Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
c99d013a
Commit
c99d013a
authored
Oct 20, 2017
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Allow sesscreate to finalize the graph.
parent
93a177bf
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
22 additions
and
39 deletions
+22
-39
tensorpack/callbacks/saver.py
tensorpack/callbacks/saver.py
+1
-2
tensorpack/tfutils/sesscreate.py
tensorpack/tfutils/sesscreate.py
+9
-14
tensorpack/tfutils/sessinit.py
tensorpack/tfutils/sessinit.py
+1
-8
tensorpack/train/base.py
tensorpack/train/base.py
+4
-3
tensorpack/trainv2/base.py
tensorpack/trainv2/base.py
+7
-12
No files found.
tensorpack/callbacks/saver.py
View file @
c99d013a
...
...
@@ -68,8 +68,7 @@ class ModelSaver(Callback):
keep_checkpoint_every_n_hours
=
self
.
_keep_every_n_hours
,
write_version
=
tf
.
train
.
SaverDef
.
V2
,
save_relative_paths
=
True
)
# Don't know how it can be useful,
# but since there is a predefined key, why not use it?
# Scaffold will call saver.build from this collection
tf
.
add_to_collection
(
tf
.
GraphKeys
.
SAVERS
,
self
.
saver
)
def
_before_train
(
self
):
...
...
tensorpack/tfutils/sesscreate.py
View file @
c99d013a
...
...
@@ -5,24 +5,27 @@
import
tensorflow
as
tf
from
.common
import
get_default_sess_config
from
..utils
import
logger
__all__
=
[
'NewSessionCreator'
,
'ReuseSessionCreator'
,
'SessionCreatorAdapter'
]
"""
SessionCreator should return a session that is ready to use
(i.e. variables are initialized)
A SessionCreator should:
(optionally) finalize the graph
create the session
initialize all variables
return a session that is ready to use
"""
class
NewSessionCreator
(
tf
.
train
.
SessionCreator
):
class
NewSessionCreator
(
tf
.
train
.
Chief
SessionCreator
):
def
__init__
(
self
,
target
=
''
,
graph
=
None
,
config
=
None
):
"""
Args:
target, graph, config: same as :meth:`Session.__init__()`.
config: defaults to :func:`tfutils.get_default_sess_config()`
"""
self
.
target
=
target
assert
graph
is
None
if
config
is
None
:
# distributd trainer doesn't support user-provided config
# we set this attribute so that they can check
...
...
@@ -31,15 +34,7 @@ class NewSessionCreator(tf.train.SessionCreator):
else
:
self
.
user_provided_config
=
True
self
.
config
=
config
self
.
graph
=
graph
def
create_session
(
self
):
sess
=
tf
.
Session
(
target
=
self
.
target
,
graph
=
self
.
graph
,
config
=
self
.
config
)
sess
.
run
(
tf
.
global_variables_initializer
())
sess
.
run
(
tf
.
local_variables_initializer
())
logger
.
info
(
"Global and local variables initialized."
)
return
sess
super
(
NewSessionCreator
,
self
)
.
__init__
(
master
=
target
,
config
=
config
)
class
ReuseSessionCreator
(
tf
.
train
.
SessionCreator
):
...
...
tensorpack/tfutils/sessinit.py
View file @
c99d013a
...
...
@@ -18,7 +18,7 @@ __all__ = ['SessionInit', 'ChainInit',
class
SessionInit
(
object
):
""" Base class for utilities to
initialize
a (existing) session. """
""" Base class for utilities to
load variables to
a (existing) session. """
def
init
(
self
,
sess
):
"""
Initialize a session
...
...
@@ -26,9 +26,6 @@ class SessionInit(object):
Args:
sess (tf.Session): the session
"""
self
.
_init
(
sess
)
def
_init
(
self
,
sess
):
self
.
_setup_graph
()
self
.
_run_init
(
sess
)
...
...
@@ -236,10 +233,6 @@ class ChainInit(SessionInit):
"""
self
.
inits
=
sess_inits
def
_init
(
self
,
sess
):
for
i
in
self
.
inits
:
i
.
init
(
sess
)
def
_setup_graph
(
self
):
for
i
in
self
.
inits
:
i
.
_setup_graph
()
...
...
tensorpack/train/base.py
View file @
c99d013a
...
...
@@ -194,16 +194,17 @@ class Trainer(object):
logger
.
info
(
"Setup callbacks graph ..."
)
self
.
_callbacks
=
Callbacks
(
self
.
_callbacks
)
self
.
_callbacks
.
setup_graph
(
weakref
.
proxy
(
self
))
self
.
_config
.
session_init
.
_setup_graph
()
logger
.
info
(
"Creating the session ..."
)
self
.
_create_session
()
if
self
.
is_chief
:
logger
.
info
(
"Initializing the session ..."
)
self
.
_config
.
session_init
.
init
(
self
.
sess
)
self
.
_config
.
session_init
.
_run_
init
(
self
.
sess
)
else
:
assert
isinstance
(
self
.
_config
.
session_init
,
JustCurrentSession
),
\
"session_init is only valid for chief worker session!"
if
not
isinstance
(
self
.
_config
.
session_init
,
JustCurrentSession
):
logger
.
warn
(
"This is not a chief worker, 'session_init' was ignored!"
)
self
.
sess
.
graph
.
finalize
()
logger
.
info
(
"Graph Finalized."
)
...
...
tensorpack/trainv2/base.py
View file @
c99d013a
...
...
@@ -109,6 +109,8 @@ class Trainer(object):
Initialize self.sess and self.hooked_sess.
Must be called after callbacks are setup.
"""
session_init
.
_setup_graph
()
logger
.
info
(
"Creating the session ..."
)
hooks
=
self
.
_callbacks
.
get_hooks
()
...
...
@@ -118,20 +120,14 @@ class Trainer(object):
if
self
.
is_chief
:
logger
.
info
(
"Initializing the session ..."
)
session_init
.
init
(
self
.
sess
)
session_init
.
_run_
init
(
self
.
sess
)
else
:
assert
isinstance
(
session_init
,
JustCurrentSession
),
\
"session_init is only valid for chief worker session!"
if
not
isinstance
(
self
.
_config
.
session_init
,
JustCurrentSession
):
logger
.
warn
(
"This is not a chief worker, 'session_init' was ignored!"
)
self
.
sess
.
graph
.
finalize
()
logger
.
info
(
"Graph Finalized."
)
def
_create_session
(
self
):
"""
Setup self.sess (the raw tf.Session)
and self.hooked_sess (the session with hooks and coordinator)
"""
@
call_only_once
def
main_loop
(
self
,
steps_per_epoch
,
starting_epoch
=
1
,
max_epoch
=
99999
):
"""
...
...
@@ -301,8 +297,7 @@ class SingleCostTrainer(TowerTrainer):
trainer needs are automatically added.
"""
callbacks
=
callbacks
+
self
.
_internal_callbacks
Trainer
.
train
(
self
,
super
(
SingleCostTrainer
,
self
)
.
train
(
callbacks
,
monitors
,
session_creator
,
session_init
,
steps_per_epoch
,
starting_epoch
,
max_epoch
)
...
...
@@ -310,7 +305,7 @@ class SingleCostTrainer(TowerTrainer):
@
call_only_once
def
setup_graph
(
self
,
inputs_desc
,
input
,
get_cost_fn
,
get_opt_fn
):
"""
Responsible for building the main training graph.
Responsible for building the main training graph
for single-cost training
.
Args:
inputs_desc ([InputDesc]):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment