
UVA DEPARTMENT OF COMPUTER SCIENCE

System-1

Database Systems and Transactions

Database

- concurrent access to shared data

- DB state defined in terms of the data values:

not static, dynamic

DB correctness: consistency

- internal consistency (semantic integrity)

- mutual consistency

- cannot be enforced at each action

Transaction

- partially ordered set of operations

- a complete and consistent computation

- atomicity, consistency, isolation, durability (ACID)

- scheduler synchronizes concurrent operations

UVA DEPARTMENT OF COMPUTER SCIENCE

System-2

Database System Model

Functional decomposition: abstract model

- integrity checker

- transaction manager (TM)

- scheduler

- data manager (DM)

- recovery manager (RM)

- cache manager (CM)

Transaction manager

- transaction_id, participant selection

Scheduler

- ordering execution

- actions: execute, reject, delay

- concurrency control techniques

- serializability and recoverability

UVA DEPARTMENT OF COMPUTER SCIENCE

System-3

Database System Model (cont’d)

Data manager

- operates directly on the database and
responsible for transaction termination

- RM and CM

Recovery manager

- atomicity

- resilient to failures: transaction, system, media

- operations: start, commit, abort, read. write

Cache manager

- manage data movement interactions
between volatile and stable storage

- actions: fetch and flush

UVA DEPARTMENT OF COMPUTER SCIENCE

System-4

Transaction

Transaction concept

- a unit of program execution

- consists of several operations to access/update data

- ACID: atomicity, consistency, isolation, durability

Consistency

- execution in isolation must preserve DB consistency

Atomicity

A transaction is atomic if all actions are completed

or none is performed, and intermediate states are not

visible to other transactions.

- implies a particular ordering on a given set of events

- in principle, to preserve consistency, actions belong

to the same transaction must remain atomic

UVA DEPARTMENT OF COMPUTER SCIENCE

System-5

Transaction

Isolation

- even if multiple T’s executed concurrently, each should

be unaware of other T’s executing concurrently

Durability

- when T completes successfully, the changes it made

must persist, even with system failures

Correctness of concurrent execution

- schedule: an execution history

- serial execution: inefficient

- interleaving operations of transactions as much as

possible for performance

- some interleaved schedules are equivalent to

serial schedules: serializable execution

UVA DEPARTMENT OF COMPUTER SCIENCE

System-6

Serializable Execution

<ex> A = {a1(X), a2(Y)} B = {b1(X), b2(Y)}

System requires either A B or B A for all operations
(ai bi or bi ai for all i) to satisfy atomicity requirement
for some ordering relationship ()

a1 a2 b1 b2 a1 b1 a2 b2 a1 b1 b2 a2

Why? The ordering a1 b1 a2 b2 preserves the atomicity
but the ordering a1 b1 b2 a2 does not.

Scheduling and ordering

- ordering actions serves the purpose of implementing
atomic operations so as to preserve the consistency
of the system state

- system may execute a set of transactions in any order
as long as the effect is the same as that of some
serial order

- if user wants a specific order, (s)he should enforce it
(e.g., submitting T2 after T1 is committed)

UVA DEPARTMENT OF COMPUTER SCIENCE

System-7

Serializability

Correctness criterion

- serializability: correctness definition in DBS

- all serializable executions are equally correct

- scheduling algorithms enforce a partial/total ordering

- in distributed systems, variable delays may disturb
any particular ordering which is supposed to occur

Equivalent execution

two schedules (executions) are equivalent if

1) every read operation reads from the same write
in both schedules

2) both schedules have the same final writes

Serialization graph

- dependency graph, showing precedency relationship

- serializability theorem

UVA DEPARTMENT OF COMPUTER SCIENCE

System-8

Equivalent Execution

T1 = r1(x)r1(z)w1(x)
T2 = r2(y)r2(z)w2(y)
T3 = w3(x)r3(y)w3(z)

H1 = w3(x)r1(x)r3(y)r2(y)w3(z)r1(z)r2(z)w2(y)w1(x)

Precedence relationship: T3 T1
T3 T2

H2 = w3(x)r3(y)w3(z)r2(y)r2(z)w2(y)r1(x)r1(z)w1(x)

Precedence relationship: T3 T2 T1

- H2 is a serial execution.

- H1 is equivalent to H2 .

- H1 is a serializable execution.

UVA DEPARTMENT OF COMPUTER SCIENCE

System-9

Conflict and View Serializability

Conflict serializability

conflicting operations are ordered in the same way
as in some serial execution

--- topological sorting of the serialization graph

Topological sorting of SG(H)

sequence of all nodes in SG(H) such that if Ti

appears before Tj in the sequence, there is
no path from Tj to Ti in SG(H)

H = w1(x) w1(y) r2(x) r3(y) w2(x) w3(y)

SG(H): T1 T2
|

T3

T1 T2 T3

T1 T3 T2

UVA DEPARTMENT OF COMPUTER SCIENCE

System-10

Conflict and View Serializability

View serializability

an execution is view serializable if it is
view equivalent to some serial execution

View equivalence of H1 and H2

for the same set of transactions, if Ti reads x

from Tj in Hi , then Ti reads x from Tj in H2

(same reads-from relationship),

and for each data object x, if wi(x) is the final

write on x in H1 , then it is also the final write in H2

(same final write)

H = w1(x) w2(x) w2(y) w1(y) w3(x) w3(y) w1(z)

--- H is view serializable, but not conflict serializable

UVA DEPARTMENT OF COMPUTER SCIENCE

System-11

Properties of Schedules

Recoverability

- required to ensure that aborting a transaction
does not change the semantics of committed ones

w1(x) r2(x) w2(y) c2

- not recoverable: what if T1 aborts?

- recoverable execution depends on commit order

- T cannot commit until all values it read are
guaranteed not to be aborted: delaying commit

- cascaded abort is sometime mandatory

w1(x) r2(x) w2(y) a1

Avoiding cascaded aborts

- achieved if every transaction reads only values
written by committed transactions

- must delay each r(x) until all transactions that
issued w(x) is either committed or aborted

UVA DEPARTMENT OF COMPUTER SCIENCE

System-12

Properties of Schedules

Restoring before images

- implementing transaction abort by simply restoring

before images of all writes is very convenient

w1(x) w2(x) a1 a2

- value of x must be restored to the initial value,

not the value written by T1

- solution: delay w(x) until all transactions that

have written x are either committed or aborted

Strictness

- executions that satisfy both requirements

- delay both r(x) and w(x) until all transactions that

have written x are either committed or aborted

w1(x) w1(y) w2(z) c1 r2(x) a2

UVA DEPARTMENT OF COMPUTER SCIENCE

System-13

Properties of Synchronization

Recoverability (RC)

- reads-from relationships

- RC if Ti reads from Tj (i=j) and ci H, then cj < ci

Avoiding cascaded aborts (ACA)

- ACA if Ti reads from Tj (i=j) then cj < ri[x]

Strictness (ST)

- strict if whenever wj[x] < oi[x] (i=j)
then either aj < oi[x] or cj < oi[x]

T1=w1(x) w1(y) w1(z) c1 T2=r2(u) w2(x) r2(y) w2(y) c2

H1=w1(x) w1(y) r2(u) w2(x) r2(y) w2(y) c2 w1(z) c1

--- SR but not RC

H1=w1(x) w1(y) r2(u) w2(x) r2(y) w2(y) w1(z) c1 c2

--- RC but not ACA

H2=w1(x) w1(y) r2(u) w2(x) w1(z) c1 r2(y) w2(y) c2

--- ACA but not ST

UVA DEPARTMENT OF COMPUTER SCIENCE

System-14

Relationships among Synchronization Properties

Theorem: ST < ACA < RC

