Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
f6b1499e
Commit
f6b1499e
authored
Mar 22, 2017
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
DiscoGAN examples.
parent
8868a9e4
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
237 additions
and
3 deletions
+237
-3
README.md
README.md
+1
-1
examples/GAN/DCGAN-CelebA.py
examples/GAN/DCGAN-CelebA.py
+1
-1
examples/GAN/DiscoGAN-CelebA.py
examples/GAN/DiscoGAN-CelebA.py
+228
-0
examples/GAN/README.md
examples/GAN/README.md
+6
-0
examples/README.md
examples/README.md
+1
-1
No files found.
README.md
View file @
f6b1499e
...
...
@@ -20,7 +20,7 @@ Tutorials are not finished. See some [examples](examples) to learn about the fra
+
[
Asynchronous Advantage Actor-Critic(A3C) with demos on OpenAI Gym
](
examples/A3C-Gym
)
### Unsupervised Learning:
+
[
Generative Adversarial Network(GAN) variants
](
examples/GAN
)
, including DCGAN, InfoGAN, Conditional GAN, WGAN, Image to Image.
+
[
Generative Adversarial Network(GAN) variants
](
examples/GAN
)
, including DCGAN, InfoGAN, Conditional GAN, WGAN,
DiscoGAN,
Image to Image.
### Speech / NLP:
+
[
LSTM-CTC for speech recognition
](
examples/CTC-TIMIT
)
...
...
examples/GAN/DCGAN-CelebA.py
View file @
f6b1499e
...
...
@@ -18,7 +18,7 @@ from GAN import GANTrainer, RandomZData, GANModelDesc
1. Download the 'aligned&cropped' version of CelebA dataset
from http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
2. Start training:
./DCGAN-CelebA.py --data /path/to/im
age
_align_celeba/
./DCGAN-CelebA.py --data /path/to/im
g
_align_celeba/
3. Visualize samples of a trained model:
./DCGAN-CelebA.py --load path/to/model --sample
...
...
examples/GAN/DiscoGAN-CelebA.py
0 → 100755
View file @
f6b1499e
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: DiscoGAN-CelebA.py
# Author: Yuxin Wu <ppwwyyxxc@gmail.com>
import
os
,
sys
import
argparse
from
six.moves
import
map
,
zip
import
numpy
as
np
from
tensorpack
import
*
from
tensorpack.utils.viz
import
*
import
tensorpack.tfutils.symbolic_functions
as
symbf
from
tensorpack.tfutils.summary
import
add_moving_summary
import
tensorflow
as
tf
from
GAN
import
SeparateGANTrainer
,
GANModelDesc
"""
1. Download "aligned&cropped" version of celebA to /path/to/img_ailgn_celeba.
2. Put list_attr_celeba.txt into that directory as well.
3. Start training gender transfer:
./DiscoGAN-CelebA.py --data /path/to/img_align_celeba --style-A Male
4. Visualization on test set to be done. But you can visualize the images in tensorboard now.
With TF1.0.1, cuda 8.0, cudnn 5.1.10,
the training on 64x64 images of batch 64 runs 5.4 it/s on Tesla M40.
This is 2.4x as fast as the original PyTorch implementation.
This is surprising to myself, so I'm not sure my comparison is correct.
The cause is probably that in the torch implementation,
a backward() seems to compute gradients for ALL parameters, which is not necessary in GAN.
"""
SHAPE
=
64
BATCH
=
64
NF
=
64
# channel size
def
BNLReLU
(
x
,
name
):
x
=
BatchNorm
(
'bn'
,
x
)
return
LeakyReLU
(
x
)
class
Model
(
GANModelDesc
):
def
_get_inputs
(
self
):
return
[
InputDesc
(
tf
.
float32
,
(
None
,
SHAPE
,
SHAPE
,
3
),
'inputA'
),
InputDesc
(
tf
.
float32
,
(
None
,
SHAPE
,
SHAPE
,
3
),
'inputB'
)]
def
generator
(
self
,
img
):
with
argscope
([
Conv2D
,
Deconv2D
],
nl
=
BNLReLU
,
kernel_shape
=
4
,
stride
=
2
,
use_bias
=
False
),
\
argscope
(
Deconv2D
,
nl
=
BNReLU
):
l
=
(
LinearWrap
(
img
)
.
Conv2D
(
'conv0'
,
NF
,
nl
=
LeakyReLU
)
.
Conv2D
(
'conv1'
,
NF
*
2
)
.
Conv2D
(
'conv2'
,
NF
*
4
)
.
Conv2D
(
'conv3'
,
NF
*
8
)
.
Deconv2D
(
'deconv0'
,
NF
*
4
)
.
Deconv2D
(
'deconv1'
,
NF
*
2
)
.
Deconv2D
(
'deconv2'
,
NF
*
1
)
.
Deconv2D
(
'deconv3'
,
3
,
nl
=
tf
.
identity
)
.
tf
.
sigmoid
()())
return
l
def
discriminator
(
self
,
img
):
with
argscope
(
Conv2D
,
nl
=
BNLReLU
,
kernel_shape
=
4
,
stride
=
2
):
l
=
Conv2D
(
'conv0'
,
img
,
NF
,
nl
=
LeakyReLU
)
relu1
=
Conv2D
(
'conv1'
,
l
,
NF
*
2
)
relu2
=
Conv2D
(
'conv2'
,
relu1
,
NF
*
4
)
relu3
=
Conv2D
(
'conv3'
,
relu2
,
NF
*
8
)
logits
=
FullyConnected
(
'fc'
,
relu3
,
1
,
nl
=
tf
.
identity
)
return
logits
,
[
relu1
,
relu2
,
relu3
]
def
get_feature_match_loss
(
self
,
feats_real
,
feats_fake
):
losses
=
[]
for
real
,
fake
in
zip
(
feats_real
,
feats_fake
):
loss
=
tf
.
reduce_mean
(
tf
.
squared_difference
(
tf
.
reduce_mean
(
real
,
0
),
tf
.
reduce_mean
(
fake
,
0
)),
name
=
'mse_feat_'
+
real
.
op
.
name
)
losses
.
append
(
loss
)
ret
=
tf
.
add_n
(
losses
,
name
=
'feature_match_loss'
)
add_moving_summary
(
ret
)
return
ret
def
_build_graph
(
self
,
inputs
):
A
,
B
=
inputs
A
=
tf
.
transpose
(
A
/
255.0
,
[
0
,
3
,
1
,
2
])
B
=
tf
.
transpose
(
B
/
255.0
,
[
0
,
3
,
1
,
2
])
# use the initializers from torch
with
argscope
([
Conv2D
,
Deconv2D
,
FullyConnected
],
W_init
=
tf
.
contrib
.
layers
.
variance_scaling_initializer
(
factor
=
0.333
,
uniform
=
True
),
use_bias
=
False
),
\
argscope
(
BatchNorm
,
gamma_init
=
tf
.
random_uniform_initializer
()),
\
argscope
([
Conv2D
,
Deconv2D
,
BatchNorm
],
data_format
=
'NCHW'
),
\
argscope
(
LeakyReLU
,
alpha
=
0.2
):
with
tf
.
variable_scope
(
'gen'
):
with
tf
.
variable_scope
(
'B'
):
AB
=
self
.
generator
(
A
)
with
tf
.
variable_scope
(
'A'
):
BA
=
self
.
generator
(
B
)
with
tf
.
variable_scope
(
'A'
,
reuse
=
True
):
ABA
=
self
.
generator
(
AB
)
with
tf
.
variable_scope
(
'B'
,
reuse
=
True
):
BAB
=
self
.
generator
(
BA
)
viz_A_recon
=
tf
.
concat
([
A
,
AB
,
ABA
],
axis
=
3
,
name
=
'viz_A_recon'
)
viz_B_recon
=
tf
.
concat
([
B
,
BA
,
BAB
],
axis
=
3
,
name
=
'viz_B_recon'
)
tf
.
summary
.
image
(
'Arecon'
,
tf
.
transpose
(
viz_A_recon
,
[
0
,
2
,
3
,
1
]),
max_outputs
=
30
)
tf
.
summary
.
image
(
'Brecon'
,
tf
.
transpose
(
viz_B_recon
,
[
0
,
2
,
3
,
1
]),
max_outputs
=
30
)
with
tf
.
variable_scope
(
'discrim'
):
with
tf
.
variable_scope
(
'A'
):
A_dis_real
,
A_feats_real
=
self
.
discriminator
(
A
)
with
tf
.
variable_scope
(
'A'
,
reuse
=
True
):
A_dis_fake
,
A_feats_fake
=
self
.
discriminator
(
BA
)
with
tf
.
variable_scope
(
'B'
):
B_dis_real
,
B_feats_real
=
self
.
discriminator
(
B
)
with
tf
.
variable_scope
(
'B'
,
reuse
=
True
):
B_dis_fake
,
B_feats_fake
=
self
.
discriminator
(
AB
)
with
tf
.
name_scope
(
'LossA'
):
# reconstruction loss
recon_loss_A
=
tf
.
reduce_mean
(
tf
.
squared_difference
(
A
,
ABA
),
name
=
'recon_loss'
)
# gan loss
self
.
build_losses
(
A_dis_real
,
A_dis_fake
)
G_loss_A
=
self
.
g_loss
D_loss_A
=
self
.
d_loss
# feature matching loss
fm_loss_A
=
self
.
get_feature_match_loss
(
A_feats_real
,
A_feats_fake
)
with
tf
.
name_scope
(
'LossB'
):
recon_loss_B
=
tf
.
reduce_mean
(
tf
.
squared_difference
(
B
,
BAB
),
name
=
'recon_loss'
)
self
.
build_losses
(
B_dis_real
,
B_dis_fake
)
G_loss_B
=
self
.
g_loss
D_loss_B
=
self
.
d_loss
fm_loss_B
=
self
.
get_feature_match_loss
(
B_feats_real
,
B_feats_fake
)
global_step
=
get_global_step_var
()
rate
=
tf
.
train
.
piecewise_constant
(
global_step
,
[
np
.
int64
(
10000
)],
[
0.01
,
0.5
])
rate
=
tf
.
identity
(
rate
,
name
=
'rate'
)
# mitigate a TF bug
g_loss
=
tf
.
add_n
([
((
G_loss_A
+
G_loss_B
)
*
0.1
+
(
fm_loss_A
+
fm_loss_B
)
*
0.9
)
*
(
1
-
rate
),
(
recon_loss_A
+
recon_loss_B
)
*
rate
],
name
=
'G_loss_total'
)
d_loss
=
tf
.
add_n
([
D_loss_A
,
D_loss_B
],
name
=
'D_loss_total'
)
self
.
collect_variables
(
'gen'
,
'discrim'
)
# weight decay
wd_g
=
regularize_cost
(
'gen/.*/W'
,
l2_regularizer
(
1e-5
),
name
=
'G_regularize'
)
wd_d
=
regularize_cost
(
'discrim/.*/W'
,
l2_regularizer
(
1e-5
),
name
=
'D_regularize'
)
self
.
g_loss
=
g_loss
+
wd_g
self
.
d_loss
=
d_loss
+
wd_d
add_moving_summary
(
recon_loss_A
,
recon_loss_B
,
rate
,
g_loss
,
d_loss
,
wd_g
,
wd_d
)
def
_get_optimizer
(
self
):
lr
=
symbolic_functions
.
get_scalar_var
(
'learning_rate'
,
2e-4
,
summary
=
True
)
return
tf
.
train
.
AdamOptimizer
(
lr
,
beta1
=
0.5
,
epsilon
=
1e-3
)
def
get_celebA_data
(
datadir
,
styleA
,
styleB
=
None
):
def
read_attr
(
attrfname
):
with
open
(
attrfname
)
as
f
:
nr_record
=
int
(
f
.
readline
())
headers
=
f
.
readline
()
.
strip
()
.
split
()
data
=
[]
for
line
in
f
:
line
=
line
.
strip
()
.
split
()[
1
:]
line
=
list
(
map
(
int
,
line
))
assert
len
(
line
)
==
len
(
headers
)
data
.
append
(
line
)
assert
len
(
data
)
==
nr_record
return
headers
,
np
.
asarray
(
data
,
dtype
=
'int8'
)
headers
,
attrs
=
read_attr
(
os
.
path
.
join
(
datadir
,
'list_attr_celeba.txt'
))
idxA
=
headers
.
index
(
styleA
)
listA
=
np
.
nonzero
(
attrs
[:,
idxA
]
==
1
)[
0
]
if
styleB
is
not
None
:
idxB
=
headers
.
index
(
styleB
)
listB
=
np
.
nonzero
(
attrs
[:,
idxB
]
==
1
)[
0
]
else
:
listB
=
np
.
nonzero
(
attrs
[:,
idxA
]
==
-
1
)[
0
]
def
get_filelist
(
idxlist
):
return
[
os
.
path
.
join
(
datadir
,
'{:06d}.jpg'
.
format
(
x
+
1
))
for
x
in
idxlist
]
dfA
=
ImageFromFile
(
get_filelist
(
listA
),
channel
=
3
,
shuffle
=
True
)
dfB
=
ImageFromFile
(
get_filelist
(
listB
),
channel
=
3
,
shuffle
=
True
)
df
=
JoinData
([
dfA
,
dfB
])
augs
=
[
imgaug
.
CenterCrop
(
160
),
imgaug
.
Resize
(
64
)]
df
=
AugmentImageComponents
(
df
,
augs
,
(
0
,
1
))
df
=
BatchData
(
df
,
BATCH
)
df
=
PrefetchDataZMQ
(
df
,
1
)
return
df
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--data'
,
required
=
True
,
help
=
'the img_align_celeba directory. should also contain list_attr_celeba.txt'
)
parser
.
add_argument
(
'--style-A'
,
help
=
'style of A'
,
default
=
'Male'
)
parser
.
add_argument
(
'--style-B'
,
help
=
'style of B'
)
parser
.
add_argument
(
'--load'
,
help
=
'load model'
)
args
=
parser
.
parse_args
()
logger
.
auto_set_dir
()
data
=
get_celebA_data
(
args
.
data
,
args
.
style_A
,
args
.
style_B
)
config
=
TrainConfig
(
model
=
Model
(),
dataflow
=
data
,
callbacks
=
[
ModelSaver
()],
steps_per_epoch
=
300
,
max_epoch
=
200
,
session_init
=
SaverRestore
(
args
.
load
)
if
args
.
load
else
None
)
# train 1 D after 2 G
SeparateGANTrainer
(
config
,
2
)
.
train
()
examples/GAN/README.md
View file @
f6b1499e
...
...
@@ -12,6 +12,8 @@ Reproduce the following GAN-related methods:
+
[
Wasserstein GAN
](
https://arxiv.org/abs/1701.07875
)
+
DiscoGAN (
[
Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
](
https://arxiv.org/abs/1703.05192
)
)
Please see the __docstring__ in each script for detailed usage and pretrained models.
## DCGAN-CelebA.py
...
...
@@ -55,3 +57,7 @@ Train a simple GAN on mnist, conditioned on the class labels.
## WGAN-CelebA.py
Reproduce Wasserstein GAN by some small modifications on DCGAN-CelebA.py.
## DiscoGAN-CelebA.py
Reproduce DiscoGAN on CelebA.
examples/README.md
View file @
f6b1499e
...
...
@@ -22,7 +22,7 @@ Training examples with __reproducible__ and meaningful performance.
+
[
Asynchronous Advantage Actor-Critic(A3C) with demos on OpenAI Gym
](
A3C-Gym
)
## Unsupervised Learning:
+
[
Generative Adversarial Network(GAN) variants
](
GAN
)
, including DCGAN, InfoGAN, Conditional GAN, WGAN, Image to Image.
+
[
Generative Adversarial Network(GAN) variants
](
GAN
)
, including DCGAN, InfoGAN, Conditional GAN, WGAN,
DiscoGAN,
Image to Image.
## Speech / NLP:
+
[
LSTM-CTC for speech recognition
](
CTC-TIMIT
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment