Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
c7fd1d9f
Commit
c7fd1d9f
authored
Dec 19, 2018
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fix deprecations about casting & initializers in tf1.13
parent
be39dbdf
Changes
23
Show whitespace changes
Inline
Side-by-side
Showing
23 changed files
with
59 additions
and
53 deletions
+59
-53
examples/CTC-TIMIT/train-timit.py
examples/CTC-TIMIT/train-timit.py
+4
-4
examples/FasterRCNN/basemodel.py
examples/FasterRCNN/basemodel.py
+1
-1
examples/FasterRCNN/model_box.py
examples/FasterRCNN/model_box.py
+9
-8
examples/FasterRCNN/model_cascade.py
examples/FasterRCNN/model_cascade.py
+1
-1
examples/FasterRCNN/model_fpn.py
examples/FasterRCNN/model_fpn.py
+2
-2
examples/FasterRCNN/model_frcnn.py
examples/FasterRCNN/model_frcnn.py
+7
-6
examples/FasterRCNN/model_mrcnn.py
examples/FasterRCNN/model_mrcnn.py
+7
-5
examples/FasterRCNN/model_rpn.py
examples/FasterRCNN/model_rpn.py
+3
-3
examples/FasterRCNN/train.py
examples/FasterRCNN/train.py
+2
-2
examples/OpticalFlow/flownet_models.py
examples/OpticalFlow/flownet_models.py
+1
-1
examples/ResNet/cifar10-preact18-mixup.py
examples/ResNet/cifar10-preact18-mixup.py
+2
-2
examples/ResNet/cifar10-resnet.py
examples/ResNet/cifar10-resnet.py
+1
-1
examples/SpatialTransformer/mnist-addition.py
examples/SpatialTransformer/mnist-addition.py
+2
-2
examples/basics/cifar-convnet.py
examples/basics/cifar-convnet.py
+1
-1
examples/basics/mnist-tfslim.py
examples/basics/mnist-tfslim.py
+1
-1
examples/basics/mnist-visualizations.py
examples/basics/mnist-visualizations.py
+1
-1
examples/basics/svhn-digit-convnet.py
examples/basics/svhn-digit-convnet.py
+1
-1
examples/keras/imagenet-resnet-keras.py
examples/keras/imagenet-resnet-keras.py
+3
-1
examples/keras/mnist-keras.py
examples/keras/mnist-keras.py
+1
-1
tensorpack/callbacks/steps.py
tensorpack/callbacks/steps.py
+3
-4
tensorpack/models/conv2d.py
tensorpack/models/conv2d.py
+2
-2
tensorpack/models/fc.py
tensorpack/models/fc.py
+1
-1
tensorpack/tfutils/optimizer.py
tensorpack/tfutils/optimizer.py
+3
-2
No files found.
examples/CTC-TIMIT/train-timit.py
View file @
c7fd1d9f
...
...
@@ -59,11 +59,11 @@ class Model(ModelDesc):
isTrain
=
get_current_tower_context
()
.
is_training
if
isTrain
:
# beam search is too slow to run in training
predictions
=
tf
.
to_int32
(
tf
.
nn
.
ctc_greedy_decoder
(
logits
,
seqlen
)[
0
][
0
])
predictions
=
tf
.
cast
(
tf
.
nn
.
ctc_greedy_decoder
(
logits
,
seqlen
)[
0
][
0
]
,
tf
.
int32
)
else
:
predictions
=
tf
.
to_int32
(
tf
.
nn
.
ctc_beam_search_decoder
(
logits
,
seqlen
)[
0
][
0
])
predictions
=
tf
.
cast
(
tf
.
nn
.
ctc_beam_search_decoder
(
logits
,
seqlen
)[
0
][
0
]
,
tf
.
int32
)
err
=
tf
.
edit_distance
(
predictions
,
label
,
normalize
=
True
)
err
.
set_shape
([
None
])
err
=
tf
.
reduce_mean
(
err
,
name
=
'error'
)
...
...
examples/FasterRCNN/basemodel.py
View file @
c7fd1d9f
...
...
@@ -192,7 +192,7 @@ def resnet_fpn_backbone(image, num_blocks):
freeze_at
=
cfg
.
BACKBONE
.
FREEZE_AT
shape2d
=
tf
.
shape
(
image
)[
2
:]
mult
=
float
(
cfg
.
FPN
.
RESOLUTION_REQUIREMENT
)
new_shape2d
=
tf
.
to_int32
(
tf
.
ceil
(
tf
.
to_float
(
shape2d
)
/
mult
)
*
mult
)
new_shape2d
=
tf
.
cast
(
tf
.
ceil
(
tf
.
cast
(
shape2d
,
tf
.
float32
)
/
mult
)
*
mult
,
tf
.
int32
)
pad_shape2d
=
new_shape2d
-
shape2d
assert
len
(
num_blocks
)
==
4
,
num_blocks
with
backbone_scope
(
freeze
=
freeze_at
>
0
):
...
...
examples/FasterRCNN/model_box.py
View file @
c7fd1d9f
...
...
@@ -19,7 +19,7 @@ def clip_boxes(boxes, window, name=None):
"""
boxes
=
tf
.
maximum
(
boxes
,
0.0
)
m
=
tf
.
tile
(
tf
.
reverse
(
window
,
[
0
]),
[
2
])
# (4,)
boxes
=
tf
.
minimum
(
boxes
,
tf
.
to_float
(
m
),
name
=
name
)
boxes
=
tf
.
minimum
(
boxes
,
tf
.
cast
(
m
,
tf
.
float32
),
name
=
name
)
return
boxes
...
...
@@ -122,14 +122,15 @@ def crop_and_resize(image, boxes, box_ind, crop_size, pad_border=True):
"""
x0
,
y0
,
x1
,
y1
=
tf
.
split
(
boxes
,
4
,
axis
=
1
)
spacing_w
=
(
x1
-
x0
)
/
tf
.
to_float
(
crop_shape
[
1
]
)
spacing_h
=
(
y1
-
y0
)
/
tf
.
to_float
(
crop_shape
[
0
]
)
spacing_w
=
(
x1
-
x0
)
/
tf
.
cast
(
crop_shape
[
1
],
tf
.
float32
)
spacing_h
=
(
y1
-
y0
)
/
tf
.
cast
(
crop_shape
[
0
],
tf
.
float32
)
nx0
=
(
x0
+
spacing_w
/
2
-
0.5
)
/
tf
.
to_float
(
image_shape
[
1
]
-
1
)
ny0
=
(
y0
+
spacing_h
/
2
-
0.5
)
/
tf
.
to_float
(
image_shape
[
0
]
-
1
)
imshape
=
[
tf
.
cast
(
image_shape
[
0
]
-
1
,
tf
.
float32
),
tf
.
cast
(
image_shape
[
1
]
-
1
,
tf
.
float32
)]
nx0
=
(
x0
+
spacing_w
/
2
-
0.5
)
/
imshape
[
1
]
ny0
=
(
y0
+
spacing_h
/
2
-
0.5
)
/
imshape
[
0
]
nw
=
spacing_w
*
tf
.
to_float
(
crop_shape
[
1
]
-
1
)
/
tf
.
to_float
(
image_shape
[
1
]
-
1
)
nh
=
spacing_h
*
tf
.
to_float
(
crop_shape
[
0
]
-
1
)
/
tf
.
to_float
(
image_shape
[
0
]
-
1
)
nw
=
spacing_w
*
tf
.
cast
(
crop_shape
[
1
]
-
1
,
tf
.
float32
)
/
imshape
[
1
]
nh
=
spacing_h
*
tf
.
cast
(
crop_shape
[
0
]
-
1
,
tf
.
float32
)
/
imshape
[
0
]
return
tf
.
concat
([
ny0
,
nx0
,
ny0
+
nh
,
nx0
+
nw
],
axis
=
1
)
...
...
@@ -146,7 +147,7 @@ def crop_and_resize(image, boxes, box_ind, crop_size, pad_border=True):
boxes
=
transform_fpcoor_for_tf
(
boxes
,
image_shape
,
[
crop_size
,
crop_size
])
image
=
tf
.
transpose
(
image
,
[
0
,
2
,
3
,
1
])
# nhwc
ret
=
tf
.
image
.
crop_and_resize
(
image
,
boxes
,
tf
.
to_int32
(
box_ind
),
image
,
boxes
,
tf
.
cast
(
box_ind
,
tf
.
int32
),
crop_size
=
[
crop_size
,
crop_size
])
ret
=
tf
.
transpose
(
ret
,
[
0
,
3
,
1
,
2
])
# ncss
return
ret
...
...
examples/FasterRCNN/model_cascade.py
View file @
c7fd1d9f
...
...
@@ -88,7 +88,7 @@ class CascadeRCNNHead(object):
labels_per_box
=
tf
.
gather
(
self
.
gt_labels
,
best_iou_ind
)
fg_mask
=
max_iou_per_box
>=
iou_threshold
fg_inds_wrt_gt
=
tf
.
boolean_mask
(
best_iou_ind
,
fg_mask
)
labels_per_box
=
tf
.
stop_gradient
(
labels_per_box
*
tf
.
to_int64
(
fg_mask
))
labels_per_box
=
tf
.
stop_gradient
(
labels_per_box
*
tf
.
cast
(
fg_mask
,
tf
.
int64
))
return
BoxProposals
(
boxes
,
labels_per_box
,
fg_inds_wrt_gt
)
else
:
return
BoxProposals
(
boxes
)
...
...
examples/FasterRCNN/model_fpn.py
View file @
c7fd1d9f
...
...
@@ -82,8 +82,8 @@ def fpn_map_rois_to_levels(boxes):
Be careful that the returned tensor could be empty.
"""
sqrtarea
=
tf
.
sqrt
(
tf_area
(
boxes
))
level
=
tf
.
to_int32
(
tf
.
floor
(
4
+
tf
.
log
(
sqrtarea
*
(
1.
/
224
)
+
1e-6
)
*
(
1.0
/
np
.
log
(
2
))))
level
=
tf
.
cast
(
tf
.
floor
(
4
+
tf
.
log
(
sqrtarea
*
(
1.
/
224
)
+
1e-6
)
*
(
1.0
/
np
.
log
(
2
)))
,
tf
.
int32
)
# RoI levels range from 2~5 (not 6)
level_ids
=
[
...
...
examples/FasterRCNN/model_frcnn.py
View file @
c7fd1d9f
...
...
@@ -154,22 +154,22 @@ def fastrcnn_losses(labels, label_logits, fg_boxes, fg_box_logits):
with
tf
.
name_scope
(
'label_metrics'
),
tf
.
device
(
'/cpu:0'
):
prediction
=
tf
.
argmax
(
label_logits
,
axis
=
1
,
name
=
'label_prediction'
)
correct
=
tf
.
to_float
(
tf
.
equal
(
prediction
,
labels
)
)
# boolean/integer gather is unavailable on GPU
correct
=
tf
.
cast
(
tf
.
equal
(
prediction
,
labels
),
tf
.
float32
)
# boolean/integer gather is unavailable on GPU
accuracy
=
tf
.
reduce_mean
(
correct
,
name
=
'accuracy'
)
fg_label_pred
=
tf
.
argmax
(
tf
.
gather
(
label_logits
,
fg_inds
),
axis
=
1
)
num_zero
=
tf
.
reduce_sum
(
tf
.
to_int64
(
tf
.
equal
(
fg_label_pred
,
0
)
),
name
=
'num_zero'
)
num_zero
=
tf
.
reduce_sum
(
tf
.
cast
(
tf
.
equal
(
fg_label_pred
,
0
),
tf
.
int64
),
name
=
'num_zero'
)
false_negative
=
tf
.
where
(
empty_fg
,
0.
,
tf
.
to_float
(
tf
.
truediv
(
num_zero
,
num_fg
)
),
name
=
'false_negative'
)
empty_fg
,
0.
,
tf
.
cast
(
tf
.
truediv
(
num_zero
,
num_fg
),
tf
.
float32
),
name
=
'false_negative'
)
fg_accuracy
=
tf
.
where
(
empty_fg
,
0.
,
tf
.
reduce_mean
(
tf
.
gather
(
correct
,
fg_inds
)),
name
=
'fg_accuracy'
)
box_loss
=
tf
.
losses
.
huber_loss
(
fg_boxes
,
fg_box_logits
,
reduction
=
tf
.
losses
.
Reduction
.
SUM
)
box_loss
=
tf
.
truediv
(
box_loss
,
tf
.
to_float
(
tf
.
shape
(
labels
)[
0
]
),
name
=
'box_loss'
)
box_loss
,
tf
.
cast
(
tf
.
shape
(
labels
)[
0
],
tf
.
float32
),
name
=
'box_loss'
)
add_moving_summary
(
label_loss
,
box_loss
,
accuracy
,
fg_accuracy
,
false_negative
,
tf
.
to_float
(
num_fg
,
name
=
'num_fg_label'
))
fg_accuracy
,
false_negative
,
tf
.
cast
(
num_fg
,
tf
.
float32
,
name
=
'num_fg_label'
))
return
[
label_loss
,
box_loss
]
...
...
@@ -285,7 +285,8 @@ def fastrcnn_Xconv1fc_head(feature, num_convs, norm=None):
l
=
feature
with
argscope
(
Conv2D
,
data_format
=
'channels_first'
,
kernel_initializer
=
tf
.
variance_scaling_initializer
(
scale
=
2.0
,
mode
=
'fan_out'
,
distribution
=
'normal'
)):
scale
=
2.0
,
mode
=
'fan_out'
,
distribution
=
'untruncated_normal'
if
get_tf_version_tuple
()
>=
(
1
,
12
)
else
'normal'
)):
for
k
in
range
(
num_convs
):
l
=
Conv2D
(
'conv{}'
.
format
(
k
),
l
,
cfg
.
FPN
.
FRCNN_CONV_HEAD_DIM
,
3
,
activation
=
tf
.
nn
.
relu
)
if
norm
is
not
None
:
...
...
examples/FasterRCNN/model_mrcnn.py
View file @
c7fd1d9f
...
...
@@ -2,11 +2,12 @@
import
tensorflow
as
tf
from
tensorpack.tfutils.argscope
import
argscope
from
tensorpack.models
import
(
Conv2D
,
layer_register
,
Conv2DTranspose
)
from
tensorpack.tfutils.scope_utils
import
under_name_scope
from
tensorpack.tfutils.argscope
import
argscope
from
tensorpack.tfutils.summary
import
add_moving_summary
from
tensorpack.tfutils.common
import
get_tf_version_tuple
from
basemodel
import
GroupNorm
from
config
import
config
as
cfg
...
...
@@ -39,13 +40,13 @@ def maskrcnn_loss(mask_logits, fg_labels, fg_target_masks):
pred_label
=
mask_probs
>
0.5
truth_label
=
fg_target_masks
>
0.5
accuracy
=
tf
.
reduce_mean
(
tf
.
to_float
(
tf
.
equal
(
pred_label
,
truth_label
)
),
tf
.
cast
(
tf
.
equal
(
pred_label
,
truth_label
),
tf
.
float32
),
name
=
'accuracy'
)
pos_accuracy
=
tf
.
logical_and
(
tf
.
equal
(
pred_label
,
truth_label
),
tf
.
equal
(
truth_label
,
True
))
pos_accuracy
=
tf
.
reduce_mean
(
tf
.
to_float
(
pos_accuracy
),
name
=
'pos_accuracy'
)
fg_pixel_ratio
=
tf
.
reduce_mean
(
tf
.
to_float
(
truth_label
),
name
=
'fg_pixel_ratio'
)
pos_accuracy
=
tf
.
reduce_mean
(
tf
.
cast
(
pos_accuracy
,
tf
.
float32
),
name
=
'pos_accuracy'
)
fg_pixel_ratio
=
tf
.
reduce_mean
(
tf
.
cast
(
truth_label
,
tf
.
float32
),
name
=
'fg_pixel_ratio'
)
add_moving_summary
(
loss
,
accuracy
,
fg_pixel_ratio
,
pos_accuracy
)
return
loss
...
...
@@ -67,7 +68,8 @@ def maskrcnn_upXconv_head(feature, num_category, num_convs, norm=None):
l
=
feature
with
argscope
([
Conv2D
,
Conv2DTranspose
],
data_format
=
'channels_first'
,
kernel_initializer
=
tf
.
variance_scaling_initializer
(
scale
=
2.0
,
mode
=
'fan_out'
,
distribution
=
'normal'
)):
scale
=
2.0
,
mode
=
'fan_out'
,
distribution
=
'untruncated_normal'
if
get_tf_version_tuple
()
>=
(
1
,
12
)
else
'normal'
)):
# c2's MSRAFill is fan_out
for
k
in
range
(
num_convs
):
l
=
Conv2D
(
'fcn{}'
.
format
(
k
),
l
,
cfg
.
MRCNN
.
HEAD_DIM
,
3
,
activation
=
tf
.
nn
.
relu
)
...
...
examples/FasterRCNN/model_rpn.py
View file @
c7fd1d9f
...
...
@@ -72,9 +72,9 @@ def rpn_losses(anchor_labels, anchor_boxes, label_logits, box_logits):
tf
.
equal
(
valid_prediction
,
valid_anchor_labels
)),
dtype
=
tf
.
int32
)
placeholder
=
0.5
# A small value will make summaries appear lower.
recall
=
tf
.
to_float
(
tf
.
truediv
(
pos_prediction_corr
,
nr_pos
)
)
recall
=
tf
.
cast
(
tf
.
truediv
(
pos_prediction_corr
,
nr_pos
),
tf
.
float32
)
recall
=
tf
.
where
(
tf
.
equal
(
nr_pos
,
0
),
placeholder
,
recall
,
name
=
'recall_th{}'
.
format
(
th
))
precision
=
tf
.
to_float
(
tf
.
truediv
(
pos_prediction_corr
,
nr_pos_prediction
)
)
precision
=
tf
.
cast
(
tf
.
truediv
(
pos_prediction_corr
,
nr_pos_prediction
),
tf
.
float32
)
precision
=
tf
.
where
(
tf
.
equal
(
nr_pos_prediction
,
0
),
placeholder
,
precision
,
name
=
'precision_th{}'
.
format
(
th
))
summaries
.
extend
([
precision
,
recall
])
...
...
@@ -84,7 +84,7 @@ def rpn_losses(anchor_labels, anchor_boxes, label_logits, box_logits):
# But the total RPN loss will be fine. TODO make the summary op smarter
placeholder
=
0.
label_loss
=
tf
.
nn
.
sigmoid_cross_entropy_with_logits
(
labels
=
tf
.
to_float
(
valid_anchor_labels
),
logits
=
valid_label_logits
)
labels
=
tf
.
cast
(
valid_anchor_labels
,
tf
.
float32
),
logits
=
valid_label_logits
)
label_loss
=
tf
.
reduce_sum
(
label_loss
)
*
(
1.
/
cfg
.
RPN
.
BATCH_PER_IM
)
label_loss
=
tf
.
where
(
tf
.
equal
(
nr_valid
,
0
),
placeholder
,
label_loss
,
name
=
'label_loss'
)
...
...
examples/FasterRCNN/train.py
View file @
c7fd1d9f
...
...
@@ -205,7 +205,7 @@ class ResNetC4Model(DetectionModel):
feature_maskrcnn
=
resnet_conv5
(
roi_resized
,
cfg
.
BACKBONE
.
RESNET_NUM_BLOCKS
[
-
1
])
mask_logits
=
maskrcnn_upXconv_head
(
'maskrcnn'
,
feature_maskrcnn
,
cfg
.
DATA
.
NUM_CATEGORY
,
0
)
# #result x #cat x 14x14
indices
=
tf
.
stack
([
tf
.
range
(
tf
.
size
(
final_labels
)),
tf
.
to_int32
(
final_labels
)
-
1
],
axis
=
1
)
indices
=
tf
.
stack
([
tf
.
range
(
tf
.
size
(
final_labels
)),
tf
.
cast
(
final_labels
,
tf
.
int32
)
-
1
],
axis
=
1
)
final_mask_logits
=
tf
.
gather_nd
(
mask_logits
,
indices
)
# #resultx14x14
tf
.
sigmoid
(
final_mask_logits
,
name
=
'output/masks'
)
return
[]
...
...
@@ -330,7 +330,7 @@ class ResNetFPNModel(DetectionModel):
maskrcnn_head_func
=
getattr
(
model_mrcnn
,
cfg
.
FPN
.
MRCNN_HEAD_FUNC
)
mask_logits
=
maskrcnn_head_func
(
'maskrcnn'
,
roi_feature_maskrcnn
,
cfg
.
DATA
.
NUM_CATEGORY
)
# #fg x #cat x 28 x 28
indices
=
tf
.
stack
([
tf
.
range
(
tf
.
size
(
final_labels
)),
tf
.
to_int32
(
final_labels
)
-
1
],
axis
=
1
)
indices
=
tf
.
stack
([
tf
.
range
(
tf
.
size
(
final_labels
)),
tf
.
cast
(
final_labels
,
tf
.
int32
)
-
1
],
axis
=
1
)
final_mask_logits
=
tf
.
gather_nd
(
mask_logits
,
indices
)
# #resultx28x28
tf
.
sigmoid
(
final_mask_logits
,
name
=
'output/masks'
)
return
[]
...
...
examples/OpticalFlow/flownet_models.py
View file @
c7fd1d9f
...
...
@@ -81,7 +81,7 @@ def resample(img, flow):
img_flat
=
tf
.
reshape
(
tf
.
transpose
(
img
,
[
0
,
2
,
3
,
1
]),
[
-
1
,
c
])
dx
,
dy
=
tf
.
unstack
(
flow
,
axis
=
1
)
xf
,
yf
=
tf
.
meshgrid
(
tf
.
to_float
(
tf
.
range
(
w
)),
tf
.
to_float
(
tf
.
range
(
h
)
))
xf
,
yf
=
tf
.
meshgrid
(
tf
.
cast
(
tf
.
range
(
w
),
tf
.
float32
),
tf
.
cast
(
tf
.
range
(
h
),
tf
.
float32
))
xf
=
xf
+
dx
yf
=
yf
+
dy
...
...
examples/ResNet/cifar10-preact18-mixup.py
View file @
c7fd1d9f
...
...
@@ -67,8 +67,8 @@ class ResNet_Cifar(ModelDesc):
ce_cost
=
tf
.
nn
.
softmax_cross_entropy_with_logits
(
labels
=
label
,
logits
=
logits
)
ce_cost
=
tf
.
reduce_mean
(
ce_cost
,
name
=
'cross_entropy_loss'
)
single_label
=
tf
.
to_int32
(
tf
.
argmax
(
label
,
axis
=
1
)
)
wrong
=
tf
.
to_float
(
tf
.
logical_not
(
tf
.
nn
.
in_top_k
(
logits
,
single_label
,
1
))
,
name
=
'wrong_vector'
)
single_label
=
tf
.
cast
(
tf
.
argmax
(
label
,
axis
=
1
),
tf
.
int32
)
wrong
=
tf
.
cast
(
tf
.
logical_not
(
tf
.
nn
.
in_top_k
(
logits
,
single_label
,
1
)),
tf
.
float32
,
name
=
'wrong_vector'
)
# monitor training error
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
),
ce_cost
)
add_param_summary
((
'.*/W'
,
[
'histogram'
]))
...
...
examples/ResNet/cifar10-resnet.py
View file @
c7fd1d9f
...
...
@@ -98,7 +98,7 @@ class Model(ModelDesc):
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
wrong
=
tf
.
to_float
(
tf
.
logical_not
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
))
,
name
=
'wrong_vector'
)
wrong
=
tf
.
cast
(
tf
.
logical_not
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
)),
tf
.
float32
,
name
=
'wrong_vector'
)
# monitor training error
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
...
...
examples/SpatialTransformer/mnist-addition.py
View file @
c7fd1d9f
...
...
@@ -35,7 +35,7 @@ def sample(img, coords):
max_coor
=
tf
.
constant
([
shape
[
0
]
-
1
,
shape
[
1
]
-
1
],
dtype
=
tf
.
float32
)
coords
=
tf
.
clip_by_value
(
coords
,
0.
,
max_coor
)
# borderMode==repeat
coords
=
tf
.
to_int32
(
coords
)
coords
=
tf
.
cast
(
coords
,
tf
.
int32
)
batch_index
=
tf
.
range
(
batch
,
dtype
=
tf
.
int32
)
batch_index
=
tf
.
reshape
(
batch_index
,
[
-
1
,
1
,
1
,
1
])
...
...
@@ -164,7 +164,7 @@ class Model(ModelDesc):
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
wrong
=
tf
.
to_float
(
tf
.
logical_not
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
))
,
name
=
'incorrect_vector'
)
wrong
=
tf
.
cast
(
tf
.
logical_not
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
)),
tf
.
float32
,
name
=
'incorrect_vector'
)
summary
.
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
wd_cost
=
tf
.
multiply
(
1e-5
,
regularize_cost
(
'fc.*/W'
,
tf
.
nn
.
l2_loss
),
...
...
examples/basics/cifar-convnet.py
View file @
c7fd1d9f
...
...
@@ -63,7 +63,7 @@ class Model(ModelDesc):
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
correct
=
tf
.
to_float
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
)
,
name
=
'correct'
)
correct
=
tf
.
cast
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
),
tf
.
float32
,
name
=
'correct'
)
# monitor training error
add_moving_summary
(
tf
.
reduce_mean
(
correct
,
name
=
'accuracy'
))
...
...
examples/basics/mnist-tfslim.py
View file @
c7fd1d9f
...
...
@@ -46,7 +46,7 @@ class Model(ModelDesc):
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
acc
=
tf
.
to_float
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
)
)
acc
=
tf
.
cast
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
),
tf
.
float32
)
acc
=
tf
.
reduce_mean
(
acc
,
name
=
'accuracy'
)
summary
.
add_moving_summary
(
acc
)
...
...
examples/basics/mnist-visualizations.py
View file @
c7fd1d9f
...
...
@@ -97,7 +97,7 @@ class Model(ModelDesc):
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
tf
.
reduce_mean
(
tf
.
to_float
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
))
,
name
=
'accuracy'
)
tf
.
reduce_mean
(
tf
.
cast
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
)),
tf
.
float32
,
name
=
'accuracy'
)
wd_cost
=
tf
.
multiply
(
1e-5
,
regularize_cost
(
'fc.*/W'
,
tf
.
nn
.
l2_loss
),
...
...
examples/basics/svhn-digit-convnet.py
View file @
c7fd1d9f
...
...
@@ -43,7 +43,7 @@ class Model(ModelDesc):
.
FullyConnected
(
'linear'
,
units
=
10
)())
tf
.
nn
.
softmax
(
logits
,
name
=
'output'
)
accuracy
=
tf
.
to_float
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
)
)
accuracy
=
tf
.
cast
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
),
tf
.
float32
)
add_moving_summary
(
tf
.
reduce_mean
(
accuracy
,
name
=
'accuracy'
))
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
)
...
...
examples/keras/imagenet-resnet-keras.py
View file @
c7fd1d9f
...
...
@@ -16,6 +16,7 @@ from tensorpack.contrib.keras import KerasModel
from
tensorpack.callbacks
import
*
from
tensorflow.python.keras.layers
import
*
from
tensorpack.tfutils.common
import
get_tf_version_tuple
from
imagenet_utils
import
get_imagenet_dataflow
,
fbresnet_augmentor
...
...
@@ -34,7 +35,8 @@ def conv(x, filters, kernel, strides=1, name=None):
return
Conv2D
(
filters
,
kernel
,
name
=
name
,
strides
=
strides
,
use_bias
=
False
,
padding
=
'same'
,
kernel_initializer
=
tf
.
keras
.
initializers
.
VarianceScaling
(
scale
=
2.0
,
mode
=
'fan_out'
,
distribution
=
'normal'
),
scale
=
2.0
,
mode
=
'fan_out'
,
distribution
=
'untruncated_normal'
if
get_tf_version_tuple
()
>=
(
1
,
12
)
else
'normal'
),
kernel_regularizer
=
tf
.
keras
.
regularizers
.
l2
(
5e-5
))(
x
)
...
...
examples/keras/mnist-keras.py
View file @
c7fd1d9f
...
...
@@ -54,7 +54,7 @@ class Model(ModelDesc):
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
# the average cross-entropy loss
# for tensorpack validation
acc
=
tf
.
to_float
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
)
)
acc
=
tf
.
cast
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
),
tf
.
float32
)
acc
=
tf
.
reduce_mean
(
acc
,
name
=
'accuracy'
)
summary
.
add_moving_summary
(
acc
)
...
...
tensorpack/callbacks/steps.py
View file @
c7fd1d9f
...
...
@@ -115,7 +115,6 @@ class MaintainStepCounter(Callback):
# ensure it exists
gs_var
=
get_global_step_var
()
with
tf
.
name_scope
(
None
):
with
self
.
graph
.
colocate_with
(
gs_var
):
self
.
gs_incr_op
=
tf
.
assign_add
(
gs_var
,
1
,
name
=
GLOBAL_STEP_INCR_OP_NAME
)
.
op
...
...
tensorpack/models/conv2d.py
View file @
c7fd1d9f
...
...
@@ -52,7 +52,7 @@ def Conv2D(
if
get_tf_version_tuple
()
<=
(
1
,
12
):
kernel_initializer
=
tf
.
contrib
.
layers
.
variance_scaling_initializer
(
2.0
),
else
:
kernel_initializer
=
tf
.
keras
.
initializers
.
VarianceScaling
(
2.0
)
kernel_initializer
=
tf
.
keras
.
initializers
.
VarianceScaling
(
2.0
,
distribution
=
'untruncated_normal'
)
if
split
==
1
:
with
rename_get_variable
({
'kernel'
:
'W'
,
'bias'
:
'b'
}):
layer
=
tf
.
layers
.
Conv2D
(
...
...
@@ -160,7 +160,7 @@ def Conv2DTranspose(
if
get_tf_version_tuple
()
<=
(
1
,
12
):
kernel_initializer
=
tf
.
contrib
.
layers
.
variance_scaling_initializer
(
2.0
),
else
:
kernel_initializer
=
tf
.
keras
.
initializers
.
VarianceScaling
(
2.0
)
kernel_initializer
=
tf
.
keras
.
initializers
.
VarianceScaling
(
2.0
,
distribution
=
'untruncated_normal'
)
with
rename_get_variable
({
'kernel'
:
'W'
,
'bias'
:
'b'
}):
layer
=
tf
.
layers
.
Conv2DTranspose
(
...
...
tensorpack/models/fc.py
View file @
c7fd1d9f
...
...
@@ -50,7 +50,7 @@ def FullyConnected(
if
get_tf_version_tuple
()
<=
(
1
,
12
):
kernel_initializer
=
tf
.
contrib
.
layers
.
variance_scaling_initializer
(
2.0
),
else
:
kernel_initializer
=
tf
.
keras
.
initializers
.
VarianceScaling
(
2.0
)
kernel_initializer
=
tf
.
keras
.
initializers
.
VarianceScaling
(
2.0
,
distribution
=
'untruncated_normal'
)
inputs
=
batch_flatten
(
inputs
)
with
rename_get_variable
({
'kernel'
:
'W'
,
'bias'
:
'b'
}):
...
...
tensorpack/tfutils/optimizer.py
View file @
c7fd1d9f
...
...
@@ -6,6 +6,7 @@ import tensorflow as tf
from
contextlib
import
contextmanager
from
..utils.develop
import
HIDE_DOC
from
..tfutils.common
import
get_tf_version_tuple
from
.gradproc
import
FilterNoneGrad
,
GradientProcessor
__all__
=
[
'apply_grad_processors'
,
'ProxyOptimizer'
,
...
...
@@ -85,7 +86,7 @@ class PostProcessOptimizer(ProxyOptimizer):
opt (tf.train.Optimizer):
func (tf.Variable -> tf.Operation or None): the operation needed
to perform for this variable after the gradient update.
colocate (boolean): colocate the function with the variable.
colocate (boolean): colocate the function with the variable.
No effect since TF 1.13.
"""
super
(
PostProcessOptimizer
,
self
)
.
__init__
(
opt
)
self
.
_func
=
func
...
...
@@ -109,7 +110,7 @@ class PostProcessOptimizer(ProxyOptimizer):
@
contextmanager
def
_maybe_colocate
(
self
,
var
):
G
=
tf
.
get_default_graph
()
if
self
.
_colocate
:
if
self
.
_colocate
and
get_tf_version_tuple
()
<=
(
1
,
12
)
:
with
G
.
colocate_with
(
var
):
yield
else
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment