Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
fbb73a8a
Commit
fbb73a8a
authored
Apr 13, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
argscope
parent
23f2ccd6
Changes
6
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
70 additions
and
23 deletions
+70
-23
examples/cifar10_convnet.py
examples/cifar10_convnet.py
+9
-6
tensorpack/models/_common.py
tensorpack/models/_common.py
+12
-9
tensorpack/models/batch_norm.py
tensorpack/models/batch_norm.py
+1
-1
tensorpack/models/nonlin.py
tensorpack/models/nonlin.py
+6
-7
tensorpack/tfutils/__init__.py
tensorpack/tfutils/__init__.py
+1
-0
tensorpack/tfutils/argscope.py
tensorpack/tfutils/argscope.py
+41
-0
No files found.
examples/cifar10_convnet.py
View file @
fbb73a8a
...
@@ -43,15 +43,18 @@ class Model(ModelDesc):
...
@@ -43,15 +43,18 @@ class Model(ModelDesc):
tf
.
image_summary
(
"train_image"
,
image
,
10
)
tf
.
image_summary
(
"train_image"
,
image
,
10
)
image
=
image
/
4.0
# just to make range smaller
image
=
image
/
4.0
# just to make range smaller
l
=
Conv2D
(
'conv1.1'
,
image
,
out_channel
=
64
,
kernel_shape
=
3
)
l
=
Conv2D
(
'conv1.1'
,
image
,
out_channel
=
64
,
kernel_shape
=
3
,
nl
=
BNReLU
(
is_training
),
use_bias
=
False
)
l
=
Conv2D
(
'conv1.2'
,
l
,
out_channel
=
64
,
kernel_shape
=
3
,
nl
=
BNReLU
(
is_training
),
use_bias
=
False
)
l
=
Conv2D
(
'conv1.2'
,
l
,
out_channel
=
64
,
kernel_shape
=
3
,
nl
=
BNReLU
(
is_training
),
use_bias
=
False
)
l
=
MaxPooling
(
'pool1'
,
l
,
3
,
stride
=
2
,
padding
=
'SAME'
)
l
=
MaxPooling
(
'pool1'
,
l
,
3
,
stride
=
2
,
padding
=
'SAME'
)
l
=
Conv2D
(
'conv2.1'
,
l
,
out_channel
=
128
,
kernel_shape
=
3
)
l
=
Conv2D
(
'conv2.1'
,
l
,
out_channel
=
128
,
kernel_shape
=
3
,
nl
=
BNReLU
(
is_training
),
use_bias
=
False
)
l
=
Conv2D
(
'conv2.2'
,
l
,
out_channel
=
128
,
kernel_shape
=
3
,
nl
=
BNReLU
(
is_training
),
use_bias
=
False
)
l
=
Conv2D
(
'conv2.2'
,
l
,
out_channel
=
128
,
kernel_shape
=
3
,
nl
=
BNReLU
(
is_training
),
use_bias
=
False
)
l
=
MaxPooling
(
'pool2'
,
l
,
3
,
stride
=
2
,
padding
=
'SAME'
)
l
=
MaxPooling
(
'pool2'
,
l
,
3
,
stride
=
2
,
padding
=
'SAME'
)
l
=
Conv2D
(
'conv3.1'
,
l
,
out_channel
=
128
,
kernel_shape
=
3
,
padding
=
'VALID'
)
l
=
Conv2D
(
'conv3.1'
,
l
,
out_channel
=
128
,
kernel_shape
=
3
,
padding
=
'VALID'
,
nl
=
BNReLU
(
is_training
),
use_bias
=
False
)
l
=
Conv2D
(
'conv3.2'
,
l
,
out_channel
=
128
,
kernel_shape
=
3
,
padding
=
'VALID'
,
nl
=
BNReLU
(
is_training
),
use_bias
=
False
)
l
=
Conv2D
(
'conv3.2'
,
l
,
out_channel
=
128
,
kernel_shape
=
3
,
padding
=
'VALID'
,
nl
=
BNReLU
(
is_training
),
use_bias
=
False
)
l
=
FullyConnected
(
'fc0'
,
l
,
1024
+
512
,
l
=
FullyConnected
(
'fc0'
,
l
,
1024
+
512
,
b_init
=
tf
.
constant_initializer
(
0.1
))
b_init
=
tf
.
constant_initializer
(
0.1
))
...
@@ -80,7 +83,7 @@ class Model(ModelDesc):
...
@@ -80,7 +83,7 @@ class Model(ModelDesc):
name
=
'regularize_loss'
)
name
=
'regularize_loss'
)
tf
.
add_to_collection
(
MOVING_SUMMARY_VARS_KEY
,
wd_cost
)
tf
.
add_to_collection
(
MOVING_SUMMARY_VARS_KEY
,
wd_cost
)
add_param_summary
([(
'.*/W'
,
[
'histogram'
,
'sparsity'
])])
# monitor W
add_param_summary
([(
'.*/W'
,
[
'histogram'
])])
# monitor W
return
tf
.
add_n
([
cost
,
wd_cost
],
name
=
'cost'
)
return
tf
.
add_n
([
cost
,
wd_cost
],
name
=
'cost'
)
def
get_data
(
train_or_test
):
def
get_data
(
train_or_test
):
...
@@ -123,7 +126,7 @@ def get_config():
...
@@ -123,7 +126,7 @@ def get_config():
lr
=
tf
.
train
.
exponential_decay
(
lr
=
tf
.
train
.
exponential_decay
(
learning_rate
=
1e-2
,
learning_rate
=
1e-2
,
global_step
=
get_global_step_var
(),
global_step
=
get_global_step_var
(),
decay_steps
=
dataset_train
.
size
()
*
30
if
nr_gpu
==
1
else
20
,
decay_steps
=
step_per_epoch
*
30
if
nr_gpu
==
1
else
20
,
decay_rate
=
0.5
,
staircase
=
True
,
name
=
'learning_rate'
)
decay_rate
=
0.5
,
staircase
=
True
,
name
=
'learning_rate'
)
tf
.
scalar_summary
(
'learning_rate'
,
lr
)
tf
.
scalar_summary
(
'learning_rate'
,
lr
)
...
@@ -138,7 +141,7 @@ def get_config():
...
@@ -138,7 +141,7 @@ def get_config():
session_config
=
sess_config
,
session_config
=
sess_config
,
model
=
Model
(),
model
=
Model
(),
step_per_epoch
=
step_per_epoch
,
step_per_epoch
=
step_per_epoch
,
max_epoch
=
5
00
,
max_epoch
=
2
00
,
)
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
tensorpack/models/_common.py
View file @
fbb73a8a
...
@@ -6,6 +6,7 @@ import tensorflow as tf
...
@@ -6,6 +6,7 @@ import tensorflow as tf
from
functools
import
wraps
from
functools
import
wraps
import
six
import
six
from
..tfutils
import
*
from
..tfutils.modelutils
import
*
from
..tfutils.modelutils
import
*
from
..tfutils.summary
import
*
from
..tfutils.summary
import
*
from
..utils
import
logger
from
..utils
import
logger
...
@@ -13,14 +14,13 @@ from ..utils import logger
...
@@ -13,14 +14,13 @@ from ..utils import logger
# make sure each layer is only logged once
# make sure each layer is only logged once
_layer_logged
=
set
()
_layer_logged
=
set
()
def
layer_register
(
summary_activation
=
False
):
def
layer_register
(
summary_activation
=
False
,
log_shape
=
True
):
"""
"""
Register a layer.
Register a layer.
Args:
:param summary_activation: Define the default behavior of whether to
summary_activation:
Define the default behavior of whether to
summary the output(activation) of this layer.
summary the output(activation) of this layer.
Can be overriden when creating the layer.
Can be overriden when creating the layer.
:param log_shape: log input/output shape of this layer
"""
"""
def
wrapper
(
func
):
def
wrapper
(
func
):
@
wraps
(
func
)
@
wraps
(
func
)
...
@@ -29,13 +29,16 @@ def layer_register(summary_activation=False):
...
@@ -29,13 +29,16 @@ def layer_register(summary_activation=False):
assert
isinstance
(
name
,
six
.
string_types
),
\
assert
isinstance
(
name
,
six
.
string_types
),
\
'name must be the first argument. Args: {}'
.
format
(
str
(
args
))
'name must be the first argument. Args: {}'
.
format
(
str
(
args
))
args
=
args
[
1
:]
args
=
args
[
1
:]
do_summary
=
kwargs
.
pop
(
do_summary
=
kwargs
.
pop
(
'summary_activation'
,
summary_activation
)
'summary_activation'
,
summary_activation
)
inputs
=
args
[
0
]
inputs
=
args
[
0
]
actual_args
=
get_arg_scope
()[
func
.
__name__
]
actual_args
.
update
(
kwargs
)
with
tf
.
variable_scope
(
name
)
as
scope
:
with
tf
.
variable_scope
(
name
)
as
scope
:
outputs
=
func
(
*
args
,
**
kw
args
)
outputs
=
func
(
*
args
,
**
actual_
args
)
if
scope
.
name
not
in
_layer_logged
:
if
log_shape
and
scope
.
name
not
in
_layer_logged
:
# log shape info and add activation
# log shape info and add activation
logger
.
info
(
"{} input: {}"
.
format
(
logger
.
info
(
"{} input: {}"
.
format
(
scope
.
name
,
get_shape_str
(
inputs
)))
scope
.
name
,
get_shape_str
(
inputs
)))
...
...
tensorpack/models/batch_norm.py
View file @
fbb73a8a
...
@@ -14,7 +14,7 @@ __all__ = ['BatchNorm']
...
@@ -14,7 +14,7 @@ __all__ = ['BatchNorm']
# TF batch_norm only works for 4D tensor right now: #804
# TF batch_norm only works for 4D tensor right now: #804
# decay: being too close to 1 leads to slow start-up, but ends up better
# decay: being too close to 1 leads to slow start-up, but ends up better
# eps: torch: 1e-5. Lasagne: 1e-4
# eps: torch: 1e-5. Lasagne: 1e-4
@
layer_register
()
@
layer_register
(
log_shape
=
False
)
def
BatchNorm
(
x
,
use_local_stat
=
True
,
decay
=
0.999
,
epsilon
=
1e-5
):
def
BatchNorm
(
x
,
use_local_stat
=
True
,
decay
=
0.999
,
epsilon
=
1e-5
):
"""
"""
Batch normalization layer as described in:
Batch normalization layer as described in:
...
...
tensorpack/models/nonlin.py
View file @
fbb73a8a
...
@@ -11,7 +11,7 @@ from .batch_norm import BatchNorm
...
@@ -11,7 +11,7 @@ from .batch_norm import BatchNorm
__all__
=
[
'Maxout'
,
'PReLU'
,
'LeakyReLU'
,
'BNReLU'
]
__all__
=
[
'Maxout'
,
'PReLU'
,
'LeakyReLU'
,
'BNReLU'
]
@
layer_register
()
@
layer_register
(
log_shape
=
False
)
def
Maxout
(
x
,
num_unit
):
def
Maxout
(
x
,
num_unit
):
"""
"""
Maxout networks as in `Maxout Networks <http://arxiv.org/abs/1302.4389>`_.
Maxout networks as in `Maxout Networks <http://arxiv.org/abs/1302.4389>`_.
...
@@ -27,7 +27,7 @@ def Maxout(x, num_unit):
...
@@ -27,7 +27,7 @@ def Maxout(x, num_unit):
x
=
tf
.
reshape
(
x
,
[
-
1
,
input_shape
[
1
],
input_shape
[
2
],
ch
/
3
,
3
])
x
=
tf
.
reshape
(
x
,
[
-
1
,
input_shape
[
1
],
input_shape
[
2
],
ch
/
3
,
3
])
return
tf
.
reduce_max
(
x
,
4
,
name
=
'output'
)
return
tf
.
reduce_max
(
x
,
4
,
name
=
'output'
)
@
layer_register
()
@
layer_register
(
log_shape
=
False
)
def
PReLU
(
x
,
init
=
tf
.
constant_initializer
(
0.001
),
name
=
None
):
def
PReLU
(
x
,
init
=
tf
.
constant_initializer
(
0.001
),
name
=
None
):
"""
"""
Parameterized relu as in `Delving Deep into Rectifiers: Surpassing
Parameterized relu as in `Delving Deep into Rectifiers: Surpassing
...
@@ -44,7 +44,7 @@ def PReLU(x, init=tf.constant_initializer(0.001), name=None):
...
@@ -44,7 +44,7 @@ def PReLU(x, init=tf.constant_initializer(0.001), name=None):
else
:
else
:
return
tf
.
mul
(
x
,
0.5
,
name
=
name
)
return
tf
.
mul
(
x
,
0.5
,
name
=
name
)
@
layer_register
()
@
layer_register
(
log_shape
=
False
)
def
LeakyReLU
(
x
,
alpha
,
name
=
None
):
def
LeakyReLU
(
x
,
alpha
,
name
=
None
):
"""
"""
Leaky relu as in `Rectifier Nonlinearities Improve Neural Network Acoustic
Leaky relu as in `Rectifier Nonlinearities Improve Neural Network Acoustic
...
@@ -66,9 +66,8 @@ def BNReLU(is_training):
...
@@ -66,9 +66,8 @@ def BNReLU(is_training):
"""
"""
:returns: a activation function that performs BN + ReLU (a too common combination)
:returns: a activation function that performs BN + ReLU (a too common combination)
"""
"""
def
f
(
x
,
name
=
None
):
def
BNReLU
(
x
,
name
=
None
):
with
tf
.
variable_scope
(
'bn'
):
x
=
BatchNorm
(
'bn'
,
x
,
is_training
)
x
=
BatchNorm
.
f
(
x
,
is_training
)
x
=
tf
.
nn
.
relu
(
x
,
name
=
name
)
x
=
tf
.
nn
.
relu
(
x
,
name
=
name
)
return
x
return
x
return
f
return
BNReLU
tensorpack/tfutils/__init__.py
View file @
fbb73a8a
...
@@ -14,4 +14,5 @@ def _global_import(name):
...
@@ -14,4 +14,5 @@ def _global_import(name):
_global_import
(
'sessinit'
)
_global_import
(
'sessinit'
)
_global_import
(
'common'
)
_global_import
(
'common'
)
_global_import
(
'gradproc'
)
_global_import
(
'gradproc'
)
_global_import
(
'argscope'
)
tensorpack/tfutils/argscope.py
0 → 100644
View file @
fbb73a8a
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: argscope.py
# Author: Yuxin Wu <ppwwyyxxc@gmail.com>
from
contextlib
import
contextmanager
from
collections
import
defaultdict
import
inspect
import
copy
import
six
__all__
=
[
'argscope'
,
'get_arg_scope'
]
_ArgScopeStack
=
[]
@
contextmanager
def
argscope
(
layers
,
**
kwargs
):
param
=
kwargs
if
not
isinstance
(
layers
,
list
):
layers
=
[
layers
]
def
_check_args_exist
(
l
):
args
=
inspect
.
getargspec
(
l
)
.
args
for
k
,
v
in
six
.
iteritems
(
param
):
assert
k
in
args
,
"No argument {} in {}"
.
format
(
k
,
l
.
__name__
)
for
l
in
layers
:
assert
hasattr
(
l
,
'f'
),
"{} is not a registered layer"
.
format
(
l
.
__name__
)
_check_args_exist
(
l
.
f
)
new_scope
=
copy
.
copy
(
get_arg_scope
())
for
l
in
layers
:
new_scope
[
l
.
__name__
]
.
update
(
param
)
_ArgScopeStack
.
append
(
new_scope
)
yield
del
_ArgScopeStack
[
-
1
]
def
get_arg_scope
():
if
len
(
_ArgScopeStack
)
>
0
:
return
_ArgScopeStack
[
-
1
]
else
:
return
defaultdict
(
dict
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment