=1

(
s
1/p
i + t

1/p
i

)p
≤

( n∑
i=i

si

) 1
p

+

(
n∑
i=i

ti

) 1
p

p

. (4)

By taking the pth root of each side of the inequality (4) and substituting (xi) and (yi) into
(4), we obtain the inequality(

n∑
i=1

(xi + yi)p
) 1

p

≤

(
n∑
i=i

xpi

) 1
p

+

(
n∑
i=i

ypi

) 1
p

. (5)

2See http://en.wikipedia.org/wiki/Concave functions for more information [4].
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Since (xi) and (yi) are strictly positive sequences and (5) is valid for all n ∈ N, the
inequality (5) is precisely the Minkowski inequality for this case:( ∞∑

i=1

|xi + yi|p
) 1

p

≤

( ∞∑
i=i

|xi|p
) 1

p

+

( ∞∑
i=i

|yi|p
) 1

p

. (6)

Now suppose that (xi) and (yi) contain no zero terms. The triangle inequality implies
that for all i ∈ N,

∣∣xi+yi∣∣ ≤ ∣∣|xi|+|yi|∣∣. This, in turn, implies that
∣∣xi+yi∣∣p ≤ ∣∣|xi|+|yi|∣∣p.

So ( ∞∑
i=1

∣∣xi + yi
∣∣p) 1

p

≤

( ∞∑
i=1

∣∣|xi|+ |yi|∣∣p)
1
p

.

Since ( ∞∑
i=1

∣∣|xi|+ |yi|∣∣p)
1
p

≤

( ∞∑
i=i

|xi|p
)1/p

+

( ∞∑
i=1

|yi|p
)1/p

by Inequality (6),( ∞∑
i=1

∣∣xi + yi
∣∣p) 1

p

≤

( ∞∑
i=1

|xi|p
) 1

p

+

( ∞∑
i=1

|yi|p
) 1

p

. (7)

Finally, suppose that (xi) and (yi) contain zero terms. Then we will need to construct
new sequences (xi,m) and (yi,m) as follows:

xi,m =

{
xi if xi 6= 0
1
m ·

1
i if xi = 0

yi,m =

{
yi if yi 6= 0
1
m ·

1
i if yi = 0

.

Notice that (xi,m), (yi,m) ∈ `p, as
(

1
i

)
∈ `p for all p > 1. Now consider the sequences

(σm) =

( ∞∑
i=1

∣∣xi,m + yi,m
∣∣p) 1

p


and

(τm) =

( ∞∑
i=1

|xi,m|p
) 1

p

+

( ∞∑
i=1

|yi,m|p
) 1

p

 .

Inequality (7) implies that σm ≤ τm for all m ∈ N. Hence

lim
m→∞

σm ≤ lim
m→∞

τm.
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Fortunately,

lim
m→∞

σm =

( ∞∑
i=1

∣∣xi + yi
∣∣p) 1

p

and

lim
m→∞

τm =

( ∞∑
i=1

|xi|p
) 1

p

+

( ∞∑
i=1

|yi|p
) 1

p

.

We therefore conclude that the Minkowski inequality holds for all (xi), (yi) ∈ `p. �

When verifying that the standard norm for `p is, in fact, a norm, the bulk of the work
is done simply proving Minkowski’s inequality. Minkowski’s inequality tells us that ‖ · ‖p
satisfies the triangle inequality (indeed, Minkowski’s inequality can be thought of as the
triangle inequality for `p). As with the `1 norm, the properties of the absolute value
function guarantees that ‖ · ‖p is both nonnegative and non-degenerate. So, we now need
only to show that ‖ · ‖p satisfies the multiplicative property of norms. Choose any λ ∈ C
and any sequence (xn) ∈ `p. Then

‖(λxn)‖p =

( ∞∑
n=1

|λxn|p
) 1

p

=

( ∞∑
n=1

|λ|p|xn|p
) 1

p

=

(
|λ|p

∞∑
n=1

|xn|p
) 1

p

= |λ|

( ∞∑
n=1

|xn|p
) 1

p

= |λ| · ‖(xn)‖p ,

which is sufficient justification to conclude that all `p spaces are normed linear spaces.

4.2. Properties of the `p Spaces. As promised, we now prove that `2 is the only `p

space that is an inner product space.

Theorem 4.2.
If p is any real number strictly greater than 1, then `p is an inner product space if and
only if p = 2.

Proof. We already know from Example 3.2 that `2 is an inner product space. So, we now
show that p = 2 is the only value of p for which `p is an inner product. Consider the
sequences

(xn) = {1, 0, 0, 0, . . . , 0, 0, . . .} and (yn) = {0, 1, 0, 0, . . . , 0, 0, . . .},
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where both sequences contain exactly one term equal to 1 with the remaining terms equal
to zero. Observe that (xn), (yn) ∈ `p and

∑∞
n=1 |xn|p =

∑∞
n=1 |yn|p = 1 for all p. So, by

plugging (xn) and (yn) into the parallelogram equality, we see that

2

( ∞∑
n=1

|xn|p
) 2

p

+ 2

( ∞∑
n=1

|yn|p
) 2

p

=

( ∞∑
n=1

|xn + yn|p
) 2

p

+

( ∞∑
n=1

|xn − yn|p
) 2

p

2 · 12/p + 2 · 12/p = 22/p + 22/p

2 = 22/p.

Since 2 = 22/p only when p = 2, we conclude by the Parallelogram Law that `2 is the only
`p space that is an inner product space. �

We now know a little about the `p spaces. So, are there any more interesting properties
that we have yet to uncover about them? As is often the case with this sort of question
in mathematics, the answer is a very emphatic yes. All `p spaces share a property that
we have not yet discussed. Specifically, all `p spaces are complete. The reader may recall
from an introductorty real analysis course that Cauchy sequences and complete metric
spaces are defined in the following manner:

Definition 4.2 (Cauchy Sequences).
Let (an) be a sequence in a metric space (X, d). The sequence (an) is said to be Cauchy
if for every ε > 0, there exists N ∈ N such that d(an, am) < ε whenever n,m > N .

Definition 4.3 (Complete Metric Space).
If every Cauchy sequence in a metric space X converges to an element of X, then X is
said to be complete.

Proving that all `p spaces are complete can be a little tricky, as we are essentially
proving that a Cauchy sequence of sequences converges to a sequence that is in `p, which
means that if we are not careful, sequence notation in such a proof can quickly become
overwhelming. In that light, we now provide a brief discussion on the sequence notation
that we use during the proof of Theorem 4.3. Consider a Cauchy sequence (an) in `p.
In order to help dissipate possible confusion, we will denote the sequence (an) as

(
α

(n)
i

)
and use the index n to refer to each member sequence in (an) and the index i to refer to
the individual elements in a given member sequence. In other words, for a fixed m, the
sequence

(
α

(m)
i

)
is an element of `p and, for a fixed k, the number α(m)

k is an element of
C.

Theorem 4.3.
All `p spaces are complete.
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Proof. Suppose (an) =
(
α

(n)
i

)
is a Cauchy sequence in `p. Let ε > 0. Then there exists

an N ∈ N such that for all n,m > N ,( ∞∑
i=1

∣∣∣α(n)
i − α

(m)
i

∣∣∣p) 1
p

< ε. (8)

It follows from Equation (8) that for all fixed k ∈ N, the sequence
(
α

(n)
k

)∞
n=1

is Cauchy.

Since each
(
α

(n)
k

)
is a Cauchy sequence of complex numbers, it converges to a point in C.

Define a new sequence (bi) such that b1 is the limit of
(
α

(n)
1

)
, the scalar b2 is the limit of(

α
(n)
2

)
, and so forth.

In order to show that (bi) ∈ `p, first observe that Equation (8) implies that for all j ∈ N,

j∑
i=1

∣∣∣α(n)
i − a

(m)
i

∣∣∣p < εp.

So

lim
m→∞

j∑
i=1

∣∣∣α(n)
i − α

(m)
i

∣∣∣p =
j∑
i=1

∣∣∣α(n)
i − bi

∣∣∣p < εp.

Since
∑j

i=1

∣∣∣α(n)
i − bi

∣∣∣p < εp for all j ∈ N, we see that

lim
j→∞

j∑
i=1

∣∣∣α(n)
i − bi

∣∣∣p < εp.

This means that for any given ε > 0, we can find an N ∈ N so that if n > N , then
‖an − b‖p < ε, where an denotes

(
α

(n)
i

)∞
i=1

and b denotes (bi). Therefore, an → b. To
show that b ∈ `p, fix L ∈ N so that L > N . Then aL − b ∈ `p, as

∞∑
i=1

∣∣∣a(L)
i − b

∣∣∣p
converges. Since `p is a vector space, we know that aL − (aL − b) is also an element of `p.
Hence b ∈ `p. �

If the definition of (bi) in the proof of Theorem 4.3 seems confusing, consider the
following diagram.

α
(1)
1 α

(2)
1 α

(3)
1 α

(4)
1 · · · → b1

α
(1)
2 α

(2)
2 α

(3)
2 α

(4)
2 · · · → b2

α
(1)
3 α

(2)
3 α

(3)
3 α

(4)
3 · · · → b3

α
(1)
4 α

(2)
4 α

(3)
4 α

(4)
4 · · · → b4

...
...

...
...

. . . →
...



A BRIEF INTRODUCTION TO HILBERT SPACE AND QUANTUM LOGIC 17

The first column in the above diagram represents the first element in the Cauchy sequence
(an), the second column represents the second element in (an), etc. In other words,
the elements of the Cauchy sequence (an) are represented vertically. However, when we
define (bi), we are interested in the horizontal sequences displayed in the above diagram
which, unlike their vertical counterparts, need not in general be elements of `p. So, b1, for
example, is defined as the limit of the sequence

(
α

(n)
i

)
= {α(1)

1 , α
(2)
1 , α

(3)
1 , α

(4)
1 , . . .}, the

number b2 is the limit of the sequence
(
α

(n)
2

)
= {α(1)

2 , α
(2)
2 , α

(3)
2 , α

(4)
2 , . . .}, and so on.

In the last line of the proof of Theorem 4.3, we invoke the fact that the `p spaces
are vector spaces, a point which we have not yet explicitly mentioned; though we tacitly
assume it in earlier proofs. The reason for this omission is the trivial nature of the proof
that all `p spaces are vector spaces.

5. Hilbert Space and Quantum Mechanics

5.1. Hilbert Space. Not all normed or inner product spaces are complete. For this
reason, we want to be able to distinguish complete normed or inner product spaces from
those that are not, which is the motivation behind the definition of Banach and Hilbert
spaces.

Definition 5.1 (Banach Space).
A Banach space is a complete normed linear space.

Definition 5.2 (Hilbert Space).
A Hilbert space is a complete inner product space.

We know from our discussion of the `p spaces that not all Banach spaces are Hilbert
spaces. Specifically, while all `p are are Banach spaces, only `2 is a Hilbert space. However,
is there an inner product space that is not a Hilbert space? That is, are all inner product
spaces necessarily complete? In the first sentence of this section we claimed that answer
to this question is no. To see why this is so, one need only consider the set Q of rational
numbers. Normal multiplication on rational numbers is a function that maps from Q×Q
to Q ⊂ R and satisfies all four of the criterion of Definition 2.3. However, the sequence
(sn) of rational numbers, whose n term is given by

sn =
n∑
i=1

1
n2
,

which, thanks to Leonhard Euler, is known to converge to an irrational number, specifically
π2

6 . Since (sn) is convergent, and therefore Cauchy, we can safely conclude that while Q
is an inner product space, it is not a Hilbert space. In the following example, we explore
an even more interesting example of a normed linear space that is not complete.
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Example 5.1. Let c00 denote the set of all finitely nonzero sequences. That is, a sequence
(xn) is a member of c00 if and only if there exists an N ∈ N such that xn = 0 for all n > N .
Consider the function ‖ · ‖ : c00 → R given by

‖(xn)‖ = sup{|xn| : n ∈ N},

for all (xn) ∈ c00. We know from Example 2.1 that ‖ · ‖ is a norm. So, it follows that c00

is a normed linear space.
Proving that c00 is not complete, again places us in the mildly disconcerting position

of needing to construct a Cauchy sequence of sequences. Using the notation in the proof
of Theorem 4.3, for a fixed n ∈ N, we define the sequence an =

(
α

(n)
i

)
∈ c00 to be the

sequence

an =
(
α

(n)
i

)
=
{

1
1
,
1
2
, . . . ,

1
i
, . . . ,

1
n︸ ︷︷ ︸

n nonzero terms

, 0, 0, . . . , 0, . . .
}
.

Let ε > 0 and choose N ∈ N so that 1
N < ε. If n,m > N , where n < m, then

d(an, am) = sup
{∣∣∣α(n)

i − α
(m)
i

∣∣∣ : i ∈ N
}

=
1

n+ 1
< ε.

So, (an) is certainly Cauchy. However, (an) converges to the sequence{
1
1
,
1
2
, . . . ,

1
i
, . . . ,

}
,

which contains no zero terms and is therefore not a member of c00.

5.2. Introduction to Quantum Mechanics. Early in the history of quantum mechan-
ics (1922, to be precise), German physicists Otto Stern and Walter Gerlach conducted an
experiment designed to detect the intrinsic angular momentum of silver atoms.3 The silver
atoms used in the Stern-Gerlach experiment, as this 1922 experiment is now commonly
called, did in fact behave as though they had a sort of intrinsic angular momentum. The
property responsible for the behavior of these silver atoms is now called spin.4 Moreover,
while classical mechanics predicts that the silver atoms should be allowed to have a con-
tinuous range of possible spin values, Stern and Gerlach measured the silver atoms used
in their experiment to have one of two possible spin values−often referred to as “spin up”
and “spin down”−a fact that holds true for an entire class of particles.

3For a more detailed discussion of the Stern-Gerlach experiment and its ramifications, one can turn to
John Townsend’s A Modern Approach to Quantum Mechanics [12].
4While term “spin” seems to indicate that the silver atoms are rotating, or spinning, in space, this is
actually not the case. Instead, spin is simply an intrinsic property of the electron.
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In general, the measurement of the spin a particle must be made with respect to a
specified direction. So, suppose we set the z-axis of a standard Euclidean three dimensional
coordinate system to point upwards (i.e. away from the center of the Earth). Then, in
conventional quantum mechanics notation, if we measure a particle, say an electron, to
have “spin up” with respect to the positive z-axis, we denote it as |+z〉. Likewise, if
we measure an electron to have “spin down” with respect to the z-direction, then we
notate our find as |−z〉. The |±z〉 notation is commonly called a ket vector. Townsend
reports that if we send a stream of electrons all with spin |+z〉 through an apparatus that
determines the spin of each electron with respect to the x-axis, we will find that half of
the electrons have spin |+x〉 and the other half have spin |−x〉, indicating a potential
relationship between |+z〉 and |±x〉 [12]. As it happens, the relationships between |±z〉
and |±x〉 are given by

|+z〉 =
1√
2
|+x〉+

1√
2
|−x〉 , (9)

and

|−z〉 =
1√
2
|+x〉 − 1√

2
|−x〉 . (10)

In the language of quantum mechanics, Equations (9) and (10) imply that if an electron
is in spin state |+z〉, then we say that it is in a superposition of spin states |+x〉 and
|−x〉. That is, an electron in spin state |+z〉 is also simultaneously in both spin states
|+x〉 and |−x〉. Since, a particle can only be measured in either state |+x〉 or state |−x〉
(but not both), the |±x〉 spin states form an orthonormal basis for the |+z〉 spin state.5

More generally, in three dimensional Euclidean space, there are exactly three orthonormal
bases for the spin states of an electron, namely,

{|+x〉 , |−x〉}, {|+y〉 , |−y〉}, and {|+z〉 , |−z〉}.

As such, a generic spin state |ψ〉 of an electron can be written in the |±u〉 basis, where u
denotes a some specified direction in space, as a linear combination of |+u〉 and |−u〉.

The general spin state |ψ〉 for an electron is often called its state function. In the |±z〉
basis, |ψ〉 may be written as

|ψ〉 = a |+z〉+ b |−z〉 ,

for some a, and b in C. Equivalently, we may write |ψ〉 in the |±z〉 basis as

|ψ〉 =

(
a

b

)
|±z〉

,

5That is, if a particle is found to be in the |+x〉 spin state, then a second spin measurement with respect to
the x-axis will result has an one-hundred percent chance of finding the particle in |+x〉 and a zero percent
chance of finding the particle in |−x〉.
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where, of course, |+z〉 = (1, 0) and |−z〉 = (0, 1). Related to the ket vector |ψ〉 is the
bra vector 〈ψ|, which is defined as 〈ψ| = |ψ〉T , where |ψ〉T denotes the (complex) vector
transpose of |ψ〉. As in linear algebra, the right (matrix) multiplication of |ψ〉 by 〈ψ| is an
inner product. Due to the ingenuousness of physicists in developing new terms, the inner
product of 〈ψ| with |ψ〉 (denoted 〈ψ|ψ〉) is called a bracket (or, bra-ket). More explicitly
this is

〈ψ|ψ〉 =
(
a b

)( a

b

)
= |a|2 + |b|2.

One should note that, in general, the coefficients a and b may be functions of both position
and time. In other words, |ψ〉 itself may vary with respect to position and time. However,
there is one caveat that any good state function |ψ〉 must satisfy, namely, 〈ψ|ψ〉 = 1.6 So,
if we want to know the probability of finding |ψ〉 in, say, the state |+z〉, we need only find
the projection of |ψ〉 onto |+z〉. More explicitly, the probability that when we measure
the spin of |ψ〉 we will find it to be spin-up in the z-direction is 〈+z|ψ〉.

Now, if we wish to somehow modify the spin of an electron, we can mathematically
represent the effect of this modification as a matrix. In fact, as we have already seen,
whenever we measure the spin of an electron, we invariably modify its spin. If the electron
was in some arbitrary spin state |ψ〉 before a measurement, then as soon as we measure
the spin of the electron with respect to some spacial direction u, then the spin state of the
electron becomes either |+u〉 or |−u〉, depending on the outcome of the measurement. In
other words, a measurement of spin may be represented as a matrix whose eigenvectors
are the only possible outcomes of a given measurement.

As we have seen, the function that represents the spin state of an electron is a function
that maps from Cn−if the spin state function is a function of n variables−to C2. In other
words, the Hilbert space in which electron spin is represented is C2. As one might imagine,
quantum physicists select the inner product space in which they work based on the sort
of problem with which they are currently contending. For example, the set C[a, b] of all
continuous functions on the closed bounded interval [a, b] with inner product

〈f, g〉 =
∫ b

a
fg

is an inner product space that is frequently used in quantum mechanics.
Now that we very cursory understanding of quantum mechanics, we turn our attention

to quantum logic. Quantum logic was first introduced by Garrett Birkhoff and John von
Neumann in 1936 as a possible system of logic based on the bizarre nature of quantum
mechanics [2].

6Given any ket vector |φ〉, we can define a state function |ψ〉 by |ψ〉 = |φ〉 /
p
〈φ|φ〉. Observe that 〈φ|φ〉 = 1.
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6. The Manual: The Foundation of Quantum Logic

David Cohen, in his book An Introduction to Hilbert Space and Quantum Logic, outlines
a system of logic for quantum mechanics based on Hilbert space theory called quantum
logic [3]. While quantum logic is certainly one interesting vantage point from which to
conduct a thorough mathematical study of quantum mechanics, such a study falls outside
the discourse of this paper. However, we provide an introduction to quantum logic with
the goal of providing the reader with a foundation from which to conduct further research.

6.1. The Manual. Central to quantum logic is the concept of a manual. A manual is
a special example of something Cohen calls a quasimanual, which is simply a collection
of sets. So, for the sake of completeness, we begin our exploration of quantum logic by
giving a definition for a quasimanual and associated terminology.

Definition 6.1 (Quasimanual).
A quasimanual Q is a nonempty collection of nonempty sets called experiments [3].

Definition 6.2 (Outcomes).
The members of an experiment are called outcomes. The set of all possible outcomes in
a quasimanual Q is denoted XQ [3].

Definition 6.3 (Event).
An event in a quasimanual Q is a subset of an experiment in Q [3].

Cohen uses the terminology “test for an event A” to mean “performing an experiment
that contains A” [3]. Accordingly, Cohen says that if such a test returns an element of A,
then “event A has occurred” [3]. We, in this paper, follow suit.

Admittedly, these definitions can seem a bit convoluted, especially at first glance. Ac-
cordingly, the reader may find it helpful to bear in mind that Cohen’s motivation for con-
structing said definitions is that humanity’s understanding of specific aspects of natural
world comes from data collected during any number of related experiments [3]. Accord-
ingly, it seems natural to compile the results of experiments that are interconnected in
some manner into a single set, which we call a manual. Before we get ahead of ourselves
and trot onto the definition of a manual, we pause to consider a simple example of a
quasimanual in order to help build intuition for the world of quantum logic.

Example 6.1. Consider the set Q = {A,B,C}, where A = {0, 1, 2}, B = {2, 3, 4}, and
C = {0,−1,−2}. In the terminology set forth above, since Q is a collection of sets, it is
a quasimanual. Further, A, B, and C are each experiments, the subset {0,−1} of C is an
event, and XQ = {−2,−1, 0, 1, 2, 3, 4}.

In constructing the definition for a manual, we need to think about how we want our
experiments within one to be related. The next two definitions will help us in this regard.
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Definition 6.4 (Orthogonal).
Two events A, B in a quasimanual Q are said to be orthogonal, denoted A ⊥ B, if they
are disjoint subsets of a single experiment in Q. For outcomes x and y of Q we write
x ⊥ y to mean {x} ⊥ {y} [3]

Definition 6.5 (Orthogonal Complements).
If A,B are orthogonal events in Q and A ∪B is an experiment in Q, then we say that A
and B are orthogonal complements in Q. We denote this by A oc B [3].

We now have everything we need to define a manual. In the next subsection, we examine
a specific example of a manual. In doing so, the motivation for the manual definition should
become more apparent.

Definition 6.6 (Manual).
A manual is a quasimanual M which satisfies the following:

(i) If A,B,C,D are events in M with A oc B,B oc C, and C oc D, then A ⊥ D.
(ii) If E,F ∈M and E ⊆ F , then E = F .
(iii) If x, y, z are outcomes in M with x ⊥ y, y ⊥ z, z ⊥ x, then {x, y, z} is an event in

M.

6.2. The Bow-Tie Manual. To help us better understand the definitions from the pre-
ceding subsection, let’s start by exploring an example which Cohen refers to as the “bow-tie
manual” [3]. Suppose we have clear plastic box containing a firefly, and then drawn a ver-
tical line down the center of the front of the box and another vertical line down the center
of a side adjacent to the front. (Please see Figure 2.) If we look through the front of the

Figure 2. Experimental set-up for the so-called bow-tie manual. The box
contains a firefly. Figure courtesy of Cohen [3].

box, we either see a light on the right side of the box (outcome r), a light on the left side
of the box (outcome l), or no light at all (outcome n). Similarly, if we look through the
side of the box, we either see a light in the front of the box (f), a light in the back of the
box (b), or, again, no light at all (n). So, in essence, each time we look at the box, we
perform an experiment whose outcome depends on the position of the firefly within the
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Figure 3. Orthogonality diagram for the bow-tie manual. Courtesy of [3].

box and the firefly’s willingness to emit light for our viewing pleasure. For simplicity, we
will refer to the separate acts of looking into the front and looking into the side of the box
as experiments E and F , respectively.

In order to verify that the bow-tie manual is indeed a manual as purported, we find it
useful to first diagram the orthogonality relations within it (see Figure 3). The bow-tie
manual is certainly a quasimanual, as it is a collection of two sets. Further, since neither
experiments E nor F are subsets of the other, the bow-tie manual automatically satisfies
property (ii) of Definition 6.6.

We now proceed to demonstrate that the bowtie manual satisfies the criterion (i) of
Definition 6.6. Consider the event {r} (recall that an event is simply a subset of an exper-
iment). Then {r} is an orthogonal complement to {l, n}. However, the only orthogonal
complement to {l, n} is {r}, giving us the chain

{r} oc {l, n} oc {r} oc {l, n}.

The event {l, n} is certainly orthogonal to {r}. Of course, if we start with {l} instead of
{r}, we obtain the nearly identical orthogonal complement chain

{l} oc {r, n} oc {l} oc {r, n}.

So, now consider the event {r, l}. The only orthogonal compliment of {r, l} is {n}, which is
an orthogonal complement to {f, b}. However, since the event {n} is the only orthogonal
complement to {f, b} and we’ve already used it in our sequence of orthogonal complements,
we are done. Analogous arguments hold if we start by selecting an event in F .

In order for two events or outcomes to be orthogonal, they must be from the same
experiment. So, the bow-tie manual trivially satisfies property (iii), and is therefore a
manual as claimed.
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6.3. Further Examples.

Example 6.2. Consider a set X with at least two members. The collection QX of all
nonempty subsets of X is certainly a quasimanual. Suppose x, y are elements of X. Then
{x}, {x, y} ∈ QX . Since {x} is a proper subset of {x, y}, QX fails criteria (ii) of definition
6.6, and is therefore not a manual.

Example 6.3 (Partitional Manual on R). In this example, we show the that so-called
partition manual on R is a manual. The partition manual of R is the collection B of all
countable partitions of the set R of real numbers that satisfy

(i) I ⊆ B
(ii) if B ∈ B, then R\B ∈ B;
(iii) B is closed under countable unions,

where I = {(a, b] : a, b ∈ R}. Suppose A,B, C and D are events in B with A oc B, B oc C,
and C oc D. Since A is countably large, we can index the sets contained within A so that⋃
n∈NAn denotes the union of all sets contained contained within A. We can also do the

same for B, C and D. Then⋃
n∈N

An ∩
⋃
n∈N

Bn =
⋃
n∈N

Bn ∩
⋃
n∈N

Cn =
⋃
n∈N

Cn ∩
⋃
n∈N

Dn = {},

and ⋃
n∈N

An ∪
⋃
n∈N

Bn =
⋃
n∈N

Bn ∪
⋃
n∈N

Cn =
⋃
n∈N

Cn ∪
⋃
n∈N

Dn = R.

It follows then that
⋃
n∈NAn is disjoint to

⋃
n∈NDn. Hence A is perpendicular to D. Since

B automatically satisfies properties (ii) and (iii) of Definition 6.6, we conclude that B is a
manual as claimed.

7. Building up a System of Logic

Our next task is to construct a system of logic. The key to doing so is understanding the
orthogonal complement relationships between events of a manual. As such, the following
definition of operationally perspective proves useful.

Definition 7.1 (Operationally Perspective).
If M is a manual, A,B and C are events in M, and A oc B and B oc C, then we say
that A and C are operationally perspective, which we denote by A op C.

To better understand what it means for two events to be operationally perspective,
consider the bow-tie manual. In the bow-tie manual, the event {r, l} is an orthogonal com-
plement to the event {n}, which, in turn, is an orthogonal complement to the even {b, f}.
Hence {r, l} and {b, f} are operationally perspective. In symbols this is {r, l} op {b, f}.
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A reasonable definition for implication follows nicely from Definition 7.1. As we see in
Lemma 7.1, such an implication has the rather nice property that it is a partial ordering
on the collection of events in a manual.

Definition 7.2 (Implies).
If M is a manual and A and B are events in M, then we say A implies B, denoted A 5 B,
if and only if there is an event C with C ⊥ A and (C ∪A) op B.

Definition 7.3 (Logically Equivalent).
If M is a manual and A and B are events in M, then we say that A is logically equivalent
to B, denoted A↔ B, if and only if A 5 B and B 5 A.

Lemma 7.1. Let M be a manual. Then implication is a partial ordering on the collection
of events in M.

Proof. Recall that a partial ordering of a set is a binary relation ≤ that is reflexive (a ≤ a),
antisymmetric (if a ≤ b and b ≤ a, then a = b), and transitive (if a ≤ b and b ≤ c, then
a ≤ c).

Since5 is almost trivially reflexive (consider A∪{}, for some event A) and antisymmetry
is taken care of by the logical equivalent definition, we need only show that implication
is transitive. So, suppose A,B,C are events in M with A 5 B and B 5 C. Then exist
events D,E, F,G such that D ⊥ A, E ⊥ B, A∪D oc F , F oc B, B∪E oc G, and G oc C.
Since B ⊥ E, B oc G∪E. By the first property of manuals, A∪D ⊥ G∪E, which implies
that A ∪ D ⊥ G. So there exists some event Γ such that Γ ⊥ A and A ∪ D ∪ Γ oc G.
Hence A ∪D ∪ Γ op C. Since A ⊥ D ∪ Γ, A 5 C. �

At this point, a brief recess in our orgy of gratuitously convoluted definitions is in
order. One technique that greatly aids in understanding many of the tortuous relationships
found in quantum logic is diagraming the orthogonal complements. So, we’ll begin by
diagraming the operationally perspective definition. Suppose that M is a manual, Γ and
Λ are experiments in M, and there exist A ⊆ Γ and C ⊆ Λ such that A op C. Then
there exists an event B in both Γ and Λ such that A oc B and B oc C. Figure 4 presents
a diagram of these orthogonal relationships. In essence, if A happens, then B cannot
happen, so C must happen. Conversely, if B happens, then neither A nor C can happen.
In other words, if two events are operationally perspective, if one occurs, then so must the
other. It is important to note that two operationally perspective events need not come
from the same experiment.

Now let’s look at Definition 7.2. One can certainly conceive of a situation when an
event B happens whenever an event A happens but not necessarily vise versa. In the bow-
tie manual, for example, if event {r} happens, then the event {b, f} must also happen.
However, if {b, f} occurs, then {r} need not occur, as {l} may occur instead. For the
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Figure 4. OC diagram for two operationally perspective events A and C.
The solid black lines indicate oc relationships.

Figure 5. OC diagram for A 5 B.

sake of constructing an OC diagram for Definition 7.2, suppose A 5 B. Then there exist
events C and V such that A ⊥ B and A∪B oc V and V oc B (see Figure 5). Notice that
A op B only when C is the empty set. This observation begs the question, “what exactly
is the difference between logically equivalence and operationally perspective?” As we see
in Lemma 7.2, there isn’t any difference between operationally perspective and logically
equivalent.

Lemma 7.2.
If A,B are events in a manual M, then A op B if and only if A↔ B.

Proof. Suppose A op B. So, A ∪ {} op B and B ∪ {} op A. Hence A 5 B and B 5 A, as
A ⊥ {} and B ⊥ {}.

Now suppose that A↔ B. Then there exist events C,D,E, and F with the properties
that A ⊥ C, B ⊥ E, A ∪ C oc D, D oc B, B ∪ E oc F , and F oc A. So, B oc E ∪ F ,
which implies that A∪C ⊥ E ∪F , by the first property of manuals. As such, there exists
some event Γ such that A ∪ C ∪ E ∪ F ∪ Γ is an experiment. Since A oc F , A ∪ F is an
experiment. So, by the second property of manuals, C = E = Γ = {}. Hence A op B. �

While seemingly trivial in nature, this next set of lemmas are interesting nonetheless.

Lemma 7.3.
If E and F are experiments in a manual M, then E ↔ F .

Proof. Since E oc {} and {} oc F , we see that E op F . We conclude by Lemma 7.2 that
E and F are logically equivalent. �

Lemma 7.4.
If A,B,C,D are events in M and A↔ C and B ↔ D, then A 5 B if and only if C 5 D.
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Proof. Suppose A 5 B. Since C 5 A and B 5 D, we see that C 5 A 5 B 5 D. So
C 5 D.

Similarly, if C 5 D, then A 5 C 5 D 5 B. Hence A 5 B. �

Lemma 7.5.
If A is an event in M and E,F ∈M, with A ⊆ E and A ⊆ F , then F\A↔ E\A.

Proof. Since A oc E\A and A oc F\A, then E\A op F\A. Thus F\A↔ E\A. �

Definition 7.4 (Lattice).
Let P be a set with a partial ordering 5. Then (P,5) is called a lattice if for all p, q ∈ P
the set {p, q} has a greatest lower bound and a least upper bound in P .

We call inf {p, q} the meet of p and q, and we denote it by p ∧ q.
We call sup {p, q} the join of p and q, and we denote it by p ∨ q.

A couple of notes on this definition: If inf {p, q} = s, then s has the property that
s 5 p, q (that is, s implies both p and q) and for all r that implies both p and q, we have
r 5 s.

Definition 7.5 (Unit and Zero of a Lattice).
If (L,5) is a lattice, then a unit 1L for L is a member of L such that p 5 1L for all p ∈ L.
A zero 0L for L is a member of L such that 0L 5 p for all p ∈ L.

It is standard practice to drop the subscript notation from both the zero and unit if it
is clear from context to which lattice they belong.

Example 7.1. Let X be a nonempty set and let Sub(X) be the collection of all subsets
of X. Then Sub(X), partially ordered by inclusion, is a lattice with a unit and a zero.
To see that this is so, consider any K1,K2 ∈Sub(X). Then K1 ∧ K2 = K1 ∩ K2, and
K1 ∨K2 = K1 ∪K2. So, Sub(X) is a lattice. Further, since the empty set {} is a subset
of all elements of Sub(X) and all elements of Sub(X) are subsets of X, Sub(X) has zero
0 = {} and unit 1 = X.

Example 7.2. Let H be a finite dimensional Hilbert Space, and let L be the collection
of all subspaces of H. Define a partial order on L as follows: for R,S ∈ L, R 5 S if and
only if R is a subspace of S. Then (L,5) is a lattice with unit and zero.

Proof. Consider any T,Q ∈ L. If x, y ∈ T ∩Q and α, β are scalars, then, since αx+βy ∈ T
and αx+ βy ∈ Q, we have αx+ βy ∈ T ∩Q. So T ∧Q = T ∩Q, as T ∩Q is the largest
possible subspace of H that is a subspace of both T and Q. Now consider the set ∩I that
is the intersection of all subspaces of H that contain both T and Q. If p, q ∈ ∩I and a, b

are scalars, then ap + bq is in ∩I. So T ∨ Q = ∩I. Hence L is a lattice with zero {} and
unit H. �
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Definition 7.6 (Logic).
A logic (L,5,′ ) is a lattice (L,5) with unit and zero, together with an operation ′ : L→ L,
called an orthocomplemetation, that satisfies:

(i) for all p ∈ L, p′′ = p and p ∧ p′ = 0L;
(ii) for all p, q ∈ L, if p 5 q, then q′ 5 p′;
(iii) for p, q ∈ L, if p 5 q, then q = p ∨ (p′ ∧ q).

A logic (L,5,′ ) is often denoted L if there is no fear of ambiguity. The members of a
logic are referred to as propositions.

Definition 7.7 (Orthogonal).
If L is a logic and p, q ∈ L, we say that p is orthogal to q, denoted p ⊥ q, if and only if
p 5 q′.

Theorem 7.1 (DeMorgan’s Law).
If L is a logic and p, q ∈ L, then

(p ∨ q)′ = p′ ∧ q′ and (p ∧ q)′ = p′ ∨ q′.

Proof. Choose any p, q ∈ L. Since p 5 p ∨ q and q 5 p ∨ q, property (ii) from definition
7.6 tells us that (p∨ q)′ 5 p′ and (p∨ q)′ 5 q′. It follows that (p∨ q)′ 5 p′∧ q′. Conversely,
p′ ∧ q′ 5 p′ and p′ ∧ q′ 5 q′. So p 5 (p′ ∧ q′)′ 5 p′ and p 5 (p′ ∧ q′)′ 5 q′. Hence,
p ∨ q 5 (p′ ∧ q′)′. So, by applying property (ii) from definition 7.6 another time, we see
that p′ ∧ q′ 5 (p ∨ q)′. Therefore (p ∨ q)′ = p′ ∧ q′.

We will use the first equality to prove the second. Since (p′ ∧ q′)′ = (p ∨ q)′′ = p ∨ q, it
follows that (p ∧ q)′ = p′ ∨ q′. �

8. Quantum Logic and Quantum Mechanics

While, as previously stated, a thorough discussion of quantum mechanics through the
lens of quantum logic is outside the scope of this paper, the purpose of this final section is
to provide the reader with a brief taste for how such a discussion might progress. Conse-
quently, we do not provide a comprehensive descant; we merely provide a few definitions
and concepts that are relevant to the topic. Nonetheless, the interested reader can seek
Cohen’s An Introduction to Hilbert Space and Quantum Logic for further information [3].

Definition 8.1 (Compatible Propositions).
Two propositions p and q in a logic L are called compatible if there exist u, v, w ∈ L such
that if {u, v, w} is a pairwise orthogonal set in L, then u ∨ v = p and v ∨ w = q.

The set {u, v, w} is called a compatibility decomposition for p and q.

Definition 8.2 (Quantum Logic).
A quantum logic is a logic with at least two propositions that are not compatible.
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Definition 8.3 (Classical Logic).
A classical logic is a logic in which every pair of propositions is a compatible pair.

Definition 8.4 (State Function).
Suppose L is a logic. Then a state function s : L→ [0, 1], or state, for short is a function
with the properties that

(i) for p, q ∈ L, if p ⊥ q, the s(p ∨ q) = s(p) + s(q), and
(ii) s(1L) = 1.

Definition 8.5 (Classical States).
A classical state s on a logic L is a state function with the property that for all p ∈ L,
either s(p) = 0 or s(p) = 1).

Definition 8.6 (Pure State).
A pure state on a logic L is one that cannot be written as a nontrivial mixture of other
states on L.

Lemma 8.1. If B is a basis for a finite Hilbert space H and A,B are disjoint subsets of
B with the property that A ∪ B = B, then A and B span different subsets of H. That is,
and span(A)∩span(B) = {0}.

Proof. Suppose x is in the span of both A and B. Then, there exist scalars α1, . . . , αn and
β1, . . . , βk such that

x = α1a1 + α2a2 + · · ·+ αnan and x = β1b1 + β2b2 + · · ·+ βkbk

where A = {a1,a2, . . . ,an} and B = {b1,b2, . . . ,bk}. So, it follows that

α1a1 + α2a2 + · · ·+ αnan + (−β1)b1 + (−β2)b2 + · · ·+ (−βk)bk = 0. (11)

Since the only solution to (11) is the trivial solution, we have x ∈ {0}. Since 0 is in both
the span of A and the span of B, the intersection of the span of A with the span of B is
the set {0}. �

Interesting Fact 8.1.
If H is a finite dimensional Hilbert space and F (H) is the collection of all orthonormal
bases for H, then F (H) is a manual called the frame manual.

Proof. We’ll begin by verifying property (i) of definition 6.6. Consider any bases A,B,C
in F (H) where A oc B, B oc C, and C oc D. Then there exist E,F,G ∈ F (H) such
that A ∪ B = E, B ∪ C = F and C ∪ D = G. Lemma 11 tells us that A and B span
different subspaces of H and B and C span different subspaces of H. Suppose a is in the
span of A and a 6= 0. Then a is not in the span of B. However, since a is in the span of
F = B ∪C, then it must be in the span of C. An analogous argument demonstrates that
the span of C is also a subset of the span of A. Hence A and C span the same subspaces
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of H. Through the use of similar reasoning, we can see that that B and D span the same
subspaces. The proof of Lemma 8.1 implies that the elements of A and D are linearly
independent, and so form a basis.

If I, J ∈ F (H) and I ⊆ J , then, since |I| = |J | = dim (H), I = J , where | · | denotes the
order (size) of a set. Since property (iii) of definition 6.6 is satisfied trivially, we conclude
that F (H) is a manual. �

9. Conclusion

In Section 5.2, we mentioned in passing that any external modification of the spin state
of an electron may be represented as a matrix. This fact applies more generally to any state
function that is in a Hilbert space that is isomorphic to Rn. That is, if the state of some
particle is given by |φ〉, where the co-domain of |φ〉 is Rn, then any external modification
of |φ〉 may be represented by some matrix A. Matrix A is actually a special example of
a particular type of creature, known as an operator, that lives in the seedy underground
of the mathematical representation of quantum mechanics. Operators play a particularly
important part in quantum mechanics, and a truly thorough understanding of mathematics
that underpins quantum mechanics requires a study of the theory that governs them.
While, operator and spectral theory are both outside the realm of this paper, Sterling
Berberian [1], David Cohen [3] and J.R. Retherford [8] all provide approachable discourses
on both spectral and operator theory. As such, all readers interested in the mathematical
theory behind quantum mechanics are highly encouraged to seek these three sources.
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