Commit 4c59718f authored by Yuxin Wu's avatar Yuxin Wu

fix initializer mode

parent a963b01d
......@@ -74,7 +74,7 @@ class Model(ModelDesc):
with argscope([Conv2D, AvgPooling, BatchNorm, GlobalAvgPooling], data_format='NCHW'), \
argscope(Conv2D, nl=tf.identity, use_bias=False, kernel_shape=3,
W_init=tf.variance_scaling_initializer(scale=2.0, mode='FAN_OUT')):
W_init=tf.variance_scaling_initializer(scale=2.0, mode='fan_out')):
l = Conv2D('conv0', image, 16, nl=BNReLU)
l = residual('res1.0', l, first=True)
for k in range(1, self.n):
......
......@@ -115,7 +115,7 @@ def resnet_group(l, name, block_func, features, count, stride):
def resnet_backbone(image, num_blocks, group_func, block_func):
with argscope(Conv2D, nl=tf.identity, use_bias=False,
W_init=tf.variance_scaling_initializer(scale=2.0, mode='FAN_OUT')):
W_init=tf.variance_scaling_initializer(scale=2.0, mode='fan_out')):
logits = (LinearWrap(image)
.Conv2D('conv0', 64, 7, stride=2, nl=BNReLU)
.MaxPooling('pool0', shape=3, stride=2, padding='SAME')
......
......@@ -47,7 +47,7 @@ class Model(ModelDesc):
defs, block_func = cfg[DEPTH]
with argscope(Conv2D, nl=tf.identity, use_bias=False,
W_init=tf.variance_scaling_initializer(scale=2.0, mode='FAN_OUT')), \
W_init=tf.variance_scaling_initializer(scale=2.0, mode='fan_out')), \
argscope([Conv2D, MaxPooling, GlobalAvgPooling, BatchNorm], data_format='NCHW'):
convmaps = (LinearWrap(image)
.Conv2D('conv0', 64, 7, stride=2, nl=BNReLU)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment