Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
47b93ed9
Commit
47b93ed9
authored
Sep 22, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update readme about dorefa
parent
1e91d921
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
3 additions
and
3 deletions
+3
-3
examples/DoReFa-Net/README.md
examples/DoReFa-Net/README.md
+1
-1
tensorpack/callbacks/inference.py
tensorpack/callbacks/inference.py
+1
-1
tensorpack/train/config.py
tensorpack/train/config.py
+1
-1
No files found.
examples/DoReFa-Net/README.md
View file @
47b93ed9
...
...
@@ -13,7 +13,7 @@ It's provided in the format of numpy dictionary, so it should be very easy to po
To use the script. You'll need:
+
[
TensorFlow
](
https://tensorflow.org
)
>= 0.
8
+
[
TensorFlow
](
https://tensorflow.org
)
>= 0.
10
+
OpenCV bindings for Python
...
...
tensorpack/callbacks/inference.py
View file @
47b93ed9
...
...
@@ -131,7 +131,7 @@ class ScalarStats(Inferencer):
"""
Write some scalar tensor to both stat and summary.
The output of the given Ops must be a scalar.
The value will be averaged over all data points in the
dataset
.
The value will be averaged over all data points in the
inference dataflow
.
"""
def
__init__
(
self
,
names_to_print
,
prefix
=
'validation'
):
"""
...
...
tensorpack/train/config.py
View file @
47b93ed9
...
...
@@ -52,7 +52,7 @@ class TrainConfig(object):
self
.
step_per_epoch
=
int
(
kwargs
.
pop
(
'step_per_epoch'
))
self
.
starting_epoch
=
int
(
kwargs
.
pop
(
'starting_epoch'
,
1
))
self
.
max_epoch
=
int
(
kwargs
.
pop
(
'max_epoch'
,
99999
))
assert
self
.
step_per_epoch
>
0
and
self
.
max_epoch
>
0
assert
self
.
step_per_epoch
>
=
0
and
self
.
max_epoch
>
0
if
'nr_tower'
in
kwargs
or
'tower'
in
kwargs
:
self
.
set_tower
(
**
kwargs
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment