Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
61b79a46
Commit
61b79a46
authored
Mar 03, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
hdf5 data
parent
b06fa732
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
68 additions
and
24 deletions
+68
-24
example_cifar10.py
example_cifar10.py
+29
-24
requirements.txt
requirements.txt
+1
-0
tensorpack/dataflow/format.py
tensorpack/dataflow/format.py
+38
-0
No files found.
example_cifar10.py
View file @
61b79a46
...
...
@@ -88,10 +88,10 @@ class Model(ModelDesc):
add_param_summary
([(
'.*/W'
,
[
'histogram'
,
'sparsity'
])])
# monitor W
return
tf
.
add_n
([
cost
,
wd_cost
],
name
=
'cost'
)
def
get_
config
(
):
#anchors = np.mgrid[0:4,0:4][:,1:,1:].transpose(1,2,0).reshape((-1,2)) / 4.0
# prepare dataset
dataset_train
=
dataset
.
Cifar10
(
'train'
)
def
get_
data
(
train_or_test
):
isTrain
=
train_or_test
==
'train'
ds
=
dataset
.
Cifar10
(
train_or_test
)
if
isTrain
:
augmentors
=
[
imgaug
.
RandomCrop
((
30
,
30
)),
imgaug
.
Flip
(
horiz
=
True
),
...
...
@@ -102,19 +102,24 @@ def get_config():
(
30
,
30
),
0.2
,
3
),
imgaug
.
MeanVarianceNormalize
(
all_channel
=
True
)
]
dataset_train
=
AugmentImageComponent
(
dataset_train
,
augmentors
)
dataset_train
=
BatchData
(
dataset_train
,
128
)
dataset_train
=
PrefetchData
(
dataset_train
,
3
,
2
)
step_per_epoch
=
dataset_train
.
size
()
/
2
step_per_epoch
=
10
else
:
augmentors
=
[
imgaug
.
CenterCrop
((
30
,
30
)),
imgaug
.
MeanVarianceNormalize
(
all_channel
=
True
)
]
dataset_test
=
dataset
.
Cifar10
(
'test'
)
dataset_test
=
AugmentImageComponent
(
dataset_test
,
augmentors
)
dataset_test
=
BatchData
(
dataset_test
,
128
,
remainder
=
True
)
ds
=
AugmentImageComponent
(
ds
,
augmentors
)
ds
=
BatchData
(
ds
,
128
,
remainder
=
not
isTrain
)
if
isTrain
:
ds
=
PrefetchData
(
ds
,
3
,
2
)
return
ds
def
get_config
():
# prepare dataset
dataset_train
=
get_data
(
'train'
)
step_per_epoch
=
dataset_train
.
size
()
/
2
dataset_test
=
get_data
(
'test'
)
sess_config
=
get_default_sess_config
()
sess_config
.
gpu_options
.
per_process_gpu_memory_fraction
=
0.5
...
...
requirements.txt
View file @
61b79a46
...
...
@@ -2,3 +2,4 @@ termcolor
pillow
scipy
tqdm
h5py
tensorpack/dataflow/format.py
0 → 100644
View file @
61b79a46
# -*- coding: utf-8 -*-
# File: format.py
# Author: Yuxin Wu <ppwwyyxxc@gmail.com>
import
h5py
import
random
from
six.moves
import
range
from
.base
import
DataFlow
"""
Adapter for different data format.
"""
__all__
=
[
'HDF5Data'
]
class
HDF5Data
(
DataFlow
):
"""
Zip data from different paths in this HDF5 data file
"""
def
__init__
(
self
,
filename
,
data_paths
,
shuffle
=
True
):
self
.
f
=
h5py
.
File
(
filename
,
'r'
)
self
.
dps
=
[
self
.
f
[
k
]
for
k
in
data_paths
]
lens
=
[
len
(
k
)
for
k
in
self
.
dps
]
assert
all
([
k
==
lens
[
0
]
for
k
in
lens
])
self
.
_size
=
lens
[
0
]
self
.
shuffle
=
shuffle
def
size
(
self
):
return
self
.
_size
def
get_data
(
self
):
idxs
=
list
(
range
(
self
.
_size
))
if
self
.
shuffle
:
random
.
shuffle
(
idxs
)
for
k
in
idxs
:
yield
[
dp
[
k
]
for
dp
in
self
.
dps
]
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment