Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
4ee67733
Commit
4ee67733
authored
Aug 07, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
dorefa & resnet models
parent
ea093029
Changes
6
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
74 additions
and
34 deletions
+74
-34
examples/Atari2600/common.py
examples/Atari2600/common.py
+1
-1
examples/DoReFa-Net/README.md
examples/DoReFa-Net/README.md
+2
-2
examples/ResNet/README.md
examples/ResNet/README.md
+2
-4
tensorpack/callbacks/common.py
tensorpack/callbacks/common.py
+1
-1
tensorpack/tfutils/sessinit.py
tensorpack/tfutils/sessinit.py
+14
-13
tensorpack/tfutils/varmanip.py
tensorpack/tfutils/varmanip.py
+54
-13
No files found.
examples/Atari2600/common.py
View file @
4ee67733
...
@@ -21,7 +21,7 @@ def play_one_episode(player, func, verbose=False):
...
@@ -21,7 +21,7 @@ def play_one_episode(player, func, verbose=False):
def
f
(
s
):
def
f
(
s
):
spc
=
player
.
get_action_space
()
spc
=
player
.
get_action_space
()
act
=
func
([[
s
]])[
0
][
0
]
.
argmax
()
act
=
func
([[
s
]])[
0
][
0
]
.
argmax
()
if
random
.
random
()
<
0.01
:
if
random
.
random
()
<
0.0
0
1
:
act
=
spc
.
sample
()
act
=
spc
.
sample
()
if
verbose
:
if
verbose
:
print
(
act
)
print
(
act
)
...
...
examples/DoReFa-Net/README.md
View file @
4ee67733
...
@@ -5,8 +5,8 @@ Code and model for the paper:
...
@@ -5,8 +5,8 @@ Code and model for the paper:
We hosted a demo at CVPR16 on behalf of Megvii, Inc, running real-time half-VGG size DoReFa-Net on both ARM and FPGA.
We hosted a demo at CVPR16 on behalf of Megvii, Inc, running real-time half-VGG size DoReFa-Net on both ARM and FPGA.
But we're not planning to release those runtime bit-op libraries for now. In these examples, bit operations are run in float32.
But we're not planning to release those runtime bit-op libraries for now. In these examples, bit operations are run in float32.
Pretrained model for 1-2-6-AlexNet is available
at
Pretrained model for 1-2-6-AlexNet is available
[
google drive
](
https://drive.google.com/a/
megvii.com/folderview?id=0B308TeQzmFDLa0xOeVQwcXg1ZjQ
).
[
here
](
https://github.com/ppwwyyxx/tensorpack/releases/tag/alexnet-dorefa
)
.
It's provided in the format of numpy dictionary, so it should be very easy to port into other applications.
It's provided in the format of numpy dictionary, so it should be very easy to port into other applications.
## Preparation:
## Preparation:
...
...
examples/ResNet/README.md
View file @
4ee67733
...
@@ -9,7 +9,5 @@ The validation error here is computed on test set.
...
@@ -9,7 +9,5 @@ The validation error here is computed on test set.


<!--
Download model:
-Download model:
[
Cifar10 ResNet-110 (n=18)
](
https://github.com/ppwwyyxx/tensorpack/releases/tag/cifar10-resnet-110
)
-
[
Cifar10 n=18
](
https://drive.google.com/open?id=0B308TeQzmFDLeHpSaHAxWGV1WDg
)
-->
tensorpack/callbacks/common.py
View file @
4ee67733
...
@@ -36,7 +36,7 @@ class ModelSaver(Callback):
...
@@ -36,7 +36,7 @@ class ModelSaver(Callback):
vars
=
tf
.
all_variables
()
vars
=
tf
.
all_variables
()
var_dict
=
{}
var_dict
=
{}
for
v
in
vars
:
for
v
in
vars
:
name
=
v
.
op
.
name
name
=
v
.
name
if
re
.
match
(
'tower[p1-9]'
,
name
):
if
re
.
match
(
'tower[p1-9]'
,
name
):
#logger.info("Skip {} when saving model.".format(name))
#logger.info("Skip {} when saving model.".format(name))
continue
continue
...
...
tensorpack/tfutils/sessinit.py
View file @
4ee67733
...
@@ -11,7 +11,7 @@ import six
...
@@ -11,7 +11,7 @@ import six
from
..utils
import
logger
,
EXTRA_SAVE_VARS_KEY
from
..utils
import
logger
,
EXTRA_SAVE_VARS_KEY
from
.common
import
get_op_var_name
from
.common
import
get_op_var_name
from
.varmanip
import
SessionUpdate
from
.varmanip
import
SessionUpdate
,
get_savename_from_varname
__all__
=
[
'SessionInit'
,
'NewSession'
,
'SaverRestore'
,
__all__
=
[
'SessionInit'
,
'NewSession'
,
'SaverRestore'
,
'ParamRestore'
,
'ChainInit'
,
'ParamRestore'
,
'ChainInit'
,
...
@@ -112,19 +112,17 @@ class SaverRestore(SessionInit):
...
@@ -112,19 +112,17 @@ class SaverRestore(SessionInit):
var_dict
=
defaultdict
(
list
)
var_dict
=
defaultdict
(
list
)
chkpt_vars_used
=
set
()
chkpt_vars_used
=
set
()
for
v
in
vars_to_restore
:
for
v
in
vars_to_restore
:
name
=
v
.
op
.
name
name
=
get_savename_from_varname
(
v
.
name
,
varname_prefix
=
self
.
prefix
)
if
'towerp'
in
name
:
# try to load both 'varname' and 'opname' from checkpoint
logger
.
error
(
"No variable should be under 'towerp' name scope"
.
format
(
v
.
name
))
# because some old checkpoint might not have ':0'
# don't overwrite anything in the current prediction graph
if
name
in
vars_available
:
continue
var_dict
[
name
]
.
append
(
v
)
if
'tower'
in
name
:
chkpt_vars_used
.
add
(
name
)
name
=
re
.
sub
(
'tower[p0-9]+/'
,
''
,
name
)
elif
name
.
endswith
(
':0'
):
if
self
.
prefix
and
name
.
startswith
(
self
.
prefix
):
name
=
name
[:
-
2
]
name
=
name
[
len
(
self
.
prefix
)
+
1
:]
if
name
in
vars_available
:
if
name
in
vars_available
:
var_dict
[
name
]
.
append
(
v
)
var_dict
[
name
]
.
append
(
v
)
chkpt_vars_used
.
add
(
name
)
chkpt_vars_used
.
add
(
name
)
#vars_available.remove(name)
else
:
else
:
logger
.
warn
(
"Variable {} in the graph not found in checkpoint!"
.
format
(
v
.
op
.
name
))
logger
.
warn
(
"Variable {} in the graph not found in checkpoint!"
.
format
(
v
.
op
.
name
))
if
len
(
chkpt_vars_used
)
<
len
(
vars_available
):
if
len
(
chkpt_vars_used
)
<
len
(
vars_available
):
...
@@ -141,12 +139,13 @@ class ParamRestore(SessionInit):
...
@@ -141,12 +139,13 @@ class ParamRestore(SessionInit):
"""
"""
:param param_dict: a dict of {name: value}
:param param_dict: a dict of {name: value}
"""
"""
# use varname (with :0) for consistency
self
.
prms
=
{
get_op_var_name
(
n
)[
1
]:
v
for
n
,
v
in
six
.
iteritems
(
param_dict
)}
self
.
prms
=
{
get_op_var_name
(
n
)[
1
]:
v
for
n
,
v
in
six
.
iteritems
(
param_dict
)}
def
_init
(
self
,
sess
):
def
_init
(
self
,
sess
):
variables
=
tf
.
get_collection
(
tf
.
GraphKeys
.
VARIABLES
)
variables
=
tf
.
get_collection
(
tf
.
GraphKeys
.
VARIABLES
)
variable_names
=
set
([
k
.
name
for
k
in
variables
])
variable_names
=
set
([
get_savename_from_varname
(
k
.
name
)
for
k
in
variables
])
param_names
=
set
(
six
.
iterkeys
(
self
.
prms
))
param_names
=
set
(
six
.
iterkeys
(
self
.
prms
))
intersect
=
variable_names
&
param_names
intersect
=
variable_names
&
param_names
...
@@ -159,7 +158,9 @@ class ParamRestore(SessionInit):
...
@@ -159,7 +158,9 @@ class ParamRestore(SessionInit):
logger
.
warn
(
"Variable {} in the dict not found in the graph!"
.
format
(
k
))
logger
.
warn
(
"Variable {} in the dict not found in the graph!"
.
format
(
k
))
upd
=
SessionUpdate
(
sess
,
[
v
for
v
in
variables
if
v
.
name
in
intersect
])
upd
=
SessionUpdate
(
sess
,
[
v
for
v
in
variables
if
\
get_savename_from_varname
(
v
.
name
)
in
intersect
])
logger
.
info
(
"Restoring from dict ..."
)
logger
.
info
(
"Restoring from dict ..."
)
upd
.
update
({
name
:
value
for
name
,
value
in
six
.
iteritems
(
self
.
prms
)
if
name
in
intersect
})
upd
.
update
({
name
:
value
for
name
,
value
in
six
.
iteritems
(
self
.
prms
)
if
name
in
intersect
})
...
...
tensorpack/tfutils/varmanip.py
View file @
4ee67733
...
@@ -5,10 +5,37 @@
...
@@ -5,10 +5,37 @@
import
six
import
six
import
tensorflow
as
tf
import
tensorflow
as
tf
from
collections
import
defaultdict
import
re
import
numpy
as
np
import
numpy
as
np
from
..utils
import
logger
from
..utils
import
logger
__all__
=
[
'SessionUpdate'
,
'dump_session_params'
,
'dump_chkpt_vars'
]
__all__
=
[
'SessionUpdate'
,
'dump_session_params'
,
'dump_chkpt_vars'
,
'get_savename_from_varname'
]
def
get_savename_from_varname
(
varname
,
varname_prefix
=
None
,
savename_prefix
=
None
):
"""
:param varname: a variable name in the graph
:param varname_prefix: an optional prefix that may need to be removed in varname
:param savename_prefix: an optional prefix to append to all savename
:returns: the name used to save the variable
"""
name
=
varname
if
'towerp'
in
name
:
logger
.
error
(
"No variable should be under 'towerp' name scope"
.
format
(
v
.
name
))
# don't overwrite anything in the current prediction graph
return
None
if
'tower'
in
name
:
name
=
re
.
sub
(
'tower[p0-9]+/'
,
''
,
name
)
if
varname_prefix
is
not
None
\
and
name
.
startswith
(
varname_prefix
):
name
=
name
[
len
(
varname_prefix
)
+
1
:]
if
savename_prefix
is
not
None
:
name
=
savename_prefix
+
'/'
+
name
return
name
class
SessionUpdate
(
object
):
class
SessionUpdate
(
object
):
""" Update the variables in a session """
""" Update the variables in a session """
...
@@ -17,10 +44,14 @@ class SessionUpdate(object):
...
@@ -17,10 +44,14 @@ class SessionUpdate(object):
:param vars_to_update: a collection of variables to update
:param vars_to_update: a collection of variables to update
"""
"""
self
.
sess
=
sess
self
.
sess
=
sess
self
.
assign_ops
=
{}
self
.
assign_ops
=
defaultdict
(
list
)
for
v
in
vars_to_update
:
for
v
in
vars_to_update
:
p
=
tf
.
placeholder
(
v
.
dtype
,
shape
=
v
.
get_shape
())
#p = tf.placeholder(v.dtype, shape=v.get_shape())
self
.
assign_ops
[
v
.
name
]
=
(
p
,
v
.
assign
(
p
))
with
tf
.
device
(
'/cpu:0'
):
p
=
tf
.
placeholder
(
v
.
dtype
)
savename
=
get_savename_from_varname
(
v
.
name
)
# multiple vars might share one savename
self
.
assign_ops
[
savename
]
.
append
((
p
,
v
,
v
.
assign
(
p
)))
def
update
(
self
,
prms
):
def
update
(
self
,
prms
):
"""
"""
...
@@ -28,15 +59,25 @@ class SessionUpdate(object):
...
@@ -28,15 +59,25 @@ class SessionUpdate(object):
Any name in prms must be in the graph and in vars_to_update.
Any name in prms must be in the graph and in vars_to_update.
"""
"""
for
name
,
value
in
six
.
iteritems
(
prms
):
for
name
,
value
in
six
.
iteritems
(
prms
):
p
,
op
=
self
.
assign_ops
[
name
]
assert
name
in
self
.
assign_ops
varshape
=
tuple
(
p
.
get_shape
()
.
as_list
())
for
p
,
v
,
op
in
self
.
assign_ops
[
name
]:
if
'fc0/W'
in
name
:
import
IPython
as
IP
;
IP
.
embed
(
config
=
IP
.
terminal
.
ipapp
.
load_default_config
())
varshape
=
tuple
(
v
.
get_shape
()
.
as_list
())
if
varshape
!=
value
.
shape
:
if
varshape
!=
value
.
shape
:
# TODO only allow reshape when shape different by empty axis
# TODO only allow reshape when shape different by empty axis
assert
np
.
prod
(
varshape
)
==
np
.
prod
(
value
.
shape
),
\
assert
np
.
prod
(
varshape
)
==
np
.
prod
(
value
.
shape
),
\
"{}: {}!={}"
.
format
(
name
,
varshape
,
value
.
shape
)
"{}: {}!={}"
.
format
(
name
,
varshape
,
value
.
shape
)
logger
.
warn
(
"Param {} is reshaped during assigning"
.
format
(
name
))
logger
.
warn
(
"Param {} is reshaped during assigning"
.
format
(
name
))
value
=
value
.
reshape
(
varshape
)
value
=
value
.
reshape
(
varshape
)
if
'fc0/W'
in
name
:
import
IPython
as
IP
;
IP
.
embed
(
config
=
IP
.
terminal
.
ipapp
.
load_default_config
())
self
.
sess
.
run
(
op
,
feed_dict
=
{
p
:
value
})
self
.
sess
.
run
(
op
,
feed_dict
=
{
p
:
value
})
if
'fc0/W'
in
name
:
import
IPython
as
IP
;
IP
.
embed
(
config
=
IP
.
terminal
.
ipapp
.
load_default_config
())
def
dump_session_params
(
path
):
def
dump_session_params
(
path
):
""" Dump value of all trainable + to_save variables to a dict and save to `path` as
""" Dump value of all trainable + to_save variables to a dict and save to `path` as
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment