Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
759f54b4
Commit
759f54b4
authored
Jul 05, 2018
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[MaskRCNN] add GN
parent
ed32de25
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
90 additions
and
47 deletions
+90
-47
examples/DoReFa-Net/dorefa.py
examples/DoReFa-Net/dorefa.py
+1
-1
examples/FasterRCNN/README.md
examples/FasterRCNN/README.md
+3
-1
examples/FasterRCNN/basemodel.py
examples/FasterRCNN/basemodel.py
+29
-1
examples/FasterRCNN/config.py
examples/FasterRCNN/config.py
+1
-0
examples/FasterRCNN/model_frcnn.py
examples/FasterRCNN/model_frcnn.py
+56
-44
No files found.
examples/DoReFa-Net/dorefa.py
View file @
759f54b4
...
@@ -9,7 +9,7 @@ from tensorpack.utils.argtools import graph_memoized
...
@@ -9,7 +9,7 @@ from tensorpack.utils.argtools import graph_memoized
@
graph_memoized
@
graph_memoized
def
get_dorefa
(
bitW
,
bitA
,
bitG
):
def
get_dorefa
(
bitW
,
bitA
,
bitG
):
"""
"""
r
eturn the three quantization functions fw, fa, fg, for weights, activations and gradients respectively
R
eturn the three quantization functions fw, fa, fg, for weights, activations and gradients respectively
It's unsafe to call this function multiple times with different parameters
It's unsafe to call this function multiple times with different parameters
"""
"""
def
quantize
(
x
,
k
):
def
quantize
(
x
,
k
):
...
...
examples/FasterRCNN/README.md
View file @
759f54b4
...
@@ -69,10 +69,12 @@ MaskRCNN results contain both bbox and segm mAP.
...
@@ -69,10 +69,12 @@ MaskRCNN results contain both bbox and segm mAP.
| R50-FPN | 37.5 | 37.9
<sup>
[
1
](
#ft1
)
</sup>
| 28h on 8 V100s |
<details><summary>
standard
</summary>
`MODE_MASK=False MODE_FPN=True`
</details>
|
| R50-FPN | 37.5 | 37.9
<sup>
[
1
](
#ft1
)
</sup>
| 28h on 8 V100s |
<details><summary>
standard
</summary>
`MODE_MASK=False MODE_FPN=True`
</details>
|
| R50-C4 | 36.8/32.1 | | 39h on 8 P100s |
<details><summary>
quick
</summary>
`MODE_MASK=True FRCNN.BATCH_PER_IM=256`
<br/>
`TRAIN.LR_SCHEDULE=[150000,230000,280000]`
</details>
|
| R50-C4 | 36.8/32.1 | | 39h on 8 P100s |
<details><summary>
quick
</summary>
`MODE_MASK=True FRCNN.BATCH_PER_IM=256`
<br/>
`TRAIN.LR_SCHEDULE=[150000,230000,280000]`
</details>
|
| R50-C4 | 37.8/33.1 | 37.8/32.8 | 51h on 8 V100s |
<details><summary>
standard
</summary>
`MODE_MASK=True`
</details>
|
| R50-C4 | 37.8/33.1 | 37.8/32.8 | 51h on 8 V100s |
<details><summary>
standard
</summary>
`MODE_MASK=True`
</details>
|
| R50-FPN | 38.1/34.9 | 38.6/34.5
<sup>
[
1
](
#ft1
)
</sup>
| 38h on 8 V100s |
<details><summary>
standard
</summary>
`MODE_MASK=True MODE_FPN=True`
</details>
|
| R50-FPN | 38.1/34.9 | 38.6/34.5
<sup>
[
1
](
#ft1
)
</sup>
| 32h on 8 V100s |
<details><summary>
standard
</summary>
`MODE_MASK=True MODE_FPN=True`
</details>
|
| R50-FPN | 38.5/34.8 | 38.6/34.2
<sup>
[
2
](
#ft2
)
</sup>
| 34h on 8 V100s |
<details><summary>
standard+convhead
</summary>
`MODE_MASK=True MODE_FPN=True`
<br/>
`FPN.FRCNN_HEAD_FUNC=fastrcnn_4conv1fc_head`
</details>
|
| R101-C4 | 40.8/35.1 | | 63h on 8 V100s |
<details><summary>
standard
</summary>
`MODE_MASK=True `
<br/>
`BACKBONE.RESNET_NUM_BLOCK=[3,4,23,3]`
</details>
|
| R101-C4 | 40.8/35.1 | | 63h on 8 V100s |
<details><summary>
standard
</summary>
`MODE_MASK=True `
<br/>
`BACKBONE.RESNET_NUM_BLOCK=[3,4,23,3]`
</details>
|
<a
id=
"ft1"
>
1
</a>
: Slightly different configurations.
<a
id=
"ft1"
>
1
</a>
: Slightly different configurations.
<a
id=
"ft2"
>
2
</a>
: Number from
[
Group Normalization
](
https://arxiv.org/abs/1803.08494
)
The two R50-C4 360k models have the same configuration __and mAP__
The two R50-C4 360k models have the same configuration __and mAP__
as the
`R50-C4-2x`
entries in
as the
`R50-C4-2x`
entries in
...
...
examples/FasterRCNN/basemodel.py
View file @
759f54b4
...
@@ -7,11 +7,39 @@ from tensorpack.tfutils.argscope import argscope, get_arg_scope
...
@@ -7,11 +7,39 @@ from tensorpack.tfutils.argscope import argscope, get_arg_scope
from
tensorpack.tfutils.scope_utils
import
auto_reuse_variable_scope
from
tensorpack.tfutils.scope_utils
import
auto_reuse_variable_scope
from
tensorpack.tfutils.varreplace
import
custom_getter_scope
from
tensorpack.tfutils.varreplace
import
custom_getter_scope
from
tensorpack.models
import
(
from
tensorpack.models
import
(
Conv2D
,
MaxPooling
,
BatchNorm
,
BNReLU
)
Conv2D
,
MaxPooling
,
BatchNorm
,
BNReLU
,
layer_register
)
from
config
import
config
as
cfg
from
config
import
config
as
cfg
@
layer_register
(
log_shape
=
True
)
def
GroupNorm
(
x
,
group
=
32
,
gamma_initializer
=
tf
.
constant_initializer
(
1.
)):
shape
=
x
.
get_shape
()
.
as_list
()
ndims
=
len
(
shape
)
assert
ndims
==
4
,
shape
chan
=
shape
[
1
]
assert
chan
%
group
==
0
,
chan
group_size
=
chan
//
group
orig_shape
=
tf
.
shape
(
x
)
h
,
w
=
orig_shape
[
2
],
orig_shape
[
3
]
x
=
tf
.
reshape
(
x
,
tf
.
stack
([
-
1
,
group
,
group_size
,
h
,
w
]))
mean
,
var
=
tf
.
nn
.
moments
(
x
,
[
2
,
3
,
4
],
keep_dims
=
True
)
new_shape
=
[
1
,
group
,
group_size
,
1
,
1
]
beta
=
tf
.
get_variable
(
'beta'
,
[
chan
],
initializer
=
tf
.
constant_initializer
())
beta
=
tf
.
reshape
(
beta
,
new_shape
)
gamma
=
tf
.
get_variable
(
'gamma'
,
[
chan
],
initializer
=
gamma_initializer
)
gamma
=
tf
.
reshape
(
gamma
,
new_shape
)
out
=
tf
.
nn
.
batch_normalization
(
x
,
mean
,
var
,
beta
,
gamma
,
1e-5
,
name
=
'output'
)
return
tf
.
reshape
(
out
,
orig_shape
,
name
=
'output'
)
def
maybe_freeze_affine
(
getter
,
*
args
,
**
kwargs
):
def
maybe_freeze_affine
(
getter
,
*
args
,
**
kwargs
):
# custom getter to freeze affine params inside bn
# custom getter to freeze affine params inside bn
name
=
args
[
0
]
if
len
(
args
)
else
kwargs
.
get
(
'name'
)
name
=
args
[
0
]
if
len
(
args
)
else
kwargs
.
get
(
'name'
)
...
...
examples/FasterRCNN/config.py
View file @
759f54b4
...
@@ -165,6 +165,7 @@ def finalize_configs(is_training):
...
@@ -165,6 +165,7 @@ def finalize_configs(is_training):
size_mult
=
_C
.
FPN
.
RESOLUTION_REQUIREMENT
*
1.
size_mult
=
_C
.
FPN
.
RESOLUTION_REQUIREMENT
*
1.
_C
.
PREPROC
.
MAX_SIZE
=
np
.
ceil
(
_C
.
PREPROC
.
MAX_SIZE
/
size_mult
)
*
size_mult
_C
.
PREPROC
.
MAX_SIZE
=
np
.
ceil
(
_C
.
PREPROC
.
MAX_SIZE
/
size_mult
)
*
size_mult
assert
_C
.
FPN
.
PROPOSAL_MODE
in
[
'Level'
,
'Joint'
]
assert
_C
.
FPN
.
PROPOSAL_MODE
in
[
'Level'
,
'Joint'
]
assert
_C
.
FPN
.
FRCNN_HEAD_FUNC
.
endswith
(
'_head'
)
if
is_training
:
if
is_training
:
os
.
environ
[
'TF_AUTOTUNE_THRESHOLD'
]
=
'1'
os
.
environ
[
'TF_AUTOTUNE_THRESHOLD'
]
=
'1'
...
...
examples/FasterRCNN/model_frcnn.py
View file @
759f54b4
...
@@ -9,6 +9,7 @@ from tensorpack.tfutils.scope_utils import under_name_scope
...
@@ -9,6 +9,7 @@ from tensorpack.tfutils.scope_utils import under_name_scope
from
tensorpack.models
import
(
from
tensorpack.models
import
(
Conv2D
,
FullyConnected
,
layer_register
)
Conv2D
,
FullyConnected
,
layer_register
)
from
basemodel
import
GroupNorm
from
utils.box_ops
import
pairwise_iou
from
utils.box_ops
import
pairwise_iou
from
config
import
config
as
cfg
from
config
import
config
as
cfg
...
@@ -116,50 +117,6 @@ def fastrcnn_outputs(feature, num_classes):
...
@@ -116,50 +117,6 @@ def fastrcnn_outputs(feature, num_classes):
return
classification
,
box_regression
return
classification
,
box_regression
@
layer_register
(
log_shape
=
True
)
def
fastrcnn_2fc_head
(
feature
,
num_classes
):
"""
Args:
feature (any shape):
num_classes(int): num_category + 1
Returns:
cls_logits (Nxnum_class), reg_logits (Nx num_class-1 x 4)
"""
dim
=
cfg
.
FPN
.
FRCNN_FC_HEAD_DIM
init
=
tf
.
variance_scaling_initializer
()
hidden
=
FullyConnected
(
'fc6'
,
feature
,
dim
,
kernel_initializer
=
init
,
activation
=
tf
.
nn
.
relu
)
hidden
=
FullyConnected
(
'fc7'
,
hidden
,
dim
,
kernel_initializer
=
init
,
activation
=
tf
.
nn
.
relu
)
return
fastrcnn_outputs
(
'outputs'
,
hidden
,
num_classes
)
@
layer_register
(
log_shape
=
True
)
def
fastrcnn_Xconv1fc_head
(
feature
,
num_classes
,
num_convs
):
"""
Args:
feature (any shape):
num_classes(int): num_category + 1
num_convs (int): number of conv layers
Returns:
cls_logits (Nxnum_class), reg_logits (Nx num_class-1 x 4)
"""
l
=
feature
with
argscope
(
Conv2D
,
data_format
=
'channels_first'
,
kernel_initializer
=
tf
.
variance_scaling_initializer
(
scale
=
2.0
,
mode
=
'fan_out'
,
distribution
=
'normal'
)):
for
k
in
range
(
num_convs
):
l
=
Conv2D
(
'conv{}'
.
format
(
k
),
l
,
cfg
.
FPN
.
FRCNN_CONV_HEAD_DIM
,
3
,
activation
=
tf
.
nn
.
relu
)
l
=
FullyConnected
(
'fc'
,
l
,
cfg
.
FPN
.
FRCNN_FC_HEAD_DIM
,
kernel_initializer
=
tf
.
variance_scaling_initializer
(),
activation
=
tf
.
nn
.
relu
)
return
fastrcnn_outputs
(
'outputs'
,
l
,
num_classes
)
def
fastrcnn_4conv1fc_head
(
*
args
,
**
kwargs
):
# This head was used in Group Normalization
return
fastrcnn_Xconv1fc_head
(
*
args
,
num_convs
=
4
,
**
kwargs
)
@
under_name_scope
()
@
under_name_scope
()
def
fastrcnn_losses
(
labels
,
label_logits
,
fg_boxes
,
fg_box_logits
):
def
fastrcnn_losses
(
labels
,
label_logits
,
fg_boxes
,
fg_box_logits
):
"""
"""
...
@@ -254,3 +211,58 @@ def fastrcnn_predictions(boxes, probs):
...
@@ -254,3 +211,58 @@ def fastrcnn_predictions(boxes, probs):
filtered_selection
=
tf
.
gather
(
selected_indices
,
topk_indices
)
filtered_selection
=
tf
.
gather
(
selected_indices
,
topk_indices
)
filtered_selection
=
tf
.
reverse
(
filtered_selection
,
axis
=
[
1
],
name
=
'filtered_indices'
)
filtered_selection
=
tf
.
reverse
(
filtered_selection
,
axis
=
[
1
],
name
=
'filtered_indices'
)
return
filtered_selection
,
topk_probs
return
filtered_selection
,
topk_probs
"""
FC Heads:
"""
@
layer_register
(
log_shape
=
True
)
def
fastrcnn_2fc_head
(
feature
,
num_classes
):
"""
Args:
feature (any shape):
num_classes(int): num_category + 1
Returns:
cls_logits (Nxnum_class), reg_logits (Nx num_class-1 x 4)
"""
dim
=
cfg
.
FPN
.
FRCNN_FC_HEAD_DIM
init
=
tf
.
variance_scaling_initializer
()
hidden
=
FullyConnected
(
'fc6'
,
feature
,
dim
,
kernel_initializer
=
init
,
activation
=
tf
.
nn
.
relu
)
hidden
=
FullyConnected
(
'fc7'
,
hidden
,
dim
,
kernel_initializer
=
init
,
activation
=
tf
.
nn
.
relu
)
return
fastrcnn_outputs
(
'outputs'
,
hidden
,
num_classes
)
@
layer_register
(
log_shape
=
True
)
def
fastrcnn_Xconv1fc_head
(
feature
,
num_classes
,
num_convs
,
norm
=
None
):
"""
Args:
feature (any shape):
num_classes(int): num_category + 1
num_convs (int): number of conv layers
norm (str or None): either None or 'GN'
Returns:
cls_logits (Nxnum_class), reg_logits (Nx num_class-1 x 4)
"""
l
=
feature
with
argscope
(
Conv2D
,
data_format
=
'channels_first'
,
kernel_initializer
=
tf
.
variance_scaling_initializer
(
scale
=
2.0
,
mode
=
'fan_out'
,
distribution
=
'normal'
)):
for
k
in
range
(
num_convs
):
l
=
Conv2D
(
'conv{}'
.
format
(
k
),
l
,
cfg
.
FPN
.
FRCNN_CONV_HEAD_DIM
,
3
,
activation
=
tf
.
nn
.
relu
)
if
norm
is
not
None
:
l
=
GroupNorm
(
'gn{}'
.
format
(
k
),
l
)
l
=
FullyConnected
(
'fc'
,
l
,
cfg
.
FPN
.
FRCNN_FC_HEAD_DIM
,
kernel_initializer
=
tf
.
variance_scaling_initializer
(),
activation
=
tf
.
nn
.
relu
)
return
fastrcnn_outputs
(
'outputs'
,
l
,
num_classes
)
def
fastrcnn_4conv1fc_head
(
*
args
,
**
kwargs
):
return
fastrcnn_Xconv1fc_head
(
*
args
,
num_convs
=
4
,
**
kwargs
)
def
fastrcnn_4conv1fc_gn_head
(
*
args
,
**
kwargs
):
return
fastrcnn_Xconv1fc_head
(
*
args
,
num_convs
=
4
,
norm
=
'GN'
,
**
kwargs
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment