Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
ff0a4528
Commit
ff0a4528
authored
May 27, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
separate predict related code
parent
d7a85f44
Changes
7
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
266 additions
and
5 deletions
+266
-5
examples/Atari2600/DQN.py
examples/Atari2600/DQN.py
+0
-1
tensorpack/dataflow/dataset/atari.py
tensorpack/dataflow/dataset/atari.py
+2
-2
tensorpack/predict/__init__.py
tensorpack/predict/__init__.py
+20
-0
tensorpack/predict/common.py
tensorpack/predict/common.py
+90
-0
tensorpack/predict/concurrency.py
tensorpack/predict/concurrency.py
+67
-0
tensorpack/predict/dataset.py
tensorpack/predict/dataset.py
+76
-0
tensorpack/tfutils/sessinit.py
tensorpack/tfutils/sessinit.py
+11
-2
No files found.
examples/Atari2600/DQN.py
View file @
ff0a4528
...
@@ -266,7 +266,6 @@ if __name__ == '__main__':
...
@@ -266,7 +266,6 @@ if __name__ == '__main__':
if
args
.
task
!=
'train'
:
if
args
.
task
!=
'train'
:
assert
args
.
load
is
not
None
assert
args
.
load
is
not
None
global
ROM_FILE
ROM_FILE
=
args
.
rom
ROM_FILE
=
args
.
rom
if
args
.
task
==
'play'
:
if
args
.
task
==
'play'
:
...
...
tensorpack/dataflow/dataset/atari.py
View file @
ff0a4528
...
@@ -36,7 +36,7 @@ class AtariPlayer(RLEnvironment):
...
@@ -36,7 +36,7 @@ class AtariPlayer(RLEnvironment):
self
.
ale
=
ALEInterface
()
self
.
ale
=
ALEInterface
()
self
.
rng
=
get_rng
(
self
)
self
.
rng
=
get_rng
(
self
)
self
.
ale
.
setInt
(
"random_seed"
,
self
.
rng
.
randint
(
self
.
rng
.
randint
(
0
,
1000
)
))
self
.
ale
.
setInt
(
"random_seed"
,
self
.
rng
.
randint
(
0
,
1000
))
self
.
ale
.
setInt
(
"frame_skip"
,
frame_skip
)
self
.
ale
.
setInt
(
"frame_skip"
,
frame_skip
)
self
.
ale
.
setBool
(
'color_averaging'
,
True
)
self
.
ale
.
setBool
(
'color_averaging'
,
True
)
self
.
ale
.
loadROM
(
rom_file
)
self
.
ale
.
loadROM
(
rom_file
)
...
@@ -125,7 +125,7 @@ if __name__ == '__main__':
...
@@ -125,7 +125,7 @@ if __name__ == '__main__':
#im = a.grab_image()
#im = a.grab_image()
#cv2.imshow(a.romname, im)
#cv2.imshow(a.romname, im)
act
=
rng
.
choice
(
range
(
num
))
act
=
rng
.
choice
(
range
(
num
))
print
act
print
(
act
)
r
,
o
=
a
.
action
(
act
)
r
,
o
=
a
.
action
(
act
)
a
.
current_state
()
a
.
current_state
()
#time.sleep(0.1)
#time.sleep(0.1)
...
...
tensorpack/predict/__init__.py
0 → 100644
View file @
ff0a4528
# -*- coding: UTF-8 -*-
# File: __init__.py
# Author: Yuxin Wu <ppwwyyxx@gmail.com>
from
pkgutil
import
walk_packages
import
os
import
os.path
def
global_import
(
name
):
p
=
__import__
(
name
,
globals
(),
locals
(),
level
=
1
)
lst
=
p
.
__all__
if
'__all__'
in
dir
(
p
)
else
dir
(
p
)
for
k
in
lst
:
globals
()[
k
]
=
p
.
__dict__
[
k
]
del
globals
()[
name
]
for
_
,
module_name
,
_
in
walk_packages
(
[
os
.
path
.
dirname
(
__file__
)]):
if
not
module_name
.
startswith
(
'_'
):
global_import
(
module_name
)
tensorpack/predict.py
→
tensorpack/predict
/common
.py
View file @
ff0a4528
# -*- coding: UTF-8 -*-
# -*- coding: UTF-8 -*-
# File:
predict
.py
# File:
common
.py
# Author: Yuxin Wu <ppwwyyxx@gmail.com>
# Author: Yuxin Wu <ppwwyyxx@gmail.com>
import
tensorflow
as
tf
import
tensorflow
as
tf
import
numpy
as
np
from
collections
import
namedtuple
from
collections
import
namedtuple
from
tqdm
import
tqdm
from
six.moves
import
zip
from
six.moves
import
zip
,
range
import
multiprocessing
from
..tfutils
import
*
from
.utils.concurrency
import
ensure_proc_terminate
,
OrderedResultGatherProc
,
DIE
from
.tfutils
import
*
import
multiprocessing
from
.utils
import
logger
from
.tfutils.modelutils
import
describe_model
from
.dataflow
import
DataFlow
,
BatchData
from
.dataflow.dftools
import
dataflow_to_process_queue
__all__
=
[
'PredictConfig'
,
'DatasetPredictor'
,
'get_predict_func'
,
__all__
=
[
'PredictConfig'
,
'get_predict_func'
,
'PredictResult'
]
'ParallelPredictWorker'
]
PredictResult
=
namedtuple
(
'PredictResult'
,
[
'input'
,
'output'
])
PredictResult
=
namedtuple
(
'PredictResult'
,
[
'input'
,
'output'
])
...
@@ -27,7 +19,6 @@ class PredictConfig(object):
...
@@ -27,7 +19,6 @@ class PredictConfig(object):
"""
"""
The config used by `get_predict_func`.
The config used by `get_predict_func`.
:param session_config: a `tf.ConfigProto` instance to instantiate the session.
:param session_init: a `utils.sessinit.SessionInit` instance to
:param session_init: a `utils.sessinit.SessionInit` instance to
initialize variables of a session.
initialize variables of a session.
:param input_data_mapping: Decide the mapping from each component in data
:param input_data_mapping: Decide the mapping from each component in data
...
@@ -68,6 +59,7 @@ class PredictConfig(object):
...
@@ -68,6 +59,7 @@ class PredictConfig(object):
def
get_predict_func
(
config
):
def
get_predict_func
(
config
):
"""
"""
Produce a simple predictor function in a newly-created session without any parallelism.
:param config: a `PredictConfig` instance.
:param config: a `PredictConfig` instance.
:returns: A prediction function that takes a list of input values, and return
:returns: A prediction function that takes a list of input values, and return
a list of output values defined in ``config.output_var_names``.
a list of output values defined in ``config.output_var_names``.
...
@@ -86,9 +78,6 @@ def get_predict_func(config):
...
@@ -86,9 +78,6 @@ def get_predict_func(config):
output_vars
=
[
tf
.
get_default_graph
()
.
get_tensor_by_name
(
get_op_var_name
(
n
)[
1
])
output_vars
=
[
tf
.
get_default_graph
()
.
get_tensor_by_name
(
get_op_var_name
(
n
)[
1
])
for
n
in
output_var_names
]
for
n
in
output_var_names
]
if
config
.
session_config
:
sess
=
tf
.
Session
(
config
=
config
.
session_config
)
else
:
sess
=
tf
.
Session
()
sess
=
tf
.
Session
()
config
.
session_init
.
init
(
sess
)
config
.
session_init
.
init
(
sess
)
...
@@ -99,119 +88,3 @@ def get_predict_func(config):
...
@@ -99,119 +88,3 @@ def get_predict_func(config):
feed
=
dict
(
zip
(
input_map
,
dp
))
feed
=
dict
(
zip
(
input_map
,
dp
))
return
sess
.
run
(
output_vars
,
feed_dict
=
feed
)
return
sess
.
run
(
output_vars
,
feed_dict
=
feed
)
return
run_input
return
run_input
class
ParallelPredictWorker
(
multiprocessing
.
Process
):
def
__init__
(
self
,
idx
,
gpuid
,
config
):
"""
:param idx: index of the worker. the 0th worker will print log.
:param gpuid: id of the GPU to be used. set to -1 to use CPU.
:param config: a `PredictConfig`
"""
super
(
ParallelPredictWorker
,
self
)
.
__init__
()
self
.
idx
=
idx
self
.
gpuid
=
gpuid
self
.
config
=
config
def
_init_runtime
(
self
):
if
self
.
gpuid
>=
0
:
logger
.
info
(
"Worker {} uses GPU {}"
.
format
(
self
.
idx
,
self
.
gpuid
))
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
self
.
gpuid
else
:
logger
.
info
(
"Worker {} uses CPU"
.
format
(
self
.
idx
))
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
''
G
=
tf
.
Graph
()
# build a graph for each process, because they don't need to share anything
with
G
.
as_default
(),
tf
.
device
(
'/gpu:0'
if
self
.
gpuid
>=
0
else
'/cpu:0'
):
if
self
.
idx
!=
0
:
from
tensorpack.models._common
import
disable_layer_logging
disable_layer_logging
()
self
.
func
=
get_predict_func
(
self
.
config
)
if
self
.
idx
==
0
:
describe_model
()
class
QueuePredictWorker
(
ParallelPredictWorker
):
""" A worker process to run predictor on one GPU """
def
__init__
(
self
,
idx
,
gpuid
,
inqueue
,
outqueue
,
config
):
"""
:param idx: index of the worker. the 0th worker will print log.
:param gpuid: id of the GPU to be used. set to -1 to use CPU.
:param inqueue: input queue to get data point
:param outqueue: output queue put result
:param config: a `PredictConfig`
"""
super
(
QueuePredictWorker
,
self
)
.
__init__
(
idx
,
gpuid
,
config
)
self
.
inqueue
=
inqueue
self
.
outqueue
=
outqueue
def
run
(
self
):
self
.
_init_runtime
()
while
True
:
tid
,
dp
=
self
.
inqueue
.
get
()
if
tid
==
DIE
:
self
.
outqueue
.
put
((
DIE
,
None
))
return
else
:
res
=
PredictResult
(
dp
,
self
.
func
(
dp
))
self
.
outqueue
.
put
((
tid
,
res
))
class
DatasetPredictor
(
object
):
"""
Run the predict_config on a given `DataFlow`.
"""
def
__init__
(
self
,
config
,
dataset
):
"""
:param config: a `PredictConfig` instance.
:param dataset: a `DataFlow` instance.
"""
assert
isinstance
(
dataset
,
DataFlow
)
self
.
ds
=
dataset
self
.
nr_gpu
=
config
.
nr_gpu
if
self
.
nr_gpu
>
1
:
self
.
inqueue
,
self
.
inqueue_proc
=
dataflow_to_process_queue
(
self
.
ds
,
10
,
self
.
nr_gpu
)
self
.
outqueue
=
multiprocessing
.
Queue
()
try
:
gpus
=
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
.
split
(
','
)
except
KeyError
:
gpus
=
list
(
range
(
self
.
nr_gpu
))
self
.
workers
=
[
QueuePredictWorker
(
i
,
gpus
[
i
],
self
.
inqueue
,
self
.
outqueue
,
config
)
for
i
in
range
(
self
.
nr_gpu
)]
self
.
result_queue
=
OrderedResultGatherProc
(
self
.
outqueue
)
# setup all the procs
self
.
inqueue_proc
.
start
()
for
p
in
self
.
workers
:
p
.
start
()
self
.
result_queue
.
start
()
ensure_proc_terminate
(
self
.
workers
)
ensure_proc_terminate
([
self
.
result_queue
,
self
.
inqueue_proc
])
else
:
self
.
func
=
get_predict_func
(
config
)
def
get_result
(
self
):
""" A generator to produce prediction for each data"""
with
tqdm
(
total
=
self
.
ds
.
size
())
as
pbar
:
if
self
.
nr_gpu
==
1
:
for
dp
in
self
.
ds
.
get_data
():
yield
PredictResult
(
dp
,
self
.
func
(
dp
))
pbar
.
update
()
else
:
die_cnt
=
0
while
True
:
res
=
self
.
result_queue
.
get
()
pbar
.
update
()
if
res
[
0
]
!=
DIE
:
yield
res
[
1
]
else
:
die_cnt
+=
1
if
die_cnt
==
self
.
nr_gpu
:
break
self
.
inqueue_proc
.
join
()
self
.
inqueue_proc
.
terminate
()
for
p
in
self
.
workers
:
p
.
join
();
p
.
terminate
()
def
get_all_result
(
self
):
"""
Run over the dataset and return a list of all predictions.
"""
return
list
(
self
.
get_result
())
tensorpack/predict/concurrency.py
0 → 100644
View file @
ff0a4528
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: concurrency.py
# Author: Yuxin Wu <ppwwyyxxc@gmail.com>
import
multiprocessing
import
tensorflow
as
tf
from
..utils.concurrency
import
DIE
from
..tfutils.modelutils
import
describe_model
from
..utils
import
logger
from
..tfutils
import
*
from
.common
import
*
__all__
=
[
'ParallelPredictWorker'
,
'QueuePredictWorker'
]
class
ParallelPredictWorker
(
multiprocessing
.
Process
):
def
__init__
(
self
,
idx
,
gpuid
,
config
):
"""
:param idx: index of the worker. the 0th worker will print log.
:param gpuid: absolute id of the GPU to be used. set to -1 to use CPU.
:param config: a `PredictConfig`
"""
super
(
ParallelPredictWorker
,
self
)
.
__init__
()
self
.
idx
=
idx
self
.
gpuid
=
gpuid
self
.
config
=
config
def
_init_runtime
(
self
):
if
self
.
gpuid
>=
0
:
logger
.
info
(
"Worker {} uses GPU {}"
.
format
(
self
.
idx
,
self
.
gpuid
))
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
str
(
self
.
gpuid
)
else
:
logger
.
info
(
"Worker {} uses CPU"
.
format
(
self
.
idx
))
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
''
G
=
tf
.
Graph
()
# build a graph for each process, because they don't need to share anything
with
G
.
as_default
():
if
self
.
idx
!=
0
:
from
tensorpack.models._common
import
disable_layer_logging
disable_layer_logging
()
self
.
func
=
get_predict_func
(
self
.
config
)
if
self
.
idx
==
0
:
describe_model
()
class
QueuePredictWorker
(
ParallelPredictWorker
):
""" A worker process to run predictor on one GPU """
def
__init__
(
self
,
idx
,
gpuid
,
inqueue
,
outqueue
,
config
):
"""
:param idx: index of the worker. the 0th worker will print log.
:param gpuid: id of the GPU to be used. set to -1 to use CPU.
:param inqueue: input queue to get data point
:param outqueue: output queue put result
:param config: a `PredictConfig`
"""
super
(
QueuePredictWorker
,
self
)
.
__init__
(
idx
,
gpuid
,
config
)
self
.
inqueue
=
inqueue
self
.
outqueue
=
outqueue
def
run
(
self
):
self
.
_init_runtime
()
while
True
:
tid
,
dp
=
self
.
inqueue
.
get
()
if
tid
==
DIE
:
self
.
outqueue
.
put
((
DIE
,
None
))
return
else
:
res
=
PredictResult
(
dp
,
self
.
func
(
dp
))
self
.
outqueue
.
put
((
tid
,
res
))
tensorpack/predict/dataset.py
0 → 100644
View file @
ff0a4528
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: dataset.py
# Author: Yuxin Wu <ppwwyyxxc@gmail.com>
from
six.moves
import
range
from
tqdm
import
tqdm
from
..dataflow
import
DataFlow
,
BatchData
from
..dataflow.dftools
import
dataflow_to_process_queue
from
..utils.concurrency
import
ensure_proc_terminate
,
OrderedResultGatherProc
,
DIE
from
.concurrency
import
*
__all__
=
[
'DatasetPredictor'
]
class
DatasetPredictor
(
object
):
"""
Run the predict_config on a given `DataFlow`.
"""
def
__init__
(
self
,
config
,
dataset
):
"""
:param config: a `PredictConfig` instance.
:param dataset: a `DataFlow` instance.
"""
assert
isinstance
(
dataset
,
DataFlow
)
self
.
ds
=
dataset
self
.
nr_gpu
=
config
.
nr_gpu
if
self
.
nr_gpu
>
1
:
self
.
inqueue
,
self
.
inqueue_proc
=
dataflow_to_process_queue
(
self
.
ds
,
10
,
self
.
nr_gpu
)
self
.
outqueue
=
multiprocessing
.
Queue
()
try
:
gpus
=
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
.
split
(
','
)
except
KeyError
:
gpus
=
list
(
range
(
self
.
nr_gpu
))
self
.
workers
=
[
QueuePredictWorker
(
i
,
gpus
[
i
],
self
.
inqueue
,
self
.
outqueue
,
config
)
for
i
in
range
(
self
.
nr_gpu
)]
self
.
result_queue
=
OrderedResultGatherProc
(
self
.
outqueue
)
# setup all the procs
self
.
inqueue_proc
.
start
()
for
p
in
self
.
workers
:
p
.
start
()
self
.
result_queue
.
start
()
ensure_proc_terminate
(
self
.
workers
)
ensure_proc_terminate
([
self
.
result_queue
,
self
.
inqueue_proc
])
else
:
self
.
func
=
get_predict_func
(
config
)
def
get_result
(
self
):
""" A generator to produce prediction for each data"""
with
tqdm
(
total
=
self
.
ds
.
size
())
as
pbar
:
if
self
.
nr_gpu
==
1
:
for
dp
in
self
.
ds
.
get_data
():
yield
PredictResult
(
dp
,
self
.
func
(
dp
))
pbar
.
update
()
else
:
die_cnt
=
0
while
True
:
res
=
self
.
result_queue
.
get
()
pbar
.
update
()
if
res
[
0
]
!=
DIE
:
yield
res
[
1
]
else
:
die_cnt
+=
1
if
die_cnt
==
self
.
nr_gpu
:
break
self
.
inqueue_proc
.
join
()
self
.
inqueue_proc
.
terminate
()
for
p
in
self
.
workers
:
p
.
join
();
p
.
terminate
()
def
get_all_result
(
self
):
"""
Run over the dataset and return a list of all predictions.
"""
return
list
(
self
.
get_result
())
tensorpack/tfutils/sessinit.py
View file @
ff0a4528
...
@@ -12,9 +12,13 @@ import six
...
@@ -12,9 +12,13 @@ import six
from
..utils
import
logger
from
..utils
import
logger
__all__
=
[
'SessionInit'
,
'NewSession'
,
'SaverRestore'
,
'ParamRestore'
,
__all__
=
[
'SessionInit'
,
'NewSession'
,
'SaverRestore'
,
'ParamRestore'
,
'JustCurrentSession'
,
'dump_session_params'
]
'dump_session_params'
]
# TODO they initialize_all at the beginning by default.
class
SessionInit
(
object
):
class
SessionInit
(
object
):
""" Base class for utilities to initialize a session"""
""" Base class for utilities to initialize a session"""
__metaclass__
=
ABCMeta
__metaclass__
=
ABCMeta
...
@@ -30,6 +34,11 @@ class SessionInit(object):
...
@@ -30,6 +34,11 @@ class SessionInit(object):
def
_init
(
self
,
sess
):
def
_init
(
self
,
sess
):
pass
pass
class
JustCurrentSession
(
SessionInit
):
""" Just use the current default session. This is a no-op placeholder"""
def
_init
(
self
,
sess
):
logger
.
info
(
"Using the current running session .."
)
class
NewSession
(
SessionInit
):
class
NewSession
(
SessionInit
):
"""
"""
Create a new session. All variables will be initialized by their
Create a new session. All variables will be initialized by their
...
@@ -139,7 +148,7 @@ class ParamRestore(SessionInit):
...
@@ -139,7 +148,7 @@ class ParamRestore(SessionInit):
def
dump_session_params
(
path
):
def
dump_session_params
(
path
):
""" Dump value of all trainable variables to a dict and save to `path` as
""" Dump value of all trainable variables to a dict and save to `path` as
npy format
.
npy format
, loadable by ParamRestore
"""
"""
var
=
tf
.
get_collection
(
tf
.
GraphKeys
.
TRAINABLE_VARIABLES
)
var
=
tf
.
get_collection
(
tf
.
GraphKeys
.
TRAINABLE_VARIABLES
)
result
=
{}
result
=
{}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment