Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
e072d909
Commit
e072d909
authored
Jun 08, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[WIP] reorganize trainer. fix batch_norm
parent
335d6c28
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
204 additions
and
137 deletions
+204
-137
examples/ResNet/cifar10-resnet.py
examples/ResNet/cifar10-resnet.py
+7
-14
tensorpack/models/batch_norm.py
tensorpack/models/batch_norm.py
+25
-3
tensorpack/tfutils/common.py
tensorpack/tfutils/common.py
+29
-2
tensorpack/train/base.py
tensorpack/train/base.py
+0
-2
tensorpack/train/trainer.py
tensorpack/train/trainer.py
+143
-116
No files found.
examples/ResNet/cifar10-resnet.py
View file @
e072d909
...
@@ -8,14 +8,9 @@ import tensorflow as tf
...
@@ -8,14 +8,9 @@ import tensorflow as tf
import
argparse
import
argparse
import
os
import
os
from
tensorpack.train
import
TrainConfig
,
QueueInputTrainer
from
tensorpack
import
*
from
tensorpack.models
import
*
from
tensorpack.callbacks
import
*
from
tensorpack.utils
import
*
from
tensorpack.tfutils
import
*
from
tensorpack.tfutils.symbolic_functions
import
*
from
tensorpack.tfutils.symbolic_functions
import
*
from
tensorpack.tfutils.summary
import
*
from
tensorpack.tfutils.summary
import
*
from
tensorpack.dataflow
import
*
"""
"""
CIFAR10-resnet example.
CIFAR10-resnet example.
...
@@ -186,11 +181,9 @@ if __name__ == '__main__':
...
@@ -186,11 +181,9 @@ if __name__ == '__main__':
if
args
.
gpu
:
if
args
.
gpu
:
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
args
.
gpu
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
args
.
gpu
with
tf
.
Graph
()
.
as_default
():
config
=
get_config
()
with
tf
.
device
(
'/cpu:0'
):
if
args
.
load
:
config
=
get_config
()
config
.
session_init
=
SaverRestore
(
args
.
load
)
if
args
.
load
:
if
args
.
gpu
:
config
.
session_init
=
SaverRestore
(
args
.
load
)
config
.
nr_tower
=
len
(
args
.
gpu
.
split
(
','
))
if
args
.
gpu
:
SyncMultiGPUTrainer
(
config
)
.
train
()
config
.
nr_tower
=
len
(
args
.
gpu
.
split
(
','
))
QueueInputTrainer
(
config
)
.
train
()
tensorpack/models/batch_norm.py
View file @
e072d909
...
@@ -5,7 +5,9 @@
...
@@ -5,7 +5,9 @@
import
tensorflow
as
tf
import
tensorflow
as
tf
from
copy
import
copy
from
copy
import
copy
import
re
from
..utils
import
logger
from
._common
import
layer_register
from
._common
import
layer_register
__all__
=
[
'BatchNorm'
]
__all__
=
[
'BatchNorm'
]
...
@@ -48,9 +50,28 @@ def BatchNorm(x, use_local_stat=True, decay=0.9, epsilon=1e-5):
...
@@ -48,9 +50,28 @@ def BatchNorm(x, use_local_stat=True, decay=0.9, epsilon=1e-5):
else
:
else
:
batch_mean
,
batch_var
=
tf
.
nn
.
moments
(
x
,
[
0
,
1
,
2
],
keep_dims
=
False
)
batch_mean
,
batch_var
=
tf
.
nn
.
moments
(
x
,
[
0
,
1
,
2
],
keep_dims
=
False
)
ema
=
tf
.
train
.
ExponentialMovingAverage
(
decay
=
decay
)
emaname
=
'EMA'
ema_apply_op
=
ema
.
apply
([
batch_mean
,
batch_var
])
if
not
batch_mean
.
name
.
startswith
(
'towerp'
):
ema_mean
,
ema_var
=
ema
.
average
(
batch_mean
),
ema
.
average
(
batch_var
)
ema
=
tf
.
train
.
ExponentialMovingAverage
(
decay
=
decay
,
name
=
emaname
)
ema_apply_op
=
ema
.
apply
([
batch_mean
,
batch_var
])
ema_mean
,
ema_var
=
ema
.
average
(
batch_mean
),
ema
.
average
(
batch_var
)
else
:
assert
not
use_local_stat
# have to do this again to get actual name. see issue:
# https://github.com/tensorflow/tensorflow/issues/2740
ema
=
tf
.
train
.
ExponentialMovingAverage
(
decay
=
decay
,
name
=
emaname
)
ema_apply_op
=
ema
.
apply
([
batch_mean
,
batch_var
])
ema_mean
,
ema_var
=
ema
.
average
(
batch_mean
),
ema
.
average
(
batch_var
)
mean_name
=
re
.
sub
(
'towerp[0-9]+/'
,
''
,
ema_mean
.
name
)
var_name
=
re
.
sub
(
'towerp[0-9]+/'
,
''
,
ema_var
.
name
)
#var_name = batch_var.op.name[prefixlen:] + '/' + emaname + ':0'
#logger.info("In prediction, using {} instead of {} for {}".format(
#mean_name, ema_mean.name, batch_mean.name))
G
=
tf
.
get_default_graph
()
ema_mean
=
G
.
get_tensor_by_name
(
mean_name
)
ema_var
=
G
.
get_tensor_by_name
(
var_name
)
if
use_local_stat
:
if
use_local_stat
:
with
tf
.
control_dependencies
([
ema_apply_op
]):
with
tf
.
control_dependencies
([
ema_apply_op
]):
...
@@ -58,6 +79,7 @@ def BatchNorm(x, use_local_stat=True, decay=0.9, epsilon=1e-5):
...
@@ -58,6 +79,7 @@ def BatchNorm(x, use_local_stat=True, decay=0.9, epsilon=1e-5):
x
,
batch_mean
,
batch_var
,
beta
,
gamma
,
epsilon
,
'bn'
)
x
,
batch_mean
,
batch_var
,
beta
,
gamma
,
epsilon
,
'bn'
)
else
:
else
:
batch
=
tf
.
cast
(
tf
.
shape
(
x
)[
0
],
tf
.
float32
)
batch
=
tf
.
cast
(
tf
.
shape
(
x
)[
0
],
tf
.
float32
)
# XXX TODO batch==1?
mean
,
var
=
ema_mean
,
ema_var
*
batch
/
(
batch
-
1
)
# unbiased variance estimator
mean
,
var
=
ema_mean
,
ema_var
*
batch
/
(
batch
-
1
)
# unbiased variance estimator
return
tf
.
nn
.
batch_normalization
(
return
tf
.
nn
.
batch_normalization
(
x
,
mean
,
var
,
beta
,
gamma
,
epsilon
,
'bn'
)
x
,
mean
,
var
,
beta
,
gamma
,
epsilon
,
'bn'
)
tensorpack/tfutils/common.py
View file @
e072d909
...
@@ -5,13 +5,19 @@
...
@@ -5,13 +5,19 @@
from
..utils.naming
import
*
from
..utils.naming
import
*
import
tensorflow
as
tf
import
tensorflow
as
tf
from
copy
import
copy
import
six
from
contextlib
import
contextmanager
__all__
=
[
'get_default_sess_config'
,
__all__
=
[
'get_default_sess_config'
,
'get_global_step'
,
'get_global_step'
,
'get_global_step_var'
,
'get_global_step_var'
,
'get_op_var_name'
,
'get_op_var_name'
,
'get_vars_by_names'
'get_vars_by_names'
,
]
'backup_collection'
,
'restore_collection'
,
'clear_collection'
,
'freeze_collection'
]
def
get_default_sess_config
(
mem_fraction
=
0.9
):
def
get_default_sess_config
(
mem_fraction
=
0.9
):
"""
"""
...
@@ -66,3 +72,24 @@ def get_vars_by_names(names):
...
@@ -66,3 +72,24 @@ def get_vars_by_names(names):
opn
,
varn
=
get_op_var_name
(
n
)
opn
,
varn
=
get_op_var_name
(
n
)
ret
.
append
(
G
.
get_tensor_by_name
(
varn
))
ret
.
append
(
G
.
get_tensor_by_name
(
varn
))
return
ret
return
ret
def
backup_collection
(
keys
):
ret
=
{}
for
k
in
keys
:
ret
[
k
]
=
copy
(
tf
.
get_collection
(
k
))
return
ret
def
restore_collection
(
backup
):
for
k
,
v
in
six
.
iteritems
(
backup
):
del
tf
.
get_collection_ref
(
k
)[:]
tf
.
get_collection_ref
(
k
)
.
extend
(
v
)
def
clear_collection
(
keys
):
for
k
in
keys
:
del
tf
.
get_collection_ref
(
k
)[:]
@
contextmanager
def
freeze_collection
(
keys
):
backup
=
backup_collection
(
keys
)
yield
restore_collection
(
backup
)
tensorpack/train/base.py
View file @
e072d909
...
@@ -16,7 +16,6 @@ from ..utils.concurrency import start_proc_mask_signal
...
@@ -16,7 +16,6 @@ from ..utils.concurrency import start_proc_mask_signal
from
..callbacks
import
StatHolder
from
..callbacks
import
StatHolder
from
..tfutils
import
*
from
..tfutils
import
*
from
..tfutils.summary
import
create_summary
from
..tfutils.summary
import
create_summary
from
..tfutils.modelutils
import
describe_model
__all__
=
[
'Trainer'
]
__all__
=
[
'Trainer'
]
...
@@ -141,7 +140,6 @@ class Trainer(object):
...
@@ -141,7 +140,6 @@ class Trainer(object):
self
.
sess
.
close
()
self
.
sess
.
close
()
def
init_session_and_coord
(
self
):
def
init_session_and_coord
(
self
):
describe_model
()
self
.
sess
=
tf
.
Session
(
config
=
self
.
config
.
session_config
)
self
.
sess
=
tf
.
Session
(
config
=
self
.
config
.
session_config
)
self
.
coord
=
tf
.
train
.
Coordinator
()
self
.
coord
=
tf
.
train
.
Coordinator
()
...
...
tensorpack/train/trainer.py
View file @
e072d909
...
@@ -5,7 +5,6 @@
...
@@ -5,7 +5,6 @@
import
tensorflow
as
tf
import
tensorflow
as
tf
import
threading
import
threading
import
time
import
time
import
copy
import
re
import
re
import
functools
import
functools
from
six.moves
import
zip
from
six.moves
import
zip
...
@@ -15,6 +14,7 @@ from ..dataflow.common import RepeatedData
...
@@ -15,6 +14,7 @@ from ..dataflow.common import RepeatedData
from
..utils
import
*
from
..utils
import
*
from
..utils.concurrency
import
LoopThread
from
..utils.concurrency
import
LoopThread
from
..tfutils.summary
import
summary_moving_average
from
..tfutils.summary
import
summary_moving_average
from
..tfutils.modelutils
import
describe_model
from
..tfutils
import
*
from
..tfutils
import
*
__all__
=
[
'SimpleTrainer'
,
'QueueInputTrainer'
,
__all__
=
[
'SimpleTrainer'
,
'QueueInputTrainer'
,
...
@@ -42,6 +42,7 @@ class SimpleTrainer(Trainer):
...
@@ -42,6 +42,7 @@ class SimpleTrainer(Trainer):
avg_maintain_op
)
avg_maintain_op
)
self
.
init_session_and_coord
()
self
.
init_session_and_coord
()
describe_model
()
# create an infinte data producer
# create an infinte data producer
self
.
data_producer
=
RepeatedData
(
self
.
config
.
dataset
,
-
1
)
.
get_data
()
self
.
data_producer
=
RepeatedData
(
self
.
config
.
dataset
,
-
1
)
.
get_data
()
self
.
main_loop
()
self
.
main_loop
()
...
@@ -100,14 +101,11 @@ class EnqueueThread(threading.Thread):
...
@@ -100,14 +101,11 @@ class EnqueueThread(threading.Thread):
logger
.
info
(
"Enqueue Thread Exited."
)
logger
.
info
(
"Enqueue Thread Exited."
)
class
QueueInputTrainer
(
Trainer
):
class
QueueInputTrainer
(
Trainer
):
"""
""" Single GPU Trainer, takes input from a queue"""
Trainer which builds a FIFO queue for input.
Support multi GPU.
SUMMARY_BACKUP_KEYS
=
[
tf
.
GraphKeys
.
SUMMARIES
,
MOVING_SUMMARY_VARS_KEY
]
"""
def
__init__
(
self
,
config
,
input_queue
=
None
,
predict_tower
=
None
):
def
__init__
(
self
,
config
,
input_queue
=
None
,
async
=
False
,
predict_tower
=
None
):
"""
"""
:param config: a `TrainConfig` instance
:param config: a `TrainConfig` instance
:param input_queue: a `tf.QueueBase` instance to be used to buffer datapoints.
:param input_queue: a `tf.QueueBase` instance to be used to buffer datapoints.
...
@@ -120,27 +118,11 @@ class QueueInputTrainer(Trainer):
...
@@ -120,27 +118,11 @@ class QueueInputTrainer(Trainer):
100
,
[
x
.
dtype
for
x
in
self
.
input_vars
],
name
=
'input_queue'
)
100
,
[
x
.
dtype
for
x
in
self
.
input_vars
],
name
=
'input_queue'
)
else
:
else
:
self
.
input_queue
=
input_queue
self
.
input_queue
=
input_queue
self
.
async
=
async
if
self
.
async
:
assert
self
.
config
.
nr_tower
>
1
self
.
dequed_inputs
=
[]
if
predict_tower
is
None
:
if
predict_tower
is
None
:
# by default,
only
use first training tower for prediction
# by default, use first training tower for prediction
predict_tower
=
[
0
]
predict_tower
=
[
0
]
self
.
predict_tower
=
predict_tower
self
.
predict_tower
=
predict_tower
self
.
dequed_inputs
=
None
@
staticmethod
def
_average_grads
(
tower_grads
):
ret
=
[]
for
grad_and_vars
in
zip
(
*
tower_grads
):
v
=
grad_and_vars
[
0
][
1
]
try
:
grad
=
tf
.
add_n
([
x
[
0
]
for
x
in
grad_and_vars
])
/
float
(
len
(
tower_grads
))
except
AssertionError
:
logger
.
error
(
"Error while processing gradients of {}"
.
format
(
v
.
name
))
raise
ret
.
append
((
grad
,
v
))
return
ret
def
_get_model_inputs
(
self
):
def
_get_model_inputs
(
self
):
""" Dequeue a datapoint from input_queue and return"""
""" Dequeue a datapoint from input_queue and return"""
...
@@ -150,42 +132,111 @@ class QueueInputTrainer(Trainer):
...
@@ -150,42 +132,111 @@ class QueueInputTrainer(Trainer):
assert
len
(
ret
)
==
len
(
self
.
input_vars
)
assert
len
(
ret
)
==
len
(
self
.
input_vars
)
for
qv
,
v
in
zip
(
ret
,
self
.
input_vars
):
for
qv
,
v
in
zip
(
ret
,
self
.
input_vars
):
qv
.
set_shape
(
v
.
get_shape
())
qv
.
set_shape
(
v
.
get_shape
())
self
.
dequed_inputs
.
append
(
ret
)
return
ret
return
ret
def
_build_predict_tower
(
self
):
def
_build_predict_tower
(
self
):
inputs
=
self
.
model
.
get_input_vars
()
inputs
=
self
.
model
.
get_input_vars
()
tf
.
get_variable_scope
()
.
reuse_variables
()
for
k
in
self
.
predict_tower
:
for
k
in
self
.
predict_tower
:
logger
.
info
(
"Building graph for predict tower
0
{}..."
.
format
(
k
))
logger
.
info
(
"Building graph for predict tower
p
{}..."
.
format
(
k
))
with
tf
.
device
(
'/gpu:{}'
.
format
(
k
)),
\
with
tf
.
device
(
'/gpu:{}'
.
format
(
k
)),
\
tf
.
name_scope
(
'tower
0
{}'
.
format
(
k
)):
tf
.
name_scope
(
'tower
p
{}'
.
format
(
k
)):
self
.
model
.
build_graph
(
inputs
,
False
)
self
.
model
.
build_graph
(
inputs
,
False
)
tf
.
get_variable_scope
()
.
reuse_variables
()
def
_single_tower_grad
(
self
):
def
_single_tower_grad
(
self
):
""" Get grad and cost for single-tower case"""
""" Get grad and cost for single-tower case"""
model_inputs
=
self
.
_get_model_inputs
()
self
.
dequed_inputs
=
model_inputs
=
self
.
_get_model_inputs
()
self
.
model
.
build_graph
(
model_inputs
,
True
)
self
.
model
.
build_graph
(
model_inputs
,
True
)
cost_var
=
self
.
model
.
get_cost
()
cost_var
=
self
.
model
.
get_cost
()
grads
=
self
.
config
.
optimizer
.
compute_gradients
(
cost_var
)
grads
=
self
.
config
.
optimizer
.
compute_gradients
(
cost_var
)
tf
.
add_to_collection
(
MOVING_SUMMARY_VARS_KEY
,
cost_var
)
tf
.
add_to_collection
(
MOVING_SUMMARY_VARS_KEY
,
cost_var
)
return
grads
return
grads
def
_build_enque_thread
(
self
):
# create a thread that keeps filling the queue
enqueue_op
=
self
.
input_queue
.
enqueue
(
self
.
input_vars
)
self
.
input_th
=
EnqueueThread
(
self
,
self
.
input_queue
,
enqueue_op
,
self
.
input_vars
)
self
.
extra_threads_procs
.
append
(
self
.
input_th
)
def
train
(
self
):
assert
self
.
config
.
nr_tower
==
1
,
"QueueInputTrainer only supports 1 tower!"
self
.
init_session_and_coord
()
self
.
_build_enque_thread
()
grads
=
self
.
_single_tower_grad
()
grads
=
self
.
process_grads
(
grads
)
describe_model
()
with
freeze_collection
(
self
.
SUMMARY_BACKUP_KEYS
):
self
.
_build_predict_tower
()
self
.
train_op
=
tf
.
group
(
self
.
config
.
optimizer
.
apply_gradients
(
grads
,
get_global_step_var
()),
summary_moving_average
())
self
.
main_loop
()
def
run_step
(
self
):
""" just run self.train_op"""
self
.
sess
.
run
([
self
.
train_op
])
def
_trigger_epoch
(
self
):
# need to run summary_op every epoch
# note that summary_op will take a data from the queue
if
self
.
summary_op
is
not
None
:
summary_str
=
self
.
summary_op
.
eval
()
self
.
_process_summary
(
summary_str
)
def
get_predict_func
(
self
,
input_names
,
output_names
,
tower
=
0
):
"""
:param tower: return the kth predict_func
:returns: a predictor function
"""
tower
=
self
.
predict_tower
[
tower
%
len
(
self
.
predict_tower
)]
raw_input_vars
=
get_vars_by_names
(
input_names
)
output_names
=
[
'towerp{}/'
.
format
(
tower
)
+
n
for
n
in
output_names
]
output_vars
=
get_vars_by_names
(
output_names
)
def
func
(
inputs
):
assert
len
(
inputs
)
==
len
(
raw_input_vars
)
feed
=
dict
(
zip
(
raw_input_vars
,
inputs
))
return
self
.
sess
.
run
(
output_vars
,
feed_dict
=
feed
)
return
func
def
get_predict_funcs
(
self
,
input_names
,
output_names
,
n
):
""" return n predicts functions evenly on each predict_tower"""
return
[
self
.
get_predict_func
(
input_names
,
output_names
,
k
)
for
k
in
range
(
n
)]
class
MultiGPUTrainer
(
QueueInputTrainer
):
""" Base class for multi-gpu training"""
def
__init__
(
self
,
config
,
input_queue
=
None
,
predict_tower
=
None
):
super
(
MultiGPUTrainer
,
self
)
.
__init__
(
config
,
input_queue
,
predict_tower
)
assert
config
.
nr_tower
>
1
self
.
dequed_inputs
=
[]
@
staticmethod
def
_average_grads
(
tower_grads
):
ret
=
[]
for
grad_and_vars
in
zip
(
*
tower_grads
):
v
=
grad_and_vars
[
0
][
1
]
try
:
grad
=
tf
.
add_n
([
x
[
0
]
for
x
in
grad_and_vars
])
/
float
(
len
(
tower_grads
))
except
AssertionError
:
logger
.
error
(
"Error while processing gradients of {}"
.
format
(
v
.
name
))
raise
ret
.
append
((
grad
,
v
))
return
ret
def
_multi_tower_grads
(
self
):
def
_multi_tower_grads
(
self
):
logger
.
info
(
"Training a model of {} tower"
.
format
(
self
.
config
.
nr_tower
))
logger
.
info
(
"Training a model of {} tower"
.
format
(
self
.
config
.
nr_tower
))
# to avoid repeated summary from each device
collect_dedup
=
[
tf
.
GraphKeys
.
SUMMARIES
,
MOVING_SUMMARY_VARS_KEY
]
kept_summaries
=
{}
for
k
in
collect_dedup
:
del
tf
.
get_collection_ref
(
k
)[:]
grad_list
=
[]
grad_list
=
[]
for
i
in
range
(
self
.
config
.
nr_tower
):
for
i
in
range
(
self
.
config
.
nr_tower
):
with
tf
.
device
(
'/gpu:{}'
.
format
(
i
)),
\
with
tf
.
device
(
'/gpu:{}'
.
format
(
i
)),
\
tf
.
name_scope
(
'tower{}'
.
format
(
i
))
as
scope
:
tf
.
name_scope
(
'tower{}'
.
format
(
i
))
as
scope
:
logger
.
info
(
"Building graph for training tower {}..."
.
format
(
i
))
logger
.
info
(
"Building graph for training tower {}..."
.
format
(
i
))
model_inputs
=
self
.
_get_model_inputs
()
# each tower dequeue from input queue
model_inputs
=
self
.
_get_model_inputs
()
# each tower dequeue from input queue
self
.
dequed_inputs
.
append
(
model_inputs
)
self
.
model
.
build_graph
(
model_inputs
,
True
)
self
.
model
.
build_graph
(
model_inputs
,
True
)
cost_var
=
self
.
model
.
get_cost
()
# build tower
cost_var
=
self
.
model
.
get_cost
()
# build tower
...
@@ -196,103 +247,79 @@ class QueueInputTrainer(Trainer):
...
@@ -196,103 +247,79 @@ class QueueInputTrainer(Trainer):
if
i
==
0
:
if
i
==
0
:
tf
.
add_to_collection
(
MOVING_SUMMARY_VARS_KEY
,
cost_var
)
tf
.
add_to_collection
(
MOVING_SUMMARY_VARS_KEY
,
cost_var
)
tf
.
get_variable_scope
()
.
reuse_variables
()
tf
.
get_variable_scope
()
.
reuse_variables
()
for
k
in
collect_dedup
:
# avoid repeated summary from each device
kept_summaries
[
k
]
=
copy
.
copy
(
tf
.
get_collection
(
k
))
backup
=
backup_collection
(
self
.
SUMMARY_BACKUP_KEYS
)
for
k
in
collect_dedup
:
restore_collection
(
backup
)
del
tf
.
get_collection_ref
(
k
)[:]
tf
.
get_collection_ref
(
k
)
.
extend
(
kept_summaries
[
k
])
return
grad_list
return
grad_list
class
SyncMultiGPUTrainer
(
MultiGPUTrainer
):
def
train
(
self
):
def
train
(
self
):
enqueue_op
=
self
.
input_queue
.
enqueue
(
self
.
input_vars
)
self
.
init_session_and_coord
()
self
.
_build_enque_thread
()
self
.
_build_predict_tower
()
grad_list
=
self
.
_multi_tower_grads
()
if
self
.
config
.
nr_tower
>
1
:
grad_list
=
self
.
_multi_tower_grads
()
grads
=
MultiGPUTrainer
.
_average_grads
(
grad_list
)
if
not
self
.
async
:
grads
=
self
.
process_grads
(
grads
)
grads
=
QueueInputTrainer
.
_average_grads
(
grad_list
)
grads
=
self
.
process_grads
(
grads
)
else
:
# pretend to average the grads, in order to make async and
# sync have consistent effective learning rate
def
scale
(
grads
):
return
[(
grad
/
self
.
config
.
nr_tower
,
var
)
for
grad
,
var
in
grads
]
grad_list
=
map
(
scale
,
grad_list
)
grad_list
=
[
self
.
process_grads
(
g
)
for
g
in
grad_list
]
grads
=
grad_list
[
0
]
# use grad from the first tower for the main iteration
else
:
grads
=
self
.
_single_tower_grad
()
grads
=
self
.
process_grads
(
grads
)
self
.
train_op
=
tf
.
group
(
self
.
train_op
=
tf
.
group
(
self
.
config
.
optimizer
.
apply_gradients
(
grads
,
get_global_step_var
()),
self
.
config
.
optimizer
.
apply_gradients
(
grads
,
get_global_step_var
()),
summary_moving_average
())
summary_moving_average
())
describe_model
()
if
self
.
async
:
self
.
_build_predict_tower
()
# prepare train_op for the rest of the towers
self
.
threads
=
[]
for
k
in
range
(
1
,
self
.
config
.
nr_tower
):
train_op
=
self
.
config
.
optimizer
.
apply_gradients
(
grad_list
[
k
])
f
=
lambda
op
=
train_op
:
self
.
sess
.
run
([
op
])
# avoid late-binding
th
=
LoopThread
(
f
)
th
.
pause
()
th
.
start
()
self
.
threads
.
append
(
th
)
self
.
async_running
=
False
# [debug]: do nothing in training
#self.train_op = self.dequed_inputs[0][0] + self.dequed_inputs[1][0]
self
.
main_loop
()
class
AsyncMultiGPUTrainer
(
MultiGPUTrainer
):
def
train
(
self
):
self
.
init_session_and_coord
()
self
.
init_session_and_coord
()
# create a thread that keeps filling the queue
self
.
_build_enque_thread
()
self
.
input_th
=
EnqueueThread
(
self
,
self
.
input_queue
,
enqueue_op
,
self
.
input_vars
)
self
.
extra_threads_procs
.
append
(
self
.
input_th
)
grad_list
=
self
.
_multi_tower_grads
()
# do nothing in training
# pretend to average the grads, in order to make async and
# sync have consistent effective learning rate
def
scale
(
grads
):
return
[(
grad
/
self
.
config
.
nr_tower
,
var
)
for
grad
,
var
in
grads
]
grad_list
=
map
(
scale
,
grad_list
)
grad_list
=
[
self
.
process_grads
(
g
)
for
g
in
grad_list
]
grads
=
grad_list
[
0
]
# use grad from the first tower for the main iteration
self
.
train_op
=
tf
.
group
(
self
.
config
.
optimizer
.
apply_gradients
(
grads
,
get_global_step_var
()),
summary_moving_average
())
describe_model
()
# prepare train_op for the rest of the towers
self
.
threads
=
[]
for
k
in
range
(
1
,
self
.
config
.
nr_tower
):
train_op
=
self
.
config
.
optimizer
.
apply_gradients
(
grad_list
[
k
])
f
=
lambda
op
=
train_op
:
self
.
sess
.
run
([
op
])
# avoid late-binding
th
=
LoopThread
(
f
)
th
.
pause
()
th
.
start
()
self
.
threads
.
append
(
th
)
self
.
async_running
=
False
self
.
_build_predict_tower
()
# [debug]: do nothing in training
#self.train_op = self.dequed_inputs[0][0] + self.dequed_inputs[1][0]
#self.train_op = self.dequed_inputs[0][0] + self.dequed_inputs[1][0]
self
.
main_loop
()
self
.
main_loop
()
def
run_step
(
self
):
def
run_step
(
self
):
if
self
.
async
:
if
not
self
.
async_running
:
if
not
self
.
async_running
:
self
.
async_running
=
True
self
.
async_running
=
True
for
th
in
self
.
threads
:
# resume all threads
for
th
in
self
.
threads
:
# resume all threads
th
.
resume
()
th
.
resume
()
self
.
sess
.
run
([
self
.
train_op
])
# faster since train_op return None
self
.
sess
.
run
([
self
.
train_op
])
# faster since train_op return None
def
_trigger_epoch
(
self
):
def
_trigger_epoch
(
self
):
# note that summary_op will take a data from the queue
self
.
async_running
=
False
if
self
.
async
:
for
th
in
self
.
threads
:
self
.
async_running
=
False
th
.
pause
()
for
th
in
self
.
threads
:
th
.
pause
()
if
self
.
summary_op
is
not
None
:
if
self
.
summary_op
is
not
None
:
summary_str
=
self
.
summary_op
.
eval
()
summary_str
=
self
.
summary_op
.
eval
()
self
.
_process_summary
(
summary_str
)
self
.
_process_summary
(
summary_str
)
def
get_predict_func
(
self
,
input_names
,
output_names
,
tower
=
0
):
"""
:param tower: return the kth predict_func
"""
tower
=
self
.
predict_tower
[
tower
%
len
(
self
.
predict_tower
)]
if
self
.
config
.
nr_tower
>
1
:
logger
.
info
(
"Prepare a predictor function for tower0{} ..."
.
format
(
tower
))
raw_input_vars
=
get_vars_by_names
(
input_names
)
if
self
.
config
.
nr_tower
>
1
:
output_names
=
[
'tower0{}/'
.
format
(
tower
)
+
n
for
n
in
output_names
]
output_vars
=
get_vars_by_names
(
output_names
)
def
func
(
inputs
):
assert
len
(
inputs
)
==
len
(
raw_input_vars
)
feed
=
dict
(
zip
(
raw_input_vars
,
inputs
))
return
self
.
sess
.
run
(
output_vars
,
feed_dict
=
feed
)
return
func
def
get_predict_funcs
(
self
,
input_names
,
output_names
,
n
):
return
[
self
.
get_predict_func
(
input_names
,
output_names
,
k
)
for
k
in
range
(
n
)]
def
AsyncMultiGPUTrainer
(
config
):
return
QueueInputTrainer
(
config
,
async
=
True
)
def
SyncMultiGPUTrainer
(
config
):
return
QueueInputTrainer
(
config
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment