
3 Forced vibration 

Figure 22 

Forced vibration is the result of continuous external stimulus, in contrast 
to natural vibration which, once started, is I d  alone. It is an observed fact 
of engineering that assemblies of components and structures with gener- 
ous safety factors against static loads will sometimes fail catastrophically 
when subjected to even quite mild forced vibration. To explain the reason 
for this I shall turn to o w  undamped model again, and try to analyse the 
effect that forced vibration will have. You should recall that most 
structures have quite low damping, so the undamped model is justifiable as 
a first approach. Figure 22 shows two ways by which forced vibration can 
be applied to the system - either by an externally applied force F or by the 
motion X of a previously steady mounting. In practice these vibration 
sources may be very complex but it is sufficient here to consider sinusoidal 
ones. This kind of motion is often tennedforced hmmonlc vibration. 

3. l Forced harmonic vibration by ground motion 
Consider the moving fixture first, which might represent say a building 
suRering an earthquake, or a carburettor mounted on a vibrating engine, 
or an instrument panel mounted on a vibrating aircraft body. The fixture 
motion, or ground motion, with amplitude X, and frequency Q rad S-', 

has displacement 

X = X, sin Qt 

Ground motion is sometimes referred to as displacement excitation. The 
'mass' displacement is X, so the corresponding spring extension from the 
equilibrium position at any particular instant (right-hand side of 
Figure 23), is X - X, and the equation of motion for the mass m. along x, is: 

so mP+kx=kX 

and mx + kx = kX, sin Dr 

The solution to this equation will be the motion of the model, which will be 
our estimate of corresponding real motions. The complete solution to this 

n e + r - n  equation is a combination of natural vibration and forced vibration, and 4 +#=h 

this is discussed further in Section 5.1. For the present I will confine my 
attention to the forced vibration. In mathematical terms the solution we 
are looking for is the Particular Integral of the equation of motion. 

Figure 23 Experience suggests that the response has the same frequency as that of the 
ground motion, so we will try as a possible solution 

for which f = - Q' A sin Qt. 

Substituting into the differential equation gives 

m( - Q' A sin Rt) + k(A sin Qr) = kX, sin Qt 

so ( - mR2 + k)  A sin Ot = kX,sin Qt 

If the mounting is vibrating, then in general sin Qt is non-zero, so that I 
can cancel it from both sides of the equation giving 

(-mD2+k) A=kX, 

We have seen therefore that the trial solution is valid if A has this value. 
This is what we wanted to know -the amplitude A of the response. I can 



the result by remembering that the undamped natural frequency 
that is w2 = k/m, so that 

This tells us how the response amplitude A compares with the mounting 
amplitude X,.  It depends upon how the driving frequency D compares 
with the natural frequency U .  Expressing the equation in the form of ratios 
A / X ,  and f2/w enables us to examine the important features of this 
response without knowing details of the input amplitude or frequency, 
other than in comparison with the natural frequency. This equation can be 
applied to mechanical vibrations ranging from quartz crystals at many 
thousands of hertz to ships at only a fraction of one hertz. It can even be 
applied to electrical oscillations at millions of hertz. What we need to 
know now is the shape of the graph showing how A / X o  depends on D/w. 

SAG 10 
What are the units of (a) dllw, and (b) A/Xo? (c) Check the units of the 
equation for A / X o .  

SA0 11 

(a) Evaluate AIX, for the following values of D/w. Note that the 
amplitude is always positive by definition, so you can simply ignore a 
minus sign in front of the answers. 

0, 0.4, 0.8, 0.9, 1.0, 1.1, 1.2, 1.4, 1.8, 2.0, 3, 10, 100 
(b) Sketch the graph of A / X ,  for values of R / w  between 0 and 3. 

(C) What value of D/w gives the largest value of AIX,? 
(d) What do you think would be the result of applying a vibration of 

frequency D = W  to a mechanical assembly? 

The ratio D/w is called thefrequency ratio. The ratio AIX,  is called the hquemcy ratio 
transmissibility, T ,  because it is the fraction of the input amplitude rmnmhsibility 
transmitted to the other side of the spring, 

A =  T X o  

As was implied in SAQ 11 part (a), the amplitude A and hence the 
transmissibility Tare always specified as positive and this is a matter to 
which I will return later in Section 4.1 in a discussion of phase. 

If R is very low indeed then we would naturally expect the whole spring 
and mass to move up and down slowly without any significant change of 
spring length - the acceleration of the mass is so small that the force 
required to provide it is negligible, so the extra spring extensions are 
negligible. The transmissibility would be 1.0. At very high input fre- 
quencies, the force applied to the mass will hardly move it because in a 
very short time it reverses its direction. The transmissibility would be zero. 
The remarkable feature of the theoretical model is that in between, at 
frequencies close to the natural frequency, there is a very large trans- 
missibility. At exactly D = w it is infinity. This large response is called rao...oc 
resonance (Figure 24) and D = w is the resonancefrequency. -m 
Of course, we would not expect a corresponding inlinite response from a 
real system -just a very large response quite possibly leading to breakage. 
Even for the model an infinite amplitude would not be expected instantly - 
the amplitude takes time to build up. One reason for this discrepancy is 
that we have been analysing the steady-state response only. Even when 
there is forced vibration there can be a natural vibration occurring at the 
same time. This is triggered by the initial conditions of the forced 
vibration. In practice it usually dies away because of damping, to leave 



Figure 25 

only the steady-state forced response. The natural vibration is in this 
context called a transient vibration. The transients are discussed a little 
further later in this Unit. 

There is another reason why the infinite response of the model does not 
occur in practice. There is damping in any real system. Close to resonance 
the large amplitude of response means high speeds, and so the damping 
can no longer be neglected. Close to resonance the response depends 
on the damping, so I shall look at this in Section 4. Away from 
resonance light damping has little effect. Since the mechanical engineer is 
usually mainly interested in keeping well away from resonance, the precise 
details of the response at resonance are often of only secondary interest. In 
other words, we are usually more interested in making sure that a system 
does not resonate, than in analysing exactly how it will break if we allow it 
to resonate. 

3.2 Forced harmonlc vlbratlon by applled force 
What about the other way in which the forced harmonic vibration can be 
caused - namely by the application of a harmonic force directly to the 
mass element (Figure ZSa)? The free-body diagram is shown in 
Figure 25(b), where 

F = F, sin Ot 

F, is called the force amplitude - it is the 'amplitude' of the applied force, 
the peak value of the sinusoidal variation (measured in newtons ofcourse). 
The ground is now considered very rigid so that its motion can be 
neglected. 

The equation of motion along x is: 

R,=F,sinOt-kx=mx 

so that 

mx + kx = F, sin Ot 

When the vibration was applied by shaking the support the equation was: 

mx + kx = kX, sin Or 

The only difference here is that kX, has been replaced by F,. The analysis 
will, therefore, be equivalent, and the old result 

A -= 1 
X, l-(O/co)2 



becomes instead 

A 1 

Note that Folk would be the extension of the spring nsulting from the 
smooth application of a steady (non-oscillating) force of magnitude F,. 
The expression A/(Fo/k) is called the magnification ratio, M, because it is ' " R6 
the ratio of the response amplitude to Folk: 

The shape of the magnification ratio and the transmissibility graphs are 
the same, but only for this special case of negligible damping. The two are 
different in principle. The magni6cation ratio relates the motion of an 
object to the force acting on it. The transmissibility relates the input on one 
side of the spring to the resulting motion on the other side. Once again as 
A is always positive the magnification ratio M is also always taken to be 
positive. The significance of the minus sign in the above definition for M, 
when O/o > 1, will become apparent in Section 4.1 in the context of phase. 

Notice that in this forced vibration produced by an applied force F, sin Qt 
a f o m  P is transmitted through the spring to the fixed support. This force 
is 

where its amplitude is 

Po=kA= Fo - TF 
1 - ( ~ 1 ~ ) ~  - 

and T =  
1 

1 - 
is the transmissibility, which we met first in Section 3.1. 

An 800g machine component mounted on springs is known to have a 
natural frequency of 25 rad S-' and little damping (from observation of its 
natural vibration). Its base is expected to be vibrated at a frequency of 
30 rad S-' with amplitude 2 mm. Estimate (a) the spring stiffness, (b) the 
frequency ratio, (c) the transmissibility, (d) the response amplitude. 

A delicate instrument of mass 400 g is mounted on springs to isolate it 
from the severe vibration of the framework which must support it. The 
expected framework vibration is 2 mm amplitude at 30 Hz. The maximum 
acceptable instrument amplitude is 0.4 mm. Estimate (a) the maximum 
acceptable transmissibility, (b) (from the graph in Figure24) the ac- 
ceptable range of natural frequency of the instrument on its mounting, (c) 
the permissible mounting spring stiffness. 

SA0 14 
A 140 kg engine is subject to an approximately sinusoidal force of 
amplitude 800 N and frequency 50 Hz (3000 rev/min). The mountings are 
rubber blocks with stiffness 60 kN m-' with little damping (1 < 0.02). 
(a) Estimate the amplitude of vibration of the engine. (b) Estimate the 
amplitude of the force applied to the car through the mountings. 
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Fa me~hanical m b I y  capable of MW vilnution is stimulated 
by an oxternal murcswfvilnution then it win vibrate. Tbe frequency 
of the rmponm is the m e  as t b t  of the forcing vibration. The 
811)fitudc of the tGBponse dopends on the forcing amplifudc and the 
Reqwnoy ratio Q/@. 

When the wdra of vibration is a force acting on the objeut, the 
rQspoose mp1itude is 

.:. A w M F , / k  

.:Wthe soura is dieplaoansa with amptttude X*, the 
respom anlplitmia Is 

A =  TX, 

When 6) = m  the asacarbly is h monana d the mpome ampli- 
tude bec large (infinite in terms of the undampcd model). 

4 Damped forced vibration 
As we saw earlier, all real systems have some damping, although it is often 
very small. Even small damping forces affect the forced response, especially 
around resonance, so it can be helpful to be able to incorporate them in 
our theoretical model and investigate damped forced vibration. I will follow 
the same method as for natural vibration, adding damping forces to the 
previously undamped model. I will consider first the vibration caused by 
an applied harmonic force, as the analysis is somewhat simpler than that 
required for ground excitation, when damping is incorporated in the 
model. 

As in Section 3,I will only be looking for the forced vibration part of the 
complete solution to the equations of motion in this section. The total 
vibration is discussed briefly in Section 5.1. 

4.1 Vibration by applied force 
If I add damping to the system of Figure 25 the new model is the one 
shown in Figure Zqa), and Figure Zqb) shows the modified free-body 
diagram. 

The equation of motion for displacement of the system from the equilib- 
rium position of the spring is 

R,=F,sinOt-kx-ci=ma=mZ 

which can be re-arranged to give 

mx+ci+kx=F,s inOt  

The presence of the c i  term means that the previous 'undamped' solution 
x = A sin Ot is no longer valid. We can, however, find a solution of the 
form 




