Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
C
CS725_Project
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Analytics
Analytics
Repository
Value Stream
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Commits
Open sidebar
Smit Gangurde
CS725_Project
Commits
c26cf5de
Commit
c26cf5de
authored
Dec 07, 2020
by
Yavnika Rajendra Bhagat
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
script file added
parent
3f6757f2
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
35 additions
and
54 deletions
+35
-54
Notebooks/RESNET152/indiandanceprediction-usingmonk.py
Notebooks/RESNET152/indiandanceprediction-usingmonk.py
+35
-54
No files found.
Notebooks/RESNET152/indiandanceprediction-usingmonk.py
View file @
c26cf5de
#!/usr/bin/env python
# coding: utf-8
# In[1]:
# In[1
6
]:
pip
install
tornado
--
upgrade
--
use
-
feature
=
2020
-
resolver
# In[
2
]:
# In[
17
]:
get_ipython
()
.
system
(
'git clone https://github.com/Tessellate-Imaging/monk_v1.git'
)
get_ipython
()
.
system
(
'cd monk_v1/installation/Misc && pip install -r requirements_kaggle.txt --use-feature=2020-resolver'
)
# In[
3
]:
# In[
]:
pip
install
bokeh
pip
install
bokeh
--
use
-
feature
=
2020
-
resolver
# In[
4
]:
# In[
]:
pip
install
monk
--
upgrade
pip
install
monk
--
upgrade
--
use
-
feature
=
2020
-
resolver
# In[
5
]:
# In[
]:
pip
install
-
U
monk
-
kaggle
pip
install
-
U
monk
-
kaggle
--
use
-
feature
=
2020
-
resolver
# In[
6
]:
# In[
18
]:
import
numpy
as
np
# linear algebra
...
...
@@ -43,30 +43,29 @@ import os
import
sys
# In[
7
]:
# In[
19
]:
sys
.
path
.
append
(
"/kaggle/working/monk_v1/monk/"
);
from
gluon_prototype
import
prototype
# In[
8
]:
# In[
20
]:
gtf
=
prototype
(
verbose
=
1
);
gtf
.
Prototype
(
"Dance_Form"
,
"Indian_Classical_Dance_Form_Prediction"
);
# In[
10
]:
# In[
21
]:
import
csv
# In[
11
]:
# In[
22
]:
#to read the entries from train.csv
data
=
[]
with
open
(
'../input/dform-gold/dataset1/train.csv'
,
'r'
,)
as
file
:
reader
=
csv
.
reader
(
file
,
delimiter
=
','
)
...
...
@@ -79,19 +78,18 @@ with open('../input/dform-gold/dataset1/train.csv', 'r',) as file:
print
(
data
)
# In[
12
]:
# In[
23
]:
#used for cross validation, k : #iterations, div : #images in a division
k
=
4
div
=
len
(
data
)
/
k
#7 * 13* 2 * 2
# In[
15
]:
# In[
24
]:
#to shuffle data and get a set which classifies all 8 classes
print
(
"division:"
,
div
)
print
(
div
)
#shuffling data
...
...
@@ -116,6 +114,8 @@ while (not flag):
test
=
data
[
i
*
int
(
div
)
:
(
i
+
1
)
*
int
(
div
)
]
for
x
in
data
[(
i
+
1
)
*
int
(
div
)
:
]:
train
.
append
(
x
)
print
(
i
,
"train count"
,
len
(
pd
.
DataFrame
(
train
)
.
groupby
(
1
)
.
count
()[
0
]))
print
(
i
,
"test count"
,
len
(
pd
.
DataFrame
(
train
)
.
groupby
(
1
)
.
count
()[
0
]))
if
(
len
(
pd
.
DataFrame
(
train
)
.
groupby
(
1
)
.
count
()[
0
])
<
8
or
len
(
pd
.
DataFrame
(
test
)
.
groupby
(
1
)
.
count
()[
0
])
<
8
):
flag
=
False
break
...
...
@@ -124,28 +124,10 @@ while (not flag):
print
(
data
)
# In[
18
]:
# In[
25
]:
#performed cross validation and created confusion matrix for cross validation
'''
Model : resnet152_v1
#epochs:20
optimizer:adam
batch_size:7
learning_rate:0.005
data shuffle : true
'''
'''
Result:
Epochs for every iteration:
test accuracy, train accuracy, test loss, train loss
Summary of the model
Best accuracy after every iteration
Final average accuracy taken from the #iterations
'''
print
(
data
)
accuracy
=
0
;
for
i
in
range
(
k
):
...
...
@@ -163,20 +145,24 @@ for i in range(k):
a
.
to_csv
(
"test_slot.csv"
,
index
=
False
);
gtf
=
prototype
(
verbose
=
1
);
gtf
.
Prototype
(
"Dance_Form"
,
"
resnet152_V1
"
);
gtf
.
Prototype
(
"Dance_Form"
,
"
Model
"
);
gtf
.
Default
(
dataset_path
=
[
"../input/dform-gold/dataset1/train"
,
"../input/dform-gold/dataset1/train"
],
path_to_csv
=
[
"train_slot.csv"
,
"test_slot.csv"
],
model_name
=
"resnet152_v1"
,
freeze_base_network
=
True
,
num_epochs
=
20
);
gtf
.
update_shuffle_data
(
True
);
gtf
.
optimizer_adam
(
0.001
);
gtf
.
update_batch_size
(
7
);
gtf
.
update_learning_rate
(
0.005
);
gtf
.
Default
(
dataset_path
=
[
"../input/dform-gold/dataset1/train"
,
"../input/dform-gold/dataset1/train"
],
path_to_csv
=
[
"train_slot.csv"
,
"test_slot.csv"
],
model_name
=
"resnet152_v1"
,
freeze_base_network
=
False
,
num_epochs
=
10
);
#gtf.update_trainval_split(0.99);
# gtf.update_shuffle_data(True);
# gtf.optimizer_adam(0.001);
# gtf.update_batch_size(7);
# gtf.update_learning_rate(0.005);
gtf
.
Reload
()
gtf
.
Train
();
# gtf.Dataset_Params(dataset_path="../input/dform-gold/dataset1/test", path_to_csv="../input/dform-gold/dataset1/gold_labels.csv");
#list_test=os.listdir("../input/dform-gold/dataset1/test/");
#from tqdm.notebook import tqdm
combined
=
[];
predictions_dict
=
{};
j
=
0
...
...
@@ -197,7 +183,7 @@ for i in range(k):
print
(
predictions_dict
)
print
(
"predictions
\n\n\n\n\n
"
)
print
(
combined
)
gtf
.
Summary
()
#
gtf.Summary()
gtf
.
EDA
(
show_img
=
True
,
save_img
=
True
);
# print(gtf.EDA(show_img=True, save_img=True))
import
csv
...
...
@@ -230,19 +216,14 @@ for i in range(k):
print
(
"correct"
,
correct
,
"#images"
,
div
)
print
(
"accuracy for"
,
i
,
"th iteration:"
,
accuracy_of_iter
)
accuracy
=
accuracy
+
accuracy_of_iter
print
(
confusion_mat
)
#
print(confusion_mat)
print
(
"Overall accuracy:"
,
accuracy
/
k
)
# In[
19
]:
# In[
26
]:
'''
checking the model on test by comparing the gold labels of the test data and the prediction of model
Creating confusion Matrix(real classes vs predicted ones)
Calculating Final test accuracy
'''
confusion_mat
=
{
'bharatanatyam'
:{
'bharatanatyam'
:
0
,
'kathak'
:
0
,
'kathakali'
:
0
,
'kuchipudi'
:
0
,
'manipuri'
:
0
,
'mohiniyattam'
:
0
,
'odissi'
:
0
,
'sattriya'
:
0
},
...
...
@@ -282,5 +263,5 @@ print(conf_mat)
# In[ ]:
gtf
.
List_Models
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment