Commit 7d9582a1 authored by Yuxin Wu's avatar Yuxin Wu

update for ilsvrc

parent 17d8feb5
......@@ -10,7 +10,7 @@ import imp
import tqdm
import os
from tensorpack.utils import logger
from tensorpack.utils.utils import mkdir_p
from tensorpack.utils.fs import mkdir_p
parser = argparse.ArgumentParser()
......
......@@ -4,8 +4,8 @@
# Author: Yuxin Wu <ppwwyyxxc@gmail.com>
import os
import tarfile
import cv2
import numpy as np
import scipy.ndimage as scimg
from ...utils import logger, get_rng
from ..base import DataFlow
......@@ -61,9 +61,10 @@ class ILSVRCMeta(object):
ret.append((name, int(cls)))
return ret
def get_per_pixel_mean(self):
def get_per_pixel_mean(self, size=None):
"""
:returns per-pixel mean as an array of shape (3, 256, 256) in range [0, 255]
:param size: return image size in [h, w]. default to (256, 256)
:returns per-pixel mean as an array of shape (h, w, 3) in range [0, 255]
"""
import imp
caffepb = imp.load_source('caffepb', self.caffe_pb_file)
......@@ -73,6 +74,9 @@ class ILSVRCMeta(object):
with open(mean_file) as f:
obj.ParseFromString(f.read())
arr = np.array(obj.data).reshape((3, 256, 256))
arr = np.transpose(arr, [1,2,0])
if size is not None:
arr = cv2.resize(arr, size[::-1])
return arr
class ILSVRC12(DataFlow):
......@@ -106,9 +110,10 @@ class ILSVRC12(DataFlow):
self.rng.shuffle(idxs)
for k in idxs:
tp = self.imglist[k]
fname = os.path.join(self.dir, self.name, tp[0])
im = scimg.imread(fname)
if len(im.shape) == 2:
fname = os.path.join(self.dir, self.name, tp[0]).strip()
im = cv2.imread(fname)
assert im is not None, fname
if im.ndim == 2:
im = np.expand_dims(im, 2).repeat(3,2)
yield [im, tp[1]]
......
......@@ -69,7 +69,7 @@ class AugmentorList(ImageAugmentor):
self.augs = augmentors
def _augment(self, img):
assert img.arr.ndim in [2, 3]
assert img.arr.ndim in [2, 3], img.arr.ndim
img.arr = img.arr.astype('float32')
for aug in self.augs:
aug.augment(img)
......
......@@ -86,6 +86,7 @@ class QueueInputTrainer(Trainer):
@staticmethod
def _average_grads(tower_grads):
ret = []
with tf.device('/gpu:0'):
for grad_and_vars in zip(*tower_grads):
grad = tf.add_n([x[0] for x in grad_and_vars]) / float(len(tower_grads))
v = grad_and_vars[0][1]
......@@ -121,7 +122,8 @@ class QueueInputTrainer(Trainer):
if i == 0:
cost_var_t0 = cost_var
grad_list.append(
self.config.optimizer.compute_gradients(cost_var))
self.config.optimizer.compute_gradients(cost_var,
gate_gradients=0))
if i == 0:
tf.get_variable_scope().reuse_variables()
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment