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Existence and Uniqueness

Theorem

(i) If f is continuous on an open rectangle

R = {(x , y) ∈ R2 : a < x < b, c < y < d}

that contains the point (x0, y0), then the IVP

y ′ = f (x , y), y(x0) = y0 (1)

has at least one solution on some open subinterval of (a, b)
that contains x0.

(ii) If both f and fy are continuous on R, then (1) has a unique
solution on some open subinterval of (a, b) that contains x0.
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Existence and Uniqueness

Example: Consider the IVP

y ′ =
10

3
xy2/5, y(x0) = y0.

(i) For what points (x0, y0), does the Theorem imply that it has a
solution?

(ii) For what points (x0, y0), does the Theorem imply that it has a
unique solution on some open interval that conatins x0?

Since f (x , y) = 10
3 xy

2/5 is continuous for all (x , y), it follows that
the above IVP has a solution for every (x0, y0). Here

fy (x , y) =
4

3
xy−3/5

is continuous for all (x , y) with y 6= 0. Therefore, if y0 6= 0, there
is an open rectangle on which both f and fy are continuous and
hence the above IVP has a unique solution on some interval that
contains x0. If y = 0, then fy (x , y) is undefined. Hence, the
Theorem does not apply to this IVP if y0 = 0.
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Existence and Uniqueness

Example: Consider the IVP

y ′ =
10

3
xy2/5, y(0) = −1.

This IVP has a unique solution on some open interval that
contains x0 = 0. Find a solution and determine the largest open
interval (a, b) on which it is unique.

Let y be any solution of the above IVP. Since y(0) = −1, it
follows from the continuity of y that there is an open interval I
that contains x0 = 0 on which y has no zeroes. Separating the
variables, we get

y−2/5y ′ =
10

3
x .

Integrating this and writing the arbitrary constant as 5c/3, we get

5

3
y3/5 =

5

3
(x2 + c).
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Example Continued

5

3
y3/5 =

5

3
(x2 + c).

Since y(0) = −1, c = −1 so

y = (x2 − 1)5/3

for x ∈ I . This is a unique solution to the IVP on (−1, 1). This is
the largest open interval on which the given IVP has a unique
solution. To see this, note that

y = (x2 − 1)5/3

is a solution of the given IVP on (−∞,∞). There are infinitely
many solutions of the given IVP that differ from y = (x2 − 1)5/3

on every open interval larger than (−1, 1). One such solution is

y(x) =

{
(x2 − 1)5/3 −1 < x < 1

0 |x | ≥ 1
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Corollary

Consider the IVP

y1 + p(t)y = g(t); y(t0) = y0,

where p and g are continuous functions on an interval I with
t0 ∈ I . Then there is a unique solution on I of the given IVP.

Proof.

Since y1 = −p(t)y − g(t), it follows that

f (t, y) = −p(t)y − g(t) and
∂f

∂y
(t, y) = −p(t)

are both continuous on I × R. By the existence and uniqueness
theorem, the given IVP has a unique solution on a subinterval
J ⊆ I with t0 ∈ J.
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Picard’s Iteration Method

Picard’s iteration method gives us a rough idea on how to
construct solutions to IVP’s. Consider the IVP

y1 = f (t, y); y(0) = 0.

Suppose y = φ(t) is a solution to the IVP. Then,

dφ

dt
= f (t, φ(t)), φ(0) = 0.

That is,

φ(t) =

∫ t

0
f (s, φ(s))ds; φ(0) = 0.

The above equation is called an integral equation in the unknown
function φ.
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Picard’s Iteration Method

Conversely, if the integral equation holds i.e.,

φ(t) =

∫ t

0
f (s, φ(s))ds; φ(0) = 0,

then by the Fundamental Theorem of Calculus,

dφ

dt
= f (t, φ(t)),

so that y = φ(t) is a solution to the IVP y1 = f (t, y); y(0) = 0.
Thus, solving the integral equation is equivalent to solving the IVP.
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Picard’s Iteration Method

Picard’s iteration describes a way to look for solutions of the
integral equation

φ(t) =

∫ t

0
f (s, φ(s))ds.

We define iteratively a sequence of functions φn(t) for every
integer n ≥ 0 as follows: Let

φ0(t) ≡ 0

φ1(t) =

∫ t

0
f (s, φ0(s))ds

φ2(t) =

∫ t

0
f (s, φ1(s))ds

·
·

φn+1(t) =

∫ t

0
f (s, φn(s))ds.
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Picard’s Iteration Method

Note: Each φn satisfies the initial condition φn(0) = 0. None of
the φn may satisfy y1 = f (t, y). Suppose for some n, φn+1 = φn.
Then,

φn+1 = φn =

∫ t

0
f (s, φn(s))ds,

and this implies
d

dt
(φn(t)) = f (t, φn(t))

is a solution of the given IVP. In general, the sequence {φn} may
not terminate. In fact, all the φn may not even be defined outside
a small region in the domain. However, it is possible to show that,
under the hypotheses of the above theorem, the sequence
converges to a function

φ(t) = lim
n→∞

φn(t)

which is the unique solution to the given IVP.
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Example

Example: Solve the IVP:

y1 = 2t(1 + y); y(0) = 0.

The corresponding integral equation is

φ(t) =

∫ t

0
2s(1 + φ(s))ds.

Let φ0(t) ≡ 0. Then,

φ1(t) =

∫ t

0
2sds = t2,

φ2(t) =

∫ t

0
2s(1 + s2)ds = t2 +

t4

2
,

φ3(t) =

∫ t

0
2s(1 + s2 +

s4

2
)ds = t2 +

t4

2
+

t6

6
.
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Example continued

We claim:

φn(t) = t2 +
t4

2
+

t6

6
+ . . .+

t2n

n!
.

Use induction to prove this:

φn+1(t) =

∫ t

0
2s(1 + φn(s))ds

=

∫ t

0
2s

(
1 + s2 +

s4

2
+ . . .+

s2n

n!

)
ds

= t2 +
t4

2
+

t6

6
+ . . .+

t2n

n!
+

t2n+2

(n + 1)!
.

Hence φn(t) is the n-th partial sum of the series
∞∑
k=1

t2k

k!
.
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Example continued

Recall that φn(t) is the n-th partial sum of the series
∞∑
k=1

t2k

k!
.

Applying the ratio test, we get:∣∣∣∣ t2k+2

(k + 1)!
· k!

t2k

∣∣∣∣ =
t2

k + 1
→ 0

for all t as k →∞. Thus,

lim
n→∞

φn(t) =
∞∑
k=1

t2k

k!
= et

2 − 1.

Hence, y(t) = et
2 − 1 is a solution of the IVP.
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