Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
8902af90
Commit
8902af90
authored
Jan 01, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
more consistent with official cifar code
parent
daf368dc
Changes
8
Show whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
93 additions
and
31 deletions
+93
-31
example_cifar10.py
example_cifar10.py
+20
-13
example_mnist.py
example_mnist.py
+5
-6
tensorpack/dataflow/common.py
tensorpack/dataflow/common.py
+17
-1
tensorpack/dataflow/imgaug/base.py
tensorpack/dataflow/imgaug/base.py
+1
-0
tensorpack/dataflow/imgaug/crop.py
tensorpack/dataflow/imgaug/crop.py
+27
-2
tensorpack/dataflow/imgaug/imgproc.py
tensorpack/dataflow/imgaug/imgproc.py
+3
-2
tensorpack/train.py
tensorpack/train.py
+18
-5
tensorpack/utils/callback.py
tensorpack/utils/callback.py
+2
-2
No files found.
example_cifar10.py
View file @
8902af90
...
...
@@ -19,7 +19,7 @@ from tensorpack.dataflow import *
from
tensorpack.dataflow
import
imgaug
BATCH_SIZE
=
128
MIN_AFTER_DEQUEUE
=
500
MIN_AFTER_DEQUEUE
=
20000
# a large number, as in the official example
CAPACITY
=
MIN_AFTER_DEQUEUE
+
3
*
BATCH_SIZE
def
get_model
(
inputs
,
is_training
):
...
...
@@ -28,7 +28,10 @@ def get_model(inputs, is_training):
image
,
label
=
inputs
#if is_training: # slow
if
is_training
:
# slow?
image
,
label
=
tf
.
train
.
shuffle_batch
(
[
image
,
label
],
BATCH_SIZE
,
CAPACITY
,
MIN_AFTER_DEQUEUE
,
num_threads
=
6
,
enqueue_many
=
False
)
## augmentations
#image, label = tf.train.slice_input_producer(
#[image, label], name='slice_queue')
...
...
@@ -80,20 +83,23 @@ def get_config():
log_dir
=
os
.
path
.
join
(
'train_log'
,
os
.
path
.
basename
(
__file__
)[:
-
3
])
logger
.
set_logger_dir
(
log_dir
)
import
cv2
dataset_train
=
dataset
.
Cifar10
(
'train'
)
augmentor
=
imgaug
.
AugmentorList
(
[
augmentor
s
=
[
RandomCrop
((
24
,
24
)),
Flip
(
horiz
=
True
),
BrightnessAdd
(
0.25
),
Contrast
((
0.2
,
1.8
)),
PerImageWhitening
()
])
dataset_train
=
MapData
(
dataset_train
,
lambda
img
:
augmentor
.
augment
(
imgaug
.
Image
(
img
))
.
arr
)
]
dataset_train
=
AugmentImageComponent
(
dataset_train
,
augmentors
)
dataset_train
=
BatchData
(
dataset_train
,
128
)
augmentors
=
[
CenterCrop
((
24
,
24
)),
PerImageWhitening
()
]
dataset_test
=
dataset
.
Cifar10
(
'test'
)
dataset_test
=
MapData
(
dataset_test
,
lambda
img
:
cv2
.
resize
(
img
,
(
24
,
24
))
)
dataset_test
=
AugmentImageComponent
(
dataset_test
,
augmentors
)
dataset_test
=
BatchData
(
dataset_test
,
128
)
step_per_epoch
=
dataset_train
.
size
()
#step_per_epoch = 20
...
...
@@ -109,19 +115,19 @@ def get_config():
tf
.
placeholder
(
tf
.
int32
,
shape
=
(
None
,),
name
=
'label'
)
]
input_queue
=
tf
.
RandomShuffle
Queue
(
100
,
50
,
[
x
.
dtype
for
x
in
input_vars
],
name
=
'queue'
)
input_queue
=
tf
.
FIFO
Queue
(
50
,
[
x
.
dtype
for
x
in
input_vars
],
name
=
'queue'
)
lr
=
tf
.
train
.
exponential_decay
(
learning_rate
=
1e-
4
,
learning_rate
=
1e-
1
,
global_step
=
get_global_step_var
(),
decay_steps
=
dataset_train
.
size
()
*
5
0
,
decay_steps
=
dataset_train
.
size
()
*
20
0
,
decay_rate
=
0.1
,
staircase
=
True
,
name
=
'learning_rate'
)
tf
.
scalar_summary
(
'learning_rate'
,
lr
)
return
TrainConfig
(
dataset
=
dataset_train
,
optimizer
=
tf
.
train
.
Adam
Optimizer
(
lr
),
optimizer
=
tf
.
train
.
GradientDescent
Optimizer
(
lr
),
callbacks
=
Callbacks
([
SummaryWriter
(),
PeriodicSaver
(),
...
...
@@ -131,6 +137,7 @@ def get_config():
inputs
=
input_vars
,
input_queue
=
input_queue
,
get_model_func
=
get_model
,
batched_model_input
=
False
,
step_per_epoch
=
step_per_epoch
,
max_epoch
=
100
,
)
...
...
example_mnist.py
View file @
8902af90
...
...
@@ -42,13 +42,12 @@ def get_model(inputs, is_training):
image
,
label
=
inputs
image
=
tf
.
expand_dims
(
image
,
3
)
# add a single channel
#if is_training:
# slow
#if is_training:
## augmentations
#image, label = tf.train.slice_input_producer(
#[image, label], name='slice_queue')
#image = tf.image.random_brightness(image, 0.1)
#image, label = tf.train.shuffle_batch(
#[image, label], BATCH_SIZE, CAPACITY, MIN_AFTER_DEQUEUE,
#[image, label], shuffle=False, name='slice_queue')
#image, label = tf.train.batch(
#[image, label], BATCH_SIZE, capacity=CAPACITY,
#num_threads=2, enqueue_many=False)
l
=
Conv2D
(
'conv0'
,
image
,
out_channel
=
32
,
kernel_shape
=
5
)
...
...
@@ -98,7 +97,7 @@ def get_config():
dataset_train
=
BatchData
(
dataset
.
Mnist
(
'train'
),
128
)
dataset_test
=
BatchData
(
dataset
.
Mnist
(
'test'
),
256
,
remainder
=
True
)
step_per_epoch
=
dataset_train
.
size
()
step_per_epoch
=
2
#step_per_epoch = 30
#dataset_test = FixedSizeData(dataset_test, 20)
sess_config
=
get_default_sess_config
()
...
...
tensorpack/dataflow/common.py
View file @
8902af90
...
...
@@ -5,8 +5,10 @@
import
numpy
as
np
from
.base
import
DataFlow
from
imgaug
import
AugmentorList
,
Image
__all__
=
[
'BatchData'
,
'FixedSizeData'
,
'FakeData'
,
'MapData'
]
__all__
=
[
'BatchData'
,
'FixedSizeData'
,
'FakeData'
,
'MapData'
,
'AugmentImageComponent'
]
class
BatchData
(
DataFlow
):
def
__init__
(
self
,
ds
,
batch_size
,
remainder
=
False
):
...
...
@@ -101,3 +103,17 @@ class MapData(DataFlow):
d
=
list
(
dp
)
dp
[
self
.
index
]
=
self
.
func
(
dp
[
self
.
index
])
yield
dp
def
AugmentImageComponent
(
ds
,
augmentors
,
index
=
0
):
"""
Augment the image in each data point
Args:
ds: a DataFlow dataset instance
augmentors: a list of ImageAugmentor instance
index: the index of image in each data point. default to be 0
"""
aug
=
AugmentorList
(
augmentors
)
return
MapData
(
ds
,
lambda
img
:
aug
.
augment
(
Image
(
img
))
.
arr
,
index
)
tensorpack/dataflow/imgaug/base.py
View file @
8902af90
...
...
@@ -60,6 +60,7 @@ class AugmentorList(ImageAugmentor):
self
.
augs
=
augmentors
def
_augment
(
self
,
img
):
assert
img
.
arr
.
ndim
in
[
2
,
3
]
img
.
arr
=
img
.
arr
.
astype
(
'float32'
)
/
255.0
for
aug
in
self
.
augs
:
aug
.
augment
(
img
)
tensorpack/dataflow/imgaug/crop.py
View file @
8902af90
...
...
@@ -5,12 +5,12 @@
from
.base
import
ImageAugmentor
__all__
=
[
'RandomCrop'
]
__all__
=
[
'RandomCrop'
,
'CenterCrop'
,
'Resize'
]
class
RandomCrop
(
ImageAugmentor
):
""" Randomly crop the image into a smaller one """
def
__init__
(
self
,
crop_shape
):
"""
Randomly crop the image into a smaller one
Args:
crop_shape: shape in (h, w)
"""
...
...
@@ -24,4 +24,29 @@ class RandomCrop(ImageAugmentor):
if
img
.
coords
:
raise
NotImplementedError
()
class
CenterCrop
(
ImageAugmentor
):
""" Crop the image in the center"""
def
__init__
(
self
,
crop_shape
):
self
.
_init
(
locals
())
def
_augment
(
self
,
img
):
orig_shape
=
img
.
arr
.
shape
h0
=
(
orig_shape
[
0
]
-
self
.
crop_shape
[
0
])
*
0.5
w0
=
(
orig_shape
[
1
]
-
self
.
crop_shape
[
1
])
*
0.5
img
.
arr
=
img
.
arr
[
h0
:
h0
+
self
.
crop_shape
[
0
],
w0
:
w0
+
self
.
crop_shape
[
1
]]
if
img
.
coords
:
raise
NotImplementedError
()
class
Resize
(
ImageAugmentor
):
"""Resize image to a target size"""
def
__init__
(
self
,
shape
):
"""
Args:
shape: (w, h)
"""
self
.
_init
(
locals
())
def
_augment
(
self
,
img
):
img
.
arr
=
cv2
.
resize
(
img
.
arr
,
self
.
shape
,
interpolation
=
cv2
.
INTER_CUBIC
)
tensorpack/dataflow/imgaug/imgproc.py
View file @
8902af90
...
...
@@ -33,12 +33,13 @@ class Contrast(ImageAugmentor):
r
=
self
.
_rand_range
(
*
self
.
factor_range
)
mean
=
np
.
mean
(
arr
,
axis
=
(
0
,
1
),
keepdims
=
True
)
img
.
arr
=
(
arr
-
mean
)
*
r
+
mean
img
.
arr
=
np
.
clip
(
img
.
arr
,
0
,
1
)
class
PerImageWhitening
(
ImageAugmentor
):
"""
Linearly scales image to have zero mean and unit norm.
x = (x - mean) / adjusted_stddev
where adjusted_stddev = max(stddev, 1.0/sqrt(num_pixels))
where adjusted_stddev = max(stddev, 1.0/sqrt(num_pixels
* channels
))
"""
def
__init__
(
self
):
pass
...
...
@@ -46,5 +47,5 @@ class PerImageWhitening(ImageAugmentor):
def
_augment
(
self
,
img
):
mean
=
np
.
mean
(
img
.
arr
,
axis
=
(
0
,
1
),
keepdims
=
True
)
std
=
np
.
std
(
img
.
arr
,
axis
=
(
0
,
1
),
keepdims
=
True
)
std
=
np
.
maximum
(
std
,
1.0
/
np
.
sqrt
(
np
.
prod
(
img
.
arr
.
shape
[:
2
]
)))
std
=
np
.
maximum
(
std
,
1.0
/
np
.
sqrt
(
np
.
prod
(
img
.
arr
.
shape
)))
img
.
arr
=
(
img
.
arr
-
mean
)
/
std
tensorpack/train.py
View file @
8902af90
...
...
@@ -36,6 +36,11 @@ class TrainConfig(object):
with capacity 5
get_model_func: a function taking `inputs` and `is_training` and
return a tuple of output list as well as the cost to minimize
batched_model_input: boolean. If yes, `get_model_func` expected batched
input in training. Otherwise, expect single data point in
training, so that you may do pre-processing and batch them
later with batch ops. It's suggested that you do all
preprocessing in dataset as that is usually faster.
step_per_epoch: the number of steps (parameter updates) to perform
in each epoch. default to dataset.size()
max_epoch: maximum number of epoch to run training. default to 100
...
...
@@ -59,6 +64,7 @@ class TrainConfig(object):
assert_type
(
self
.
input_queue
,
tf
.
QueueBase
)
assert
self
.
input_queue
.
dtypes
==
[
x
.
dtype
for
x
in
self
.
inputs
]
self
.
get_model_func
=
kwargs
.
pop
(
'get_model_func'
)
self
.
batched_model_input
=
kwargs
.
pop
(
'batched_model_input'
,
True
)
self
.
step_per_epoch
=
int
(
kwargs
.
pop
(
'step_per_epoch'
,
self
.
dataset
.
size
()))
self
.
max_epoch
=
int
(
kwargs
.
pop
(
'max_epoch'
,
100
))
assert
self
.
step_per_epoch
>
0
and
self
.
max_epoch
>
0
...
...
@@ -89,11 +95,16 @@ def start_train(config):
input_queue
=
config
.
input_queue
callbacks
=
config
.
callbacks
enqueue_op
=
input_queue
.
enqueue
(
tuple
(
input_vars
))
if
config
.
batched_model_input
:
enqueue_op
=
input_queue
.
enqueue
(
input_vars
)
model_inputs
=
input_queue
.
dequeue
()
# set dequeue shape
for
qv
,
v
in
zip
(
model_inputs
,
input_vars
):
qv
.
set_shape
(
v
.
get_shape
())
else
:
enqueue_op
=
input_queue
.
enqueue_many
(
input_vars
)
model_inputs
=
input_queue
.
dequeue
()
for
qv
,
v
in
zip
(
model_inputs
,
input_vars
):
qv
.
set_shape
(
v
.
get_shape
()
.
as_list
()[
1
:])
output_vars
,
cost_var
=
config
.
get_model_func
(
model_inputs
,
is_training
=
True
)
# build graph
...
...
@@ -125,6 +136,8 @@ def start_train(config):
for
step
in
xrange
(
config
.
step_per_epoch
):
if
coord
.
should_stop
():
return
# TODO if no one uses trigger_step, train_op can be
# faster, see: https://github.com/soumith/convnet-benchmarks/pull/67/files
fetches
=
[
train_op
,
cost_var
]
+
output_vars
+
model_inputs
results
=
sess
.
run
(
fetches
)
cost
=
results
[
1
]
...
...
tensorpack/utils/callback.py
View file @
8902af90
...
...
@@ -111,9 +111,9 @@ class CallbackTimeLogger(object):
msgs
=
[]
for
name
,
t
in
self
.
times
:
if
t
/
self
.
tot
>
0.3
and
t
>
1
:
msgs
.
append
(
"{}:{}"
.
format
(
name
,
t
))
msgs
.
append
(
"{}:{}
sec
"
.
format
(
name
,
t
))
logger
.
info
(
"Callbacks took {} sec. {}"
.
format
(
"Callbacks took {} sec
in total
. {}"
.
format
(
self
.
tot
,
' '
.
join
(
msgs
)))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment