Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
61663400
Commit
61663400
authored
Nov 10, 2019
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add serialization benchmark & forking pickler
parent
23ab7001
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
116 additions
and
1 deletion
+116
-1
examples/FasterRCNN/dataset/dataset.py
examples/FasterRCNN/dataset/dataset.py
+1
-1
tensorpack/utils/serialize.py
tensorpack/utils/serialize.py
+17
-0
tests/benchmark-serializer.py
tests/benchmark-serializer.py
+98
-0
No files found.
examples/FasterRCNN/dataset/dataset.py
View file @
61663400
...
@@ -24,7 +24,7 @@ class DatasetSplit():
...
@@ -24,7 +24,7 @@ class DatasetSplit():
boxes: numpy array of kx4 floats, each row is [x1, y1, x2, y2]
boxes: numpy array of kx4 floats, each row is [x1, y1, x2, y2]
class: numpy array of k integers, in the range of [1, #categories], NOT [0, #categories)
class: numpy array of k integers, in the range of [1, #categories], NOT [0, #categories)
is_crowd: k booleans. Use k False if you don't know what it means.
is_crowd: k booleans. Use k False if you don't know what it means.
segmentation: k lists of numpy arrays
(one for each instance)
.
segmentation: k lists of numpy arrays.
Each list of numpy arrays corresponds to the mask for one instance.
Each list of numpy arrays corresponds to the mask for one instance.
Each numpy array in the list is a polygon of shape Nx2,
Each numpy array in the list is a polygon of shape Nx2,
because one mask can be represented by N polygons.
because one mask can be represented by N polygons.
...
...
tensorpack/utils/serialize.py
View file @
61663400
...
@@ -4,6 +4,7 @@
...
@@ -4,6 +4,7 @@
import
os
import
os
import
pickle
import
pickle
from
multiprocessing.reduction
import
ForkingPickler
import
msgpack
import
msgpack
import
msgpack_numpy
import
msgpack_numpy
...
@@ -92,6 +93,7 @@ class PickleSerializer(object):
...
@@ -92,6 +93,7 @@ class PickleSerializer(object):
return
pickle
.
loads
(
buf
)
return
pickle
.
loads
(
buf
)
# Define the default serializer to be used that dumps data to bytes
_DEFAULT_S
=
os
.
environ
.
get
(
'TENSORPACK_SERIALIZE'
,
'msgpack'
)
_DEFAULT_S
=
os
.
environ
.
get
(
'TENSORPACK_SERIALIZE'
,
'msgpack'
)
if
_DEFAULT_S
==
"pyarrow"
:
if
_DEFAULT_S
==
"pyarrow"
:
...
@@ -103,3 +105,18 @@ elif _DEFAULT_S == "pickle":
...
@@ -103,3 +105,18 @@ elif _DEFAULT_S == "pickle":
else
:
else
:
dumps
=
MsgpackSerializer
.
dumps
dumps
=
MsgpackSerializer
.
dumps
loads
=
MsgpackSerializer
.
loads
loads
=
MsgpackSerializer
.
loads
# Define the default serializer to be used for passing data
# among a pair of peers. In this case the deserialization is
# known to happen only once
_DEFAULT_S
=
os
.
environ
.
get
(
'TENSORPACK_ONCE_SERIALIZE'
,
'pickle'
)
if
_DEFAULT_S
==
"pyarrow"
:
dumps_once
=
PyarrowSerializer
.
dumps
loads_once
=
PyarrowSerializer
.
loads
elif
_DEFAULT_S
==
"pickle"
:
dumps_once
=
ForkingPickler
.
dumps
loads_once
=
ForkingPickler
.
loads
else
:
dumps_once
=
MsgpackSerializer
.
dumps
loads_once
=
MsgpackSerializer
.
loads
tests/benchmark-serializer.py
0 → 100644
View file @
61663400
#!/usr/bin/env python3
import
numpy
as
np
import
argparse
import
pyarrow
as
pa
from
tabulate
import
tabulate
import
operator
from
tensorpack.utils
import
logger
from
tensorpack.utils.serialize
import
(
MsgpackSerializer
,
PyarrowSerializer
,
PickleSerializer
,
ForkingPickler
,
)
from
tensorpack.utils.timer
import
Timer
def
benchmark_serializer
(
dumps
,
loads
,
data
,
num
):
buf
=
dumps
(
data
)
enc_timer
=
Timer
()
dec_timer
=
Timer
()
enc_timer
.
pause
()
dec_timer
.
pause
()
for
k
in
range
(
num
):
enc_timer
.
resume
()
buf
=
dumps
(
data
)
enc_timer
.
pause
()
dec_timer
.
resume
()
loads
(
buf
)
dec_timer
.
pause
()
dumps_time
=
enc_timer
.
seconds
()
/
num
loads_time
=
dec_timer
.
seconds
()
/
num
return
dumps_time
,
loads_time
def
display_results
(
name
,
results
):
logger
.
info
(
"Encoding benchmark for {}:"
.
format
(
name
))
data
=
sorted
([(
x
,
y
[
0
])
for
x
,
y
in
results
],
key
=
operator
.
itemgetter
(
1
))
print
(
tabulate
(
data
,
floatfmt
=
'.5f'
))
logger
.
info
(
"Decoding benchmark for {}:"
.
format
(
name
))
data
=
sorted
([(
x
,
y
[
1
])
for
x
,
y
in
results
],
key
=
operator
.
itemgetter
(
1
))
print
(
tabulate
(
data
,
floatfmt
=
'.5f'
))
def
benchmark_all
(
name
,
serializers
,
data
,
num
=
30
):
logger
.
info
(
"Benchmarking {} ..."
.
format
(
name
))
results
=
[]
for
serializer_name
,
dumps
,
loads
in
serializers
:
results
.
append
((
serializer_name
,
benchmark_serializer
(
dumps
,
loads
,
data
,
num
=
num
)))
display_results
(
name
,
results
)
def
fake_json_data
():
return
{
'words'
:
"""
Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Mauris adipiscing adipiscing placerat.
Vestibulum augue augue,
pellentesque quis sollicitudin id, adipiscing.
"""
*
100
,
'list'
:
list
(
range
(
100
))
*
500
,
'dict'
:
dict
((
str
(
i
),
'a'
)
for
i
in
range
(
50000
)),
'dict2'
:
dict
((
i
,
'a'
)
for
i
in
range
(
50000
)),
'int'
:
3000
,
'float'
:
100.123456
}
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"task"
)
args
=
parser
.
parse_args
()
serializers
=
[
(
"msgpack"
,
MsgpackSerializer
.
dumps
,
MsgpackSerializer
.
loads
),
(
"pyarrow-buf"
,
PyarrowSerializer
.
dumps
,
PyarrowSerializer
.
loads
),
(
"pyarrow-bytes"
,
PyarrowSerializer
.
dumps_bytes
,
PyarrowSerializer
.
loads
),
(
"pickle"
,
PickleSerializer
.
dumps
,
PickleSerializer
.
loads
),
(
"forking-pickle"
,
ForkingPickler
.
dumps
,
ForkingPickler
.
loads
),
]
if
args
.
task
==
"numpy"
:
numpy_data
=
[
np
.
random
.
rand
(
64
,
224
,
224
,
3
)
.
astype
(
"float32"
),
np
.
random
.
rand
(
64
)
.
astype
(
'int32'
)]
benchmark_all
(
"numpy data"
,
serializers
,
numpy_data
)
elif
args
.
task
==
"json"
:
benchmark_all
(
"json data"
,
serializers
,
fake_json_data
(),
num
=
50
)
elif
args
.
task
==
"torch"
:
import
torch
from
pyarrow.lib
import
_default_serialization_context
pa
.
register_torch_serialization_handlers
(
_default_serialization_context
)
torch_data
=
[
torch
.
rand
(
64
,
224
,
224
,
3
),
torch
.
rand
(
64
)
.
to
(
dtype
=
torch
.
int32
)]
benchmark_all
(
"torch data"
,
serializers
[
1
:],
torch_data
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment