Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
7e2be137
Commit
7e2be137
authored
Mar 19, 2017
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add Keras example (#160)
parent
db30c255
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
153 additions
and
7 deletions
+153
-7
examples/mnist-convnet.py
examples/mnist-convnet.py
+1
-1
examples/mnist-keras.py
examples/mnist-keras.py
+137
-0
tensorpack/callbacks/inference_runner.py
tensorpack/callbacks/inference_runner.py
+13
-5
tensorpack/train/feedfree.py
tensorpack/train/feedfree.py
+2
-1
No files found.
examples/mnist-convnet.py
View file @
7e2be137
...
...
@@ -71,7 +71,7 @@ class Model(ModelDesc):
logits
=
(
LinearWrap
(
image
)
# the starting brace is only for line-breaking
.
Conv2D
(
'conv0'
)
.
MaxPooling
(
'pool0'
,
2
)
.
Conv2D
(
'conv1'
,
padding
=
'SAME'
)
.
Conv2D
(
'conv1'
)
.
Conv2D
(
'conv2'
)
.
MaxPooling
(
'pool1'
,
2
)
.
Conv2D
(
'conv3'
)
...
...
examples/mnist-keras.py
0 → 100755
View file @
7e2be137
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: mnist-keras.py
# Author: Yuxin Wu <ppwwyyxxc@gmail.com>
import
numpy
as
np
import
tensorflow
as
tf
import
tensorflow.contrib.slim
as
slim
import
os
import
sys
import
argparse
import
keras.layers
as
KL
import
keras.backend
as
KB
from
keras.models
import
Sequential
from
keras
import
regularizers
"""
This is an mnist example demonstrating how to use Keras models inside tensorpack.
This way you can define models in Keras-style, and benefit from the more efficeint trainers in tensorpack.
"""
from
tensorpack
import
*
from
tensorpack.utils.argtools
import
memoized
IMAGE_SIZE
=
28
class
Model
(
ModelDesc
):
def
_get_inputs
(
self
):
return
[
InputDesc
(
tf
.
float32
,
(
None
,
IMAGE_SIZE
,
IMAGE_SIZE
),
'input'
),
InputDesc
(
tf
.
int32
,
(
None
,),
'label'
),
]
@
memoized
# this is necessary for Keras to work under tensorpack
def
_build_keras_model
(
self
):
M
=
Sequential
()
M
.
add
(
KL
.
Conv2D
(
32
,
3
,
activation
=
'relu'
,
input_shape
=
[
IMAGE_SIZE
,
IMAGE_SIZE
,
1
],
padding
=
'same'
))
M
.
add
(
KL
.
MaxPooling2D
())
M
.
add
(
KL
.
Conv2D
(
32
,
3
,
activation
=
'relu'
,
padding
=
'same'
))
M
.
add
(
KL
.
Conv2D
(
32
,
3
,
activation
=
'relu'
,
padding
=
'same'
))
M
.
add
(
KL
.
MaxPooling2D
())
M
.
add
(
KL
.
Conv2D
(
32
,
3
,
padding
=
'same'
,
activation
=
'relu'
))
M
.
add
(
KL
.
Flatten
())
M
.
add
(
KL
.
Dense
(
512
,
activation
=
'relu'
,
kernel_regularizer
=
regularizers
.
l2
(
1e-5
)))
M
.
add
(
KL
.
Dropout
(
0.5
))
M
.
add
(
KL
.
Dense
(
10
,
activation
=
None
,
kernel_regularizer
=
regularizers
.
l2
(
1e-5
)))
return
M
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
image
=
tf
.
expand_dims
(
image
,
3
)
image
=
image
*
2
-
1
# center the pixels values at zero
with
argscope
(
Conv2D
,
kernel_shape
=
3
,
nl
=
tf
.
nn
.
relu
,
out_channel
=
32
):
M
=
self
.
_build_keras_model
()
logits
=
M
(
image
)
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'prob'
)
# a Bx10 with probabilities
# a vector of length B with loss of each sample
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
# the average cross-entropy loss
wrong
=
symbolic_functions
.
prediction_incorrect
(
logits
,
label
,
name
=
'incorrect'
)
train_error
=
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
)
summary
.
add_moving_summary
(
train_error
)
wd_cost
=
tf
.
add_n
(
M
.
losses
,
name
=
'regularize_loss'
)
# this is how Keras manage regularizers
self
.
cost
=
tf
.
add_n
([
wd_cost
,
cost
],
name
=
'total_cost'
)
summary
.
add_moving_summary
(
cost
,
wd_cost
,
self
.
cost
)
# this is the keras naming
summary
.
add_param_summary
((
'conv2d.*/kernel'
,
[
'histogram'
,
'rms'
]))
def
_get_optimizer
(
self
):
lr
=
tf
.
train
.
exponential_decay
(
learning_rate
=
1e-3
,
global_step
=
get_global_step_var
(),
decay_steps
=
468
*
10
,
decay_rate
=
0.3
,
staircase
=
True
,
name
=
'learning_rate'
)
tf
.
summary
.
scalar
(
'lr'
,
lr
)
return
tf
.
train
.
AdamOptimizer
(
lr
)
class
KerasCallback
(
Callback
):
def
__init__
(
self
,
isTrain
):
self
.
_isTrain
=
isTrain
self
.
_learning_phase
=
KB
.
learning_phase
()
def
_before_run
(
self
,
ctx
):
return
tf
.
train
.
SessionRunArgs
(
fetches
=
[],
feed_dict
=
{
self
.
_learning_phase
:
int
(
self
.
_isTrain
)})
def
get_data
():
train
=
BatchData
(
dataset
.
Mnist
(
'train'
),
128
)
test
=
BatchData
(
dataset
.
Mnist
(
'test'
),
256
,
remainder
=
True
)
return
train
,
test
def
get_config
():
logger
.
auto_set_dir
()
dataset_train
,
dataset_test
=
get_data
()
return
TrainConfig
(
model
=
Model
(),
dataflow
=
dataset_train
,
callbacks
=
[
KerasCallback
(
1
),
# for Keras training
ModelSaver
(),
InferenceRunner
(
dataset_test
,
[
ScalarStats
(
'cross_entropy_loss'
),
ClassificationError
(
'incorrect'
)],
extra_hooks
=
[
CallbackToHook
(
KerasCallback
(
0
))]),
# for keras inference
],
max_epoch
=
100
,
)
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--gpu'
,
help
=
'comma separated list of GPU(s) to use.'
)
parser
.
add_argument
(
'--load'
,
help
=
'load model'
)
args
=
parser
.
parse_args
()
if
args
.
gpu
:
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
args
.
gpu
config
=
get_config
()
if
args
.
load
:
config
.
session_init
=
SaverRestore
(
args
.
load
)
if
args
.
gpu
:
config
.
nr_tower
=
get_nr_gpu
()
if
config
.
nr_tower
>
1
:
SyncMultiGPUTrainer
(
config
)
.
train
()
else
:
QueueInputTrainer
(
config
)
.
train
()
tensorpack/callbacks/inference_runner.py
View file @
7e2be137
...
...
@@ -56,7 +56,7 @@ def summary_inferencer(trainer, infs):
@
six
.
add_metaclass
(
ABCMeta
)
class
InferenceRunnerBase
(
Callback
):
""" Base methods for inference runner"""
def
__init__
(
self
,
input
,
infs
,
input_names
=
None
,
prefix
=
''
):
def
__init__
(
self
,
input
,
infs
,
input_names
=
None
,
prefix
=
''
,
extra_hooks
=
None
):
"""
Args:
input (InputData): the input to use. Must have ``size()``.
...
...
@@ -64,6 +64,7 @@ class InferenceRunnerBase(Callback):
input_names (list): must be a subset of the names in InputDesc.
prefix(str): an prefix used to build the tower. Must be set
differently if more than one :class:`InferenceRunner` are used.
extra_hooks (list): extra ``SessionRunHook`` to run with the evaluation.
"""
self
.
_input_data
=
input
if
not
isinstance
(
infs
,
list
):
...
...
@@ -82,6 +83,10 @@ class InferenceRunnerBase(Callback):
raise
ValueError
(
"Input used in InferenceRunner must have a size!"
)
self
.
_prefix
=
prefix
if
extra_hooks
is
None
:
extra_hooks
=
[]
self
.
_extra_hooks
=
extra_hooks
def
_setup_input_names
(
self
):
# just use all the placeholders, if input_name is None
if
self
.
input_names
is
None
:
...
...
@@ -111,6 +116,7 @@ class InferenceRunnerBase(Callback):
self
.
_hooks
=
[
self
.
_build_hook
(
inf
)
for
inf
in
self
.
infs
]
def
_before_train
(
self
):
self
.
_hooks
.
extend
(
self
.
_extra_hooks
)
self
.
_hooked_sess
=
HookedSession
(
self
.
trainer
.
sess
,
self
.
_hooks
)
def
_get_tensors_maybe_in_tower
(
self
,
names
):
...
...
@@ -148,7 +154,7 @@ class InferenceRunner(InferenceRunnerBase):
:class:`DataFlow`.
"""
def
__init__
(
self
,
ds
,
infs
,
input_names
=
None
):
def
__init__
(
self
,
ds
,
infs
,
input_names
=
None
,
extra_hooks
=
None
):
"""
Args:
ds (DataFlow): the DataFlow to run inferencer on.
...
...
@@ -158,7 +164,8 @@ class InferenceRunner(InferenceRunnerBase):
"""
assert
isinstance
(
ds
,
DataFlow
),
ds
input
=
FeedInput
(
ds
)
super
(
InferenceRunner
,
self
)
.
__init__
(
input
,
infs
,
input_names
,
prefix
=
''
)
super
(
InferenceRunner
,
self
)
.
__init__
(
input
,
infs
,
input_names
,
prefix
=
''
,
extra_hooks
=
extra_hooks
)
def
_find_input_tensors
(
self
):
return
self
.
trainer
.
model
.
get_reused_placehdrs
()
...
...
@@ -178,7 +185,7 @@ class FeedfreeInferenceRunner(InferenceRunnerBase):
pipeline.
"""
def
__init__
(
self
,
input
,
infs
,
input_names
=
None
,
prefix
=
''
):
def
__init__
(
self
,
input
,
infs
,
input_names
=
None
,
prefix
=
''
,
extra_hooks
=
None
):
"""
Args:
input (TensorInput): the input to use. Must have ``size()``.
...
...
@@ -188,7 +195,8 @@ class FeedfreeInferenceRunner(InferenceRunnerBase):
differently if more than one :class:`FeedfreeInferenceRunner` are used.
"""
assert
isinstance
(
input
,
TensorInput
),
input
super
(
FeedfreeInferenceRunner
,
self
)
.
__init__
(
input
,
infs
,
input_names
,
prefix
)
super
(
FeedfreeInferenceRunner
,
self
)
.
__init__
(
input
,
infs
,
input_names
,
prefix
=
prefix
,
extra_hooks
=
extra_hooks
)
def
_setup_input_names
(
self
):
super
(
FeedfreeInferenceRunner
,
self
)
.
_setup_input_names
()
...
...
tensorpack/train/feedfree.py
View file @
7e2be137
...
...
@@ -121,5 +121,6 @@ def QueueInputTrainer(config, input_queue=None, predict_tower=None):
log_deprecated
(
"Argument `predict_tower` in trainer"
,
"Use TrainConfig(predict_tower=...) instead!"
)
config
.
predict_tower
=
predict_tower
assert
len
(
config
.
tower
)
==
1
,
\
"QueueInputTrainer doesn't support multigpu! Use Sync/AsyncMultiGPUTrainer instead."
"Got nr_tower={}, but QueueInputTrainer doesn't support multigpu!"
\
" Use Sync/AsyncMultiGPUTrainer instead."
.
format
(
len
(
config
.
tower
))
return
SimpleFeedfreeTrainer
(
config
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment