
LECTURE 10

The Rank of a Matrix

Let A be an m× n matrix.

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 amn · · · amn




Recall that the column space of A is the subspace of Rm spanned by the columns of A :

ColSp (A) = span (c1,c2, . . . . , cn) ⊂ R
m

where ith column vector ci is defined by

(ci)j ≡ aji , j = 1, . . . ,m

Recalll also that the row space of A is the subspace of Rn spanned by the rows of A:

RowSp (A) = span (r1, r2, . . . , rm) ⊂ Rn

where the ith row vector is defined by

(ri)j = aij , j = 1, . . . , n

A priori there is no particular relationship between the column space of A and the row space of A; indeed,
they are not even subspaces of the same space.

Lemma 10.1. If a matrix A′ is row equivalent to a matrix A then the row space of A′ is equal to the row

space of A.

Proof . First we note that row operations can be built up from row operartions of the following form

Rij (λ1, λ2) :

{
ri → r

′

i = λ1ri + λ2rj i = j

ri → r
′

i = ri , i �= j
, λ1 �= 0(10.1)

For example, the interchange of ith and jth rows can be carried out as

{
ri

rj

}
Rij(1,1)
−−−−−→

{
r
′

i = ri + rj

r
′

j = rj

}
Rji(−1, 1)
−−−−−−−→

{
r

′′

i = r
′

i = ri + rj

r
′′

j = −r′

j + r
′

i = ri

}
Rij(1,−1)
−−−−−−−→

{
r

′′′

i = r
′′

i + r
′′

j = rj

r
′′′

j = r
′′

j = ri

}

while the other two elementary row operations can be viewed as simply special cases of the row operation
(??).

Now suppose v is a vector lying in the span of row vectors of A. I will show that it also lies in the span
of the row vectors of the matrix A′ obtained by applying the row operation (??) to A.

v ∈ span (r1, r2, . . . , rm) ⇒ v = c1r1 + · · ·+ ciri + · · ·+ cjrj + · · ·+ cmrm

= c1r
′

1 + · · ·+ ci

(
1

λ1
(r′

i − λ2rj)

)
+ · · ·+ cjr

′

j + · · ·+ cmr
′

m

= c1r
′

1 + · · ·+

(
ci

λ1

)
r
′

i + · · ·+

(
cj −

ciλ2

λ1

)
r

′

j + · · ·+ cmr
′

m

∈ span (r′

1, . . . , r
′

m)

1
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Thus, the row spaces of A and A′ are the same. If A′ is row equivalent to A, then by definition there must
be a sequence of row operations that converts A into A′.

A→A
(1)
→A

(2)
→ · · · →A

(k) = A
′

From the preceding paragraph, we know at each intermediate stage we haveRowSp
(
A

(i)
)
= RowSp

(
A

(i+1)
)

so we conclude

RowSp (A′) = RowSp (A)

Lemma 10.2. Let A be an m×n matrix and let A′ be its reduction to row echelon form. Then the non-zero

rows of A′ form a basis for the row space of A.

The basis idea underlying the proof of this lemma is best illustrated by an example. Suppose A is a 4 × 5

matrix that is row equivalent to the following matrix in reduced row-echelon form

A
′′ =




1 1 0 0 3

0 0 1 0 1

0 0 0 1 1

0 0 0 0 0




Clearly the span of the row vectors of A′ is just the span of the first three row vectors (that is to say, the
contribution of the last row to the row space of A is just 0). On the other hand, it’s clear the only way we
can satisfy

0 = c1r1 + c2r2 + c3r3

is by taking c1 = c2 = c3 = 0; because that’s the only way to kill off the components of the total sum
that come from the pivots of r1, r2 and r3 (that is, we can’t force a cancellation of terms coming from
two different rows because only the pivot row will have a non-zero entry in the component corresponding a
column with a pivot). Thus,

0 = c1r1 + c2r2 + c3r3 ⇒ c1 = c2 = c3 = 0

⇒ {r1, r2, r3} is a basis for span (r1, r2, r3) = RowSp (A′′) = RowSp (A)

However, this isn’t quite the statement of the lemma. For the lemma says the row vectors of a matrix in
(un-reduced) echelon form should be a basis for the row space of A. However, we can conclude this simply
by noting that

dim(RowSp(A)) = number of vectors in a basis for RowSp (A)

= number of non-zero rows in reduced echelon-form A
′′ of A

= number of non-zero rows in an echelon-form A
′ of A

But because the row vectors of the matrix in echelon-form span RowSp (A), and because the number of
these row vectors is the same as the dimension of RowSp (A), we can use Statement 3(b) of Theorem 9.6
(at the end of Lecture 9) to conclude that the row vectors of A′ form a basis for RowSp (A).

Lemma 10.3. Let A be an m×n matrix and let A′ be its reduction to row echelon form. Then the columns

of A corresponding to the columns of A′ containing the pivots of A′ form a basis for the column space of

A.

This lemma is also best demonstrated by example. Suppose A is a 4× 5 matrix that is row equivalent to

the following matrix in reduced row-echelon form

A
′′ =



1 1 0 0 3
0 0 1 0 1
0 0 0 1 1
0 0 0 0 0



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Note that the pivots have been designated by bold-face type. Now the column space of A′′ will be identical
to the row space of its transpose

(A′′)
T

=




1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
3 1 1 0




R2 → R2 −R1

R5 → R5 − 3R1 −R3 −R4
−−−−−−−−−−−−−−−−−−−−−→




1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0




where we’ve used the rows containing the old pivots to clear out the rest of the matrix entries. Obviously,

the remaining non-zero rows will be a basis for the RowSp
[
(A′′)

T

]
= ColSp [A′′] = ColSp [A]. But the

non-zero rows of (A′′)
T

are just (actually, linear combinations of) of the columns of A′ containing pivots.
Therefore, the columns of A′ that contain pivots correspond to a basis for the column space of A.

Example 10.4. Find a basis for the column space of

A =




0 1 0 1
1 1 0 0
−1 0 2 1
1 2 2 1




• First we row reduce A to row-echelon form

R1 ↔ R2

R3 → R3 +R2

R4 → R4 +R3
−−−−−−−−−−−−→




1 1 0 0
0 1 0 1
0 1 2 1
0 2 4 2




R3 → R3 −R2

R4 → R4 − 2R3
−−−−−−−−−−−−−→




1 1 0 0
0 1 0 1
0 0 2 0
0 0 0 0




The last matrix is a row-echelon form ofA. It has pivots in the 1st, 2nd, and 3rd columns. Therefore,
the 1st, 2nd, and 3rd columns of the original matrix A will form a basis for the column space of A:

ColSp (A) = span







0

1

−1

1


 ,




1

1

0

1


 ,




0

0

2

2







Theorem 10.5. Let A be an m×n matrix. The dimension of the row space of A is equal to the dimension

of its column space.

This follows easily from the preceding two lemmas since the number of non-zero rows in a matrix in row-

echelon form is exactly equal to the number of columns containing pivots. This theorem leads to the

following definition.

Definition 10.6. The rank of a matrix is the dimension of its row space (which equals the dimension of
its column space).

Recall that the null space an m× n matrix A is the subspace of Rn corresponding to the solution space of
Ax = 0.

Theorem 10.7. Let A be an m× n matrix. Then

n = [number of columns of A] = dim [Null space of A] + rank (A)

To see why this theorem must be true, consider the following simple example.

A =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0



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This matrix is already in reduced row-echelon form. It has three pivots so

rank(A) = dim (RowSp(A)) = dim(ColSp(A)) = 3

The dimension of its null space is evidently 1 since the solution of the corresponding homogeneous linear
system Ax = 0 implies 



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0







x1
x2
x3
x4


 =




0
0
0
0
0



⇒




x1 = 0
x2 = 0
x3 = 0

but leaves x4 undetermined. Hence, the dimenion of the null space of A is 1. Thus,

4 = number of columns of A = 3 + 1 = (rank of A) + (dim(null space of A))

In the next lecture we shall develop a geometric interpretation of this fundamental fact.


