Commit e53add22 authored by Sushant Mahajan's avatar Sushant Mahajan

fixed normalization for first column and added parameter search for gradient descnet

parent 72cdc309
Pipeline #298 skipped
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
...@@ -5,14 +5,14 @@ Id,Label ...@@ -5,14 +5,14 @@ Id,Label
3,0 3,0
4,0 4,0
5,0 5,0
6,0 6,1
7,0 7,0
8,0 8,0
9,0 9,0
10,1 10,1
11,1 11,0
12,0 12,0
13,1 13,0
14,1 14,1
15,0 15,0
16,1 16,1
...@@ -38,12 +38,12 @@ Id,Label ...@@ -38,12 +38,12 @@ Id,Label
36,0 36,0
37,1 37,1
38,0 38,0
39,0 39,1
40,0 40,0
41,1 41,1
42,0 42,0
43,1 43,1
44,0 44,1
45,0 45,0
46,0 46,0
47,0 47,0
...@@ -51,11 +51,11 @@ Id,Label ...@@ -51,11 +51,11 @@ Id,Label
49,0 49,0
50,1 50,1
51,0 51,0
52,1 52,0
53,0 53,0
54,1 54,1
55,1 55,1
56,1 56,0
57,0 57,0
58,1 58,1
59,1 59,1
...@@ -66,10 +66,10 @@ Id,Label ...@@ -66,10 +66,10 @@ Id,Label
64,0 64,0
65,1 65,1
66,0 66,0
67,1 67,0
68,0 68,0
69,0 69,0
70,1 70,0
71,0 71,0
72,0 72,0
73,0 73,0
...@@ -92,7 +92,7 @@ Id,Label ...@@ -92,7 +92,7 @@ Id,Label
90,1 90,1
91,1 91,1
92,0 92,0
93,0 93,1
94,0 94,0
95,0 95,0
96,1 96,1
...@@ -102,9 +102,9 @@ Id,Label ...@@ -102,9 +102,9 @@ Id,Label
100,1 100,1
101,0 101,0
102,0 102,0
103,1 103,0
104,0 104,0
105,1 105,0
106,1 106,1
107,0 107,0
108,1 108,1
...@@ -114,13 +114,13 @@ Id,Label ...@@ -114,13 +114,13 @@ Id,Label
112,1 112,1
113,1 113,1
114,0 114,0
115,1 115,0
116,1 116,1
117,0 117,0
118,1 118,1
119,0 119,0
120,1 120,0
121,0 121,1
122,1 122,1
123,0 123,0
124,0 124,0
...@@ -130,12 +130,12 @@ Id,Label ...@@ -130,12 +130,12 @@ Id,Label
128,0 128,0
129,0 129,0
130,1 130,1
131,1 131,0
132,0 132,0
133,0 133,0
134,0 134,0
135,1 135,1
136,1 136,0
137,1 137,1
138,0 138,0
139,0 139,0
...@@ -147,8 +147,8 @@ Id,Label ...@@ -147,8 +147,8 @@ Id,Label
145,0 145,0
146,0 146,0
147,0 147,0
148,1 148,0
149,1 149,0
150,0 150,0
151,0 151,0
152,1 152,1
...@@ -162,8 +162,8 @@ Id,Label ...@@ -162,8 +162,8 @@ Id,Label
160,1 160,1
161,0 161,0
162,0 162,0
163,1 163,0
164,1 164,0
165,0 165,0
166,1 166,1
167,1 167,1
...@@ -186,7 +186,7 @@ Id,Label ...@@ -186,7 +186,7 @@ Id,Label
184,0 184,0
185,0 185,0
186,0 186,0
187,1 187,0
188,0 188,0
189,1 189,1
190,1 190,1
...@@ -207,28 +207,28 @@ Id,Label ...@@ -207,28 +207,28 @@ Id,Label
205,0 205,0
206,1 206,1
207,0 207,0
208,0 208,1
209,0 209,0
210,0 210,0
211,1 211,1
212,0 212,0
213,0 213,0
214,0 214,0
215,0 215,1
216,1 216,1
217,0 217,0
218,1 218,1
219,0 219,0
220,0 220,1
221,1 221,1
222,0 222,0
223,1 223,0
224,1 224,1
225,1 225,1
226,1 226,1
227,0 227,0
228,0 228,1
229,1 229,0
230,1 230,1
231,0 231,0
232,1 232,1
...@@ -237,7 +237,7 @@ Id,Label ...@@ -237,7 +237,7 @@ Id,Label
235,1 235,1
236,0 236,0
237,0 237,0
238,1 238,0
239,1 239,1
240,0 240,0
241,1 241,1
...@@ -250,24 +250,24 @@ Id,Label ...@@ -250,24 +250,24 @@ Id,Label
248,0 248,0
249,1 249,1
250,1 250,1
251,1 251,0
252,1 252,0
253,0 253,0
254,1 254,1
255,1 255,0
256,0 256,0
257,0 257,0
258,1 258,1
259,1 259,1
260,1 260,1
261,1 261,0
262,0 262,0
263,0 263,0
264,0 264,0
265,1 265,1
266,1 266,1
267,0 267,0
268,1 268,0
269,0 269,0
270,1 270,1
271,1 271,1
...@@ -281,7 +281,7 @@ Id,Label ...@@ -281,7 +281,7 @@ Id,Label
279,0 279,0
280,1 280,1
281,0 281,0
282,1 282,0
283,0 283,0
284,1 284,1
285,1 285,1
...@@ -309,7 +309,7 @@ Id,Label ...@@ -309,7 +309,7 @@ Id,Label
307,0 307,0
308,0 308,0
309,1 309,1
310,1 310,0
311,1 311,1
312,0 312,0
313,0 313,0
...@@ -319,11 +319,11 @@ Id,Label ...@@ -319,11 +319,11 @@ Id,Label
317,0 317,0
318,0 318,0
319,0 319,0
320,0 320,1
321,0 321,0
322,0 322,0
323,0 323,0
324,1 324,0
325,0 325,0
326,0 326,0
327,0 327,0
...@@ -383,7 +383,7 @@ Id,Label ...@@ -383,7 +383,7 @@ Id,Label
381,0 381,0
382,0 382,0
383,0 383,0
384,0 384,1
385,1 385,1
386,1 386,1
387,0 387,0
...@@ -398,7 +398,7 @@ Id,Label ...@@ -398,7 +398,7 @@ Id,Label
396,1 396,1
397,0 397,0
398,0 398,0
399,0 399,1
400,0 400,0
401,1 401,1
402,0 402,0
...@@ -436,7 +436,7 @@ Id,Label ...@@ -436,7 +436,7 @@ Id,Label
434,1 434,1
435,0 435,0
436,1 436,1
437,1 437,0
438,0 438,0
439,0 439,0
440,0 440,0
...@@ -449,7 +449,7 @@ Id,Label ...@@ -449,7 +449,7 @@ Id,Label
447,0 447,0
448,1 448,1
449,0 449,0
450,0 450,1
451,1 451,1
452,1 452,1
453,1 453,1
...@@ -464,16 +464,16 @@ Id,Label ...@@ -464,16 +464,16 @@ Id,Label
462,1 462,1
463,1 463,1
464,0 464,0
465,0 465,1
466,1 466,1
467,1 467,0
468,1 468,1
469,0 469,0
470,0 470,1
471,1 471,0
472,0 472,0
473,1 473,1
474,0 474,1
475,0 475,0
476,0 476,0
477,0 477,0
...@@ -509,14 +509,14 @@ Id,Label ...@@ -509,14 +509,14 @@ Id,Label
507,1 507,1
508,0 508,0
509,0 509,0
510,1 510,0
511,0 511,0
512,0 512,0
513,0 513,0
514,0 514,0
515,0 515,0
516,1 516,1
517,0 517,1
518,0 518,0
519,1 519,1
520,1 520,1
...@@ -524,13 +524,13 @@ Id,Label ...@@ -524,13 +524,13 @@ Id,Label
522,0 522,0
523,0 523,0
524,0 524,0
525,1 525,0
526,1 526,1
527,0 527,0
528,0 528,0
529,0 529,0
530,0 530,0
531,0 531,1
532,1 532,1
533,0 533,0
534,1 534,1
...@@ -561,16 +561,16 @@ Id,Label ...@@ -561,16 +561,16 @@ Id,Label
559,0 559,0
560,0 560,0
561,1 561,1
562,1 562,0
563,0 563,0
564,1 564,0
565,0 565,0
566,1 566,1
567,0 567,0
568,0 568,1
569,0 569,0
570,0 570,0
571,1 571,0
572,1 572,1
573,1 573,1
574,0 574,0
...@@ -581,7 +581,7 @@ Id,Label ...@@ -581,7 +581,7 @@ Id,Label
579,0 579,0
580,0 580,0
581,0 581,0
582,1 582,0
583,0 583,0
584,1 584,1
585,0 585,0
...@@ -591,7 +591,7 @@ Id,Label ...@@ -591,7 +591,7 @@ Id,Label
589,0 589,0
590,1 590,1
591,1 591,1
592,1 592,0
593,0 593,0
594,0 594,0
595,0 595,0
...@@ -603,7 +603,7 @@ Id,Label ...@@ -603,7 +603,7 @@ Id,Label
601,1 601,1
602,0 602,0
603,0 603,0
604,1 604,0
605,0 605,0
606,0 606,0
607,0 607,0
...@@ -623,11 +623,11 @@ Id,Label ...@@ -623,11 +623,11 @@ Id,Label
621,0 621,0
622,0 622,0
623,1 623,1
624,1 624,0
625,0 625,0
626,0 626,0
627,0 627,0
628,1 628,0
629,0 629,0
630,0 630,0
631,0 631,0
...@@ -635,7 +635,7 @@ Id,Label ...@@ -635,7 +635,7 @@ Id,Label
633,0 633,0
634,1 634,1
635,1 635,1
636,1 636,0
637,1 637,1
638,1 638,1
639,0 639,0
...@@ -648,7 +648,7 @@ Id,Label ...@@ -648,7 +648,7 @@ Id,Label
646,0 646,0
647,0 647,0
648,0 648,0
649,1 649,0
650,0 650,0
651,0 651,0
652,1 652,1
...@@ -658,7 +658,7 @@ Id,Label ...@@ -658,7 +658,7 @@ Id,Label
656,1 656,1
657,0 657,0
658,0 658,0
659,1 659,0
660,1 660,1
661,0 661,0
662,0 662,0
...@@ -667,31 +667,31 @@ Id,Label ...@@ -667,31 +667,31 @@ Id,Label
665,1 665,1
666,0 666,0
667,0 667,0
668,1 668,0
669,0 669,0
670,1 670,1
671,0 671,0
672,1 672,1
673,0 673,0
674,0 674,0
675,1 675,0
676,1 676,1
677,1 677,0
678,0 678,0
679,1 679,1
680,0 680,0
681,1 681,1
682,0 682,0
683,1 683,0
684,1 684,0
685,1 685,0
686,1 686,1
687,0 687,0
688,0 688,0
689,0 689,0
690,0 690,0
691,0 691,0
692,1 692,0
693,0 693,0
694,0 694,0
695,1 695,1
...@@ -711,13 +711,13 @@ Id,Label ...@@ -711,13 +711,13 @@ Id,Label
709,0 709,0
710,1 710,1
711,1 711,1
712,1 712,0
713,0 713,0
714,0 714,0
715,0 715,0
716,0 716,0
717,1 717,0
718,0 718,1
719,0 719,0
720,1 720,1
721,0 721,0
...@@ -744,11 +744,11 @@ Id,Label ...@@ -744,11 +744,11 @@ Id,Label
742,0 742,0
743,0 743,0
744,1 744,1
745,0 745,1
746,1 746,0
747,1 747,1
748,0 748,0
749,1 749,0
750,0 750,0
751,1 751,1
752,0 752,0
...@@ -768,8 +768,8 @@ Id,Label ...@@ -768,8 +768,8 @@ Id,Label
766,0 766,0
767,0 767,0
768,1 768,1
769,1 769,0
770,0 770,1
771,1 771,1
772,0 772,0
773,1 773,1
...@@ -787,16 +787,16 @@ Id,Label ...@@ -787,16 +787,16 @@ Id,Label
785,1 785,1
786,0 786,0
787,0 787,0
788,1 788,0
789,0 789,0
790,0 790,1
791,0 791,0
792,1 792,1
793,0 793,0
794,1 794,0
795,0 795,0
796,0 796,0
797,1 797,0
798,0 798,0
799,1 799,1
800,0 800,0
...@@ -827,7 +827,7 @@ Id,Label ...@@ -827,7 +827,7 @@ Id,Label
825,0 825,0
826,1 826,1
827,0 827,0
828,0 828,1
829,1 829,1
830,0 830,0
831,1 831,1
...@@ -839,7 +839,7 @@ Id,Label ...@@ -839,7 +839,7 @@ Id,Label
837,0 837,0
838,0 838,0
839,1 839,1
840,1 840,0
841,1 841,1
842,0 842,0
843,1 843,1
...@@ -847,7 +847,7 @@ Id,Label ...@@ -847,7 +847,7 @@ Id,Label
845,0 845,0
846,0 846,0
847,0 847,0
848,1 848,0
849,1 849,1
850,1 850,1
851,1 851,1
...@@ -858,7 +858,7 @@ Id,Label ...@@ -858,7 +858,7 @@ Id,Label
856,0 856,0
857,0 857,0
858,0 858,0
859,1 859,0
860,0 860,0
861,0 861,0
862,0 862,0
...@@ -875,7 +875,7 @@ Id,Label ...@@ -875,7 +875,7 @@ Id,Label
873,0 873,0
874,1 874,1
875,1 875,1
876,1 876,0
877,0 877,0
878,0 878,0
879,1 879,1
...@@ -891,9 +891,9 @@ Id,Label ...@@ -891,9 +891,9 @@ Id,Label
889,0 889,0
890,1 890,1
891,0 891,0
892,1 892,0
893,0 893,0
894,1 894,0
895,0 895,0
896,0 896,0
897,1 897,1
...@@ -918,7 +918,7 @@ Id,Label ...@@ -918,7 +918,7 @@ Id,Label
916,0 916,0
917,0 917,0
918,1 918,1
919,1 919,0
920,0 920,0
921,0 921,0
922,0 922,0
...@@ -937,9 +937,9 @@ Id,Label ...@@ -937,9 +937,9 @@ Id,Label
935,1 935,1
936,0 936,0
937,1 937,1
938,1 938,0
939,0 939,0
940,1 940,0
941,0 941,0
942,1 942,1
943,0 943,0
...@@ -967,7 +967,7 @@ Id,Label ...@@ -967,7 +967,7 @@ Id,Label
965,1 965,1
966,0 966,0
967,0 967,0
968,0 968,1
969,0 969,0
970,1 970,1
971,1 971,1
...@@ -995,7 +995,7 @@ Id,Label ...@@ -995,7 +995,7 @@ Id,Label
993,0 993,0
994,0 994,0
995,1 995,1
996,1 996,0
997,0 997,0
998,0 998,0
999,0 999,0
...@@ -1015,12 +1015,12 @@ Id,Label ...@@ -1015,12 +1015,12 @@ Id,Label
1013,0 1013,0
1014,1 1014,1
1015,0 1015,0
1016,1 1016,0
1017,0 1017,0
1018,0 1018,0
1019,1 1019,1
1020,0 1020,0
1021,1 1021,0
1022,1 1022,1
1023,0 1023,0
1024,0 1024,0
...@@ -1028,22 +1028,22 @@ Id,Label ...@@ -1028,22 +1028,22 @@ Id,Label
1026,1 1026,1
1027,1 1027,1
1028,0 1028,0
1029,0 1029,1
1030,0 1030,1
1031,0 1031,0
1032,1 1032,1
1033,0 1033,0
1034,0 1034,0
1035,0 1035,0
1036,1 1036,1
1037,1 1037,0
1038,1 1038,0
1039,1 1039,0
1040,0 1040,0
1041,0 1041,0
1042,0 1042,0
1043,1 1043,1
1044,0 1044,1
1045,0 1045,0
1046,0 1046,0
1047,1 1047,1
...@@ -1069,7 +1069,7 @@ Id,Label ...@@ -1069,7 +1069,7 @@ Id,Label
1067,0 1067,0
1068,0 1068,0
1069,0 1069,0
1070,1 1070,0
1071,0 1071,0
1072,0 1072,0
1073,0 1073,0
...@@ -1084,12 +1084,12 @@ Id,Label ...@@ -1084,12 +1084,12 @@ Id,Label
1082,0 1082,0
1083,1 1083,1
1084,1 1084,1
1085,0 1085,1
1086,1 1086,1
1087,0 1087,0
1088,1 1088,0
1089,0 1089,0
1090,1 1090,0
1091,0 1091,0
1092,1 1092,1
1093,0 1093,0
...@@ -1102,7 +1102,7 @@ Id,Label ...@@ -1102,7 +1102,7 @@ Id,Label
1100,0 1100,0
1101,0 1101,0
1102,0 1102,0
1103,1 1103,0
1104,0 1104,0
1105,0 1105,0
1106,0 1106,0
...@@ -1128,7 +1128,7 @@ Id,Label ...@@ -1128,7 +1128,7 @@ Id,Label
1126,0 1126,0
1127,1 1127,1
1128,0 1128,0
1129,1 1129,0
1130,0 1130,0
1131,0 1131,0
1132,0 1132,0
...@@ -1136,9 +1136,9 @@ Id,Label ...@@ -1136,9 +1136,9 @@ Id,Label
1134,0 1134,0
1135,0 1135,0
1136,0 1136,0
1137,1 1137,0
1138,1 1138,1
1139,1 1139,0
1140,0 1140,0
1141,1 1141,1
1142,0 1142,0
...@@ -1152,7 +1152,7 @@ Id,Label ...@@ -1152,7 +1152,7 @@ Id,Label
1150,0 1150,0
1151,0 1151,0
1152,1 1152,1
1153,1 1153,0
1154,1 1154,1
1155,1 1155,1
1156,0 1156,0
...@@ -1165,7 +1165,7 @@ Id,Label ...@@ -1165,7 +1165,7 @@ Id,Label
1163,0 1163,0
1164,0 1164,0
1165,0 1165,0
1166,1 1166,0
1167,0 1167,0
1168,0 1168,0
1169,1 1169,1
...@@ -1173,7 +1173,7 @@ Id,Label ...@@ -1173,7 +1173,7 @@ Id,Label
1171,1 1171,1
1172,1 1172,1
1173,0 1173,0
1174,0 1174,1
1175,0 1175,0
1176,0 1176,0
1177,0 1177,0
...@@ -1189,23 +1189,23 @@ Id,Label ...@@ -1189,23 +1189,23 @@ Id,Label
1187,0 1187,0
1188,0 1188,0
1189,0 1189,0
1190,0 1190,1
1191,1 1191,0
1192,0 1192,0
1193,0 1193,0
1194,0 1194,0
1195,1 1195,0
1196,0 1196,0
1197,0 1197,0
1198,0 1198,0
1199,0 1199,0
1200,1 1200,0
1201,1 1201,1
1202,0 1202,0
1203,1 1203,1
1204,1 1204,1
1205,1 1205,1
1206,1 1206,0
1207,0 1207,0
1208,1 1208,1
1209,1 1209,1
...@@ -1214,9 +1214,9 @@ Id,Label ...@@ -1214,9 +1214,9 @@ Id,Label
1212,1 1212,1
1213,1 1213,1
1214,0 1214,0
1215,1 1215,0
1216,0 1216,0
1217,1 1217,0
1218,0 1218,0
1219,1 1219,1
1220,0 1220,0
...@@ -1225,7 +1225,7 @@ Id,Label ...@@ -1225,7 +1225,7 @@ Id,Label
1223,0 1223,0
1224,1 1224,1
1225,0 1225,0
1226,1 1226,0
1227,0 1227,0
1228,0 1228,0
1229,0 1229,0
...@@ -1246,8 +1246,8 @@ Id,Label ...@@ -1246,8 +1246,8 @@ Id,Label
1244,1 1244,1
1245,0 1245,0
1246,0 1246,0
1247,0 1247,1
1248,1 1248,0
1249,0 1249,0
1250,0 1250,0
1251,0 1251,0
...@@ -1259,7 +1259,7 @@ Id,Label ...@@ -1259,7 +1259,7 @@ Id,Label
1257,0 1257,0
1258,0 1258,0
1259,0 1259,0
1260,1 1260,0
1261,1 1261,1
1262,0 1262,0
1263,1 1263,1
...@@ -1269,7 +1269,7 @@ Id,Label ...@@ -1269,7 +1269,7 @@ Id,Label
1267,0 1267,0
1268,0 1268,0
1269,0 1269,0
1270,1 1270,0
1271,1 1271,1
1272,0 1272,0
1273,1 1273,1
...@@ -1285,13 +1285,13 @@ Id,Label ...@@ -1285,13 +1285,13 @@ Id,Label
1283,0 1283,0
1284,0 1284,0
1285,0 1285,0
1286,1 1286,0
1287,0 1287,0
1288,0 1288,0
1289,1 1289,1
1290,0 1290,0
1291,0 1291,0
1292,1 1292,0
1293,1 1293,1
1294,0 1294,0
1295,1 1295,1
...@@ -1309,9 +1309,9 @@ Id,Label ...@@ -1309,9 +1309,9 @@ Id,Label
1307,1 1307,1
1308,1 1308,1
1309,0 1309,0
1310,1 1310,0
1311,1 1311,1
1312,0 1312,1
1313,0 1313,0
1314,0 1314,0
1315,0 1315,0
...@@ -1333,7 +1333,7 @@ Id,Label ...@@ -1333,7 +1333,7 @@ Id,Label
1331,0 1331,0
1332,0 1332,0
1333,0 1333,0
1334,0 1334,1
1335,0 1335,0
1336,1 1336,1
1337,0 1337,0
...@@ -1347,7 +1347,7 @@ Id,Label ...@@ -1347,7 +1347,7 @@ Id,Label
1345,0 1345,0
1346,0 1346,0
1347,1 1347,1
1348,1 1348,0
1349,1 1349,1
1350,1 1350,1
1351,1 1351,1
...@@ -1377,7 +1377,7 @@ Id,Label ...@@ -1377,7 +1377,7 @@ Id,Label
1375,0 1375,0
1376,1 1376,1
1377,0 1377,0
1378,1 1378,0
1379,0 1379,0
1380,0 1380,0
1381,0 1381,0
...@@ -1395,7 +1395,7 @@ Id,Label ...@@ -1395,7 +1395,7 @@ Id,Label
1393,0 1393,0
1394,0 1394,0
1395,0 1395,0
1396,1 1396,0
1397,0 1397,0
1398,0 1398,0
1399,1 1399,1
...@@ -1413,7 +1413,7 @@ Id,Label ...@@ -1413,7 +1413,7 @@ Id,Label
1411,1 1411,1
1412,0 1412,0
1413,1 1413,1
1414,0 1414,1
1415,0 1415,0
1416,1 1416,1
1417,1 1417,1
...@@ -1433,10 +1433,10 @@ Id,Label ...@@ -1433,10 +1433,10 @@ Id,Label
1431,1 1431,1
1432,0 1432,0
1433,0 1433,0
1434,1 1434,0
1435,0 1435,0
1436,1 1436,1
1437,1 1437,0
1438,1 1438,1
1439,1 1439,1
1440,0 1440,0
...@@ -1461,7 +1461,7 @@ Id,Label ...@@ -1461,7 +1461,7 @@ Id,Label
1459,0 1459,0
1460,0 1460,0
1461,1 1461,1
1462,1 1462,0
1463,1 1463,1
1464,0 1464,0
1465,0 1465,0
...@@ -1472,18 +1472,18 @@ Id,Label ...@@ -1472,18 +1472,18 @@ Id,Label
1470,1 1470,1
1471,1 1471,1
1472,1 1472,1
1473,1 1473,0
1474,0 1474,0
1475,1 1475,1
1476,1 1476,1
1477,1 1477,0
1478,1 1478,1
1479,1 1479,1
1480,0 1480,0
1481,1 1481,1
1482,0 1482,0
1483,0 1483,0
1484,0 1484,1
1485,0 1485,0
1486,0 1486,0
1487,1 1487,1
...@@ -1499,14 +1499,14 @@ Id,Label ...@@ -1499,14 +1499,14 @@ Id,Label
1497,0 1497,0
1498,0 1498,0
1499,1 1499,1
1500,0 1500,1
1501,0 1501,0
1502,0 1502,0
1503,0 1503,0
1504,0 1504,0
1505,0 1505,0
1506,0 1506,0
1507,1 1507,0
1508,1 1508,1
1509,0 1509,0
1510,1 1510,1
...@@ -1524,11 +1524,11 @@ Id,Label ...@@ -1524,11 +1524,11 @@ Id,Label
1522,1 1522,1
1523,0 1523,0
1524,0 1524,0
1525,1 1525,0
1526,0 1526,0
1527,0 1527,0
1528,0 1528,0
1529,0 1529,1
1530,0 1530,0
1531,0 1531,0
1532,0 1532,0
...@@ -1560,7 +1560,7 @@ Id,Label ...@@ -1560,7 +1560,7 @@ Id,Label
1558,0 1558,0
1559,0 1559,0
1560,1 1560,1
1561,1 1561,0
1562,1 1562,1
1563,0 1563,0
1564,1 1564,1
...@@ -1584,15 +1584,15 @@ Id,Label ...@@ -1584,15 +1584,15 @@ Id,Label
1582,1 1582,1
1583,1 1583,1
1584,0 1584,0
1585,1 1585,0
1586,0 1586,0
1587,0 1587,0
1588,1 1588,0
1589,1 1589,1
1590,1 1590,1
1591,1 1591,1
1592,0 1592,0
1593,1 1593,0
1594,0 1594,0
1595,1 1595,1
1596,1 1596,1
......
...@@ -7,14 +7,21 @@ from pprint import pprint as pp ...@@ -7,14 +7,21 @@ from pprint import pprint as pp
from math import log, exp from math import log, exp
import numpy as np import numpy as np
def doNormalize(X): removed=[]
def doNormalize(X,isTrain):
#do 0 mean 1 std normalization #do 0 mean 1 std normalization
x1 = np.array(X,dtype=float) x1 = np.array(X,dtype=float)
for i in range(len(X[0])): for i in range(len(X[0])):
col = x1[:,i] col = x1[:,i]
mean,std = col.mean(),col.std() mean,std = col.mean(),col.std()
std = std if std!=0.0 else 1.0 #std = std if std!=0.0 else 1.0
x1[:,i] = (x1[:,i]-mean)/std if i!=0:
if std<0.1 and isTrain:
removed.append(i)
else:
x1[:,i] = (x1[:,i]-mean)/max(std,1.0)
x1 = np.delete(x1, removed, axis=1)
return x1.tolist() return x1.tolist()
def getData(srcF, isTrain=True, addBias=True, normalize=True): def getData(srcF, isTrain=True, addBias=True, normalize=True):
...@@ -37,7 +44,7 @@ def getData(srcF, isTrain=True, addBias=True, normalize=True): ...@@ -37,7 +44,7 @@ def getData(srcF, isTrain=True, addBias=True, normalize=True):
y.append(entry) y.append(entry)
if normalize: if normalize:
X = doNormalize(X) X = doNormalize(X,isTrain)
#print(X[0]) #print(X[0])
return (np.array(X),np.array(y)) return (np.array(X),np.array(y))
...@@ -111,14 +118,21 @@ def fit(model, X, y, passes=1000): ...@@ -111,14 +118,21 @@ def fit(model, X, y, passes=1000):
dw1 += (model['lambda']/m)*w1 dw1 += (model['lambda']/m)*w1
dw2 += (model['lambda']/m)*w2 dw2 += (model['lambda']/m)*w2
w1 += -model['eta']*dw1 costs = []
w2 += -model['eta']*dw2 ws = []
for eta in model['eta']:
model['w1'] = w1 tw1 = w1-eta*dw1
model['w2'] = w2 tw2 = w2-eta*dw2
model['w1'] = tw1
model['w2'] = tw2
costs.append(cost(model,X,y))
ws.append((tw1,tw2))
idx = np.argmin(costs)
w1,w2 = ws[idx][0],ws[idx][1]
model['w1'],model['w2'] = w1,w2
if i % (passes/10)==0: if i % (passes/10)==0:
print(i,cost(model, X, y)) print(i,costs[idx])
return model return model
...@@ -126,15 +140,17 @@ def fit(model, X, y, passes=1000): ...@@ -126,15 +140,17 @@ def fit(model, X, y, passes=1000):
if __name__ == "__main__": if __name__ == "__main__":
np.random.seed(47) np.random.seed(47)
np.seterr(over='raise') np.seterr(over='raise')
X,y = getData("Train.csv")
tX,ty = getData("TestX.csv",isTrain=False)
model = {} model = {}
model = {'li':57,'lh':85,'lo':2,'lambda':0.1,'eta':0.01} model = {'li':X.shape[1]-1,'lh':int(3*(X.shape[1]-1)/2),'lo':2,'lambda':0.1,'eta':[0.01,0.06,0.1]}
# model['w1'] = np.random.randn(model['li']+1, model['lh'])/np.sqrt(model['li']+1) #58x28 # model['w1'] = np.random.randn(model['li']+1, model['lh'])/np.sqrt(model['li']+1) #58x28
# model['w2'] = np.random.randn(model['lh']+1, model['lo'])/np.sqrt(model['lh']+1) #29x2 # model['w2'] = np.random.randn(model['lh']+1, model['lo'])/np.sqrt(model['lh']+1) #29x2
model['w1'] = np.random.rand(model['li']+1, model['lh'])*0.24 - 0.12 model['w1'] = np.random.rand(model['li']+1, model['lh'])*0.24 - 0.12
model['w2'] = np.random.rand(model['lh']+1, model['lo'])*0.24 - 0.12 model['w2'] = np.random.rand(model['lh']+1, model['lo'])*0.24 - 0.12
X,y = getData("Train.csv")
tX,ty = getData("TestX.csv",isTrain=False)
#cost(model, X, y) #cost(model, X, y)
# for h in [57/3, 57/2, 2*57/3, 57, 3*57/2]: # for h in [57/3, 57/2, 2*57/3, 57, 3*57/2]:
# h=int(h) # h=int(h)
...@@ -142,7 +158,7 @@ if __name__ == "__main__": ...@@ -142,7 +158,7 @@ if __name__ == "__main__":
# model['w1'] = np.random.randn(model['li']+1, model['lh'])/np.sqrt(model['li']+1) #58x28 # model['w1'] = np.random.randn(model['li']+1, model['lh'])/np.sqrt(model['li']+1) #58x28
# model['w2'] = np.random.randn(model['lh']+1, model['lo'])/np.sqrt(model['lh']+1) #29x2 # model['w2'] = np.random.randn(model['lh']+1, model['lo'])/np.sqrt(model['lh']+1) #29x2
model = fit(model, X, y, passes=500) model = fit(model, X, y, passes=1500)
m = X.shape[0] m = X.shape[0]
py,y2=[],[] py,y2=[],[]
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment