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Existence and Uniqueness

(i) If f is continuous on an open rectangle
R={(x,y)eER?:a<x<bc<y<d}
that contains the point (xo, yo), then the IVP
y'=f(x,y),y(x0) = yo (1)

has at least one solution on some open subinterval of (a, b)
that contains xg.

(ii) If both f and f, are continuous on R, then (1) has a unique
solution on some open subinterval of (a, b) that contains xg.
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Existence and Uniqueness

Example: Consider the IVP
y' = %Xyz/f’,y(Xo) = yo.
(i) For what points (x, yo), does the Theorem imply that it has a
solution?
(ii) For what points (xo, yo), does the Theorem imply that it has a
unique solution on some open interval that conatins x?

Since f(x,y) = 13—0xy2/5 is continuous for all (x, y), it follows that
the above IVP has a solution for every (xp, yo). Here
4

fy(x.y) = 307"
is continuous for all (x,y) with y # 0. Therefore, if yo # 0, there
is an open rectangle on which both f and f, are continuous and
hence the above IVP has a unique solution on some interval that
contains xg. If y =0, then f,(x, y) is undefined. Hence, the
Theorem does not apply to this IVP if yg = 0.
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Existence and Uniqueness

Example: Consider the IVP

.10

y = §Xy2/57y(0) = -1

This IVP has a unique solution on some open interval that
contains xp = 0. Find a solution and determine the largest open
interval (a, b) on which it is unique.

Let y be any solution of the above IVP. Since y(0) = —1, it
follows from the continuity of y that there is an open interval /
that contains xp = 0 on which y has no zeroes. Separating the
variables, we get 10
-2/5., _ =Y
y y = 3
Integrating this and writing the arbitrary constant as 5¢/3, we get

X.

5355 5,
4 —3( + ¢).
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Example Continued

535 -2
37 T3
Since y(0) = -1, c = —1so

(x* +¢).

y= (- 153

for x € I. This is a unique solution to the IVP on (—1,1). This is
the largest open interval on which the given IVP has a unique
solution. To see this, note that

e G

is a solution of the given IVP on (—o0,00). There are infinitely
many solutions of the given IVP that differ from y = (x> — 1)%/3
on every open interval larger than (—1,1). One such solution is

C[(x*-1)%3 1<x<1
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Corollary
Consider the IVP

y' 4+ p(t)y = g(t); y(to) = yo,

where p and g are continuous functions on an interval | with
to € I. Then there is a unique solution on | of the given IVP.

| A

Proof.
Since y! = —p(t)y — g(t), it follows that

f(t,y) = —p(t)y — g(t) and g;(t,y) = —p(t)

are both continuous on / X R. By the existence and uniqueness
theorem, the given IVP has a unique solution on a subinterval
J C | with 5 € J.

Ol
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Picard’s Iteration Method

Picard’s iteration method gives us a rough idea on how to
construct solutions to IVP’s. Consider the IVP

yt=f(t,y); y(0)=0.
Suppose y = ¢(t) is a solution to the IVP. Then,

d¢ _
2 = 1(t,0(1)), 6(0) = 0.

That is, .
o(t) = /0 (s, 6(s))ds; H(0) =

The above equation is called an integral equation in the unknown
function ¢.

Prachi Mahajan, IITB MA108: D2-05



Picard’s Iteration Method

Conversely, if the integral equation holds i.e.,

t
o0) = [ Fls.0(s))ds: 6(0) =
then by the Fundamental Theorem of Calculus,

do _
= f(t. (),

so that y = ¢(t) is a solution to the IVP y! = f(t,y); y(0) = 0.
Thus, solving the integral equation is equivalent to solving the IVP.

Prachi Mahajan, IITB MA108: D2-05



Picard’s Iteration Method

Picard’s iteration describes a way to look for solutions of the
integral equation

o(t) = /0 (s, 6(s))ds.

We define iteratively a sequence of functions ¢,(t) for every
integer n > 0 as follows: Let

(bo(t) =0
bu(t) = /0 £(s, do(s))ds
bo(t) = /0 (s, é1(s))ds

dny1(t) = /Of(S,qb,,(s))ds.
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Picard’s Iteration Method

Note: Each ¢, satisfies the initial condition ¢,(0) = 0. None of
the ¢, may satisfy y! = f(t,y). Suppose for some n, ¢,11 = ¢n.
Then,

n — ®n — f sy Pn d. )
bra = bn = [ Fls.0s))ds
and this implies J

E(d’n(t)) = f(ta ¢n(t))

is a solution of the given IVP. In general, the sequence {¢,} may
not terminate. In fact, all the ¢, may not even be defined outside
a small region in the domain. However, it is possible to show that,
under the hypotheses of the above theorem, the sequence
converges to a function

o(t) = lim ¢n(t)

n—o0

which is the unique solution to the given IVP.
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Example: Solve the IVP:
yt=2t(1+y); y(0)=0.
The corresponding integral equation is
t
o(t) = / 25(1 + 6(s))ds.
0

Let ¢o(t) = 0. Then,

t

o1(t) = /2sds:t2,
0
t 4
$o(t) = /25(1+52)ds:t2—|—2,
0
t ! 4 46
p3(t) = /25(1+52+)ds:t2++.
; 2 2 "%
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Example continued

We claim:
6 t2n

LA
dn(t) =24 5+ 5+t

Use induction to prove this:
t
bma(t) — / 25(1 + dn(s))ds
0

t 54 S2n
- / 25<1+s2++...+)ds
0 2 n!

4 16 2 2n+2
S BT L i
2 % nl " (n+ 1)
12k
Hence ¢,(t) is the n-th partial sum of the series ZW
k=1
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Example continued

0 2k
t
Recall that ¢,(t) is the n-th partial sum of the series E '
k=1
Applying the ratio test, we get:

t2k+2 k! t2
— | =—— =0
hk+”!t% k+1
for all t as k — oo. Thus,

00 ok

. o t o

n||_>rrgo ¢n(t) = : W =e" —1.

=1

Hence, y(t) = e’ — 1 is a solution of the IVP.
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